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Abstract: In this paper we study theome marking problem for Petri nets, and some
related concepts to it like confluence, noetherianity, and state space inclusion. We
show that the home marking problem for inhibitor Petri nets is undecidable. We relate
then the existence of home markings to confluence and noetherianity and prove that
confluent and noetherian Petri nets have an unique home marking. Finally, we define
some versions of the state space inclusion problem related to the home marking and
sub-marking problems, and discuss their decidability status.

1 Introduction and Preliminaries

A home marking of a system is a marking which is reachable from every reachable mark-

ing in the system. The identification of home markings is an important issue in system
design and analysis. A typical example is that of an operating system which, at boot time,
carries out a set of initializations and then cyclically waits for, and produces, a variety of

input/output operations. The states that belong to the ultimate cyclic behavioural compo-
nent determine the central function of this type of system. The markings modeling such
states are the home markings.

The existence of home markings is a widely studied subject in the theory of Petri nets [6, 1,
15, 2, 14, 4, 13], but only for very particular classes of them. Thus, in [1] it has been proven
that live and 1-safe free-choice Petri nets have home markings. The result has successively
been extended to live and safe free-choice Petri nets [15], live and safe equal-conflict Petri
nets [14], and deterministically synchronized sequential process systems [11]. All these
results make use, more or less directly, ofamfluence property which is induced by
liveness and safety.

Thehome marking problem for Petri nets (that is, the problem of deciding whether or not
a given marking of a Petri net is a home marking) has been proven decidable in [5]. In
our paper we show that this problem is undecidable for inhibitor Petri nets (section 2).



Then, we relate the concept of a home marking to the properties of confluence, safety,
and noetherianity, and prove that confluent and noetherian Petri nets have an unique home
marking (section 3). In Section 4 we define some versions of the state space inclusion
problem for Petri nets, related to the home marking problem, and discuss their decidability
status. We close the paper by some conclusions.

The rest of this section is devoted to a short introduction to Petri nets (for details the reader
is referred to [12, 9]). A (finitePetri net (with infinite capacities), abbreviatdelV, is a
4-tupleX = (S,T,F,W), whereS andT are two finite non-empty sets (pfaces and
transitions, respectively)SNT = 0, F C (S x T) U (T x S) is theflow relation, and

W :(SxT)U(T x S) - N is theweight function of X satisfyingW (z,y) = 0 iff

(z,y) ¢ F. When all weights are ong; is calledordinary.

A marking of a Petri net® is a functionM : S — N. A marked Petri net, abbreviated
mPN, is a pairy = (X, My), whereX is a PN and My, theinitial marking of v, is a
marking ofX.

The behaviour of the netis given by the so-callettansition rule, which consists of:

(a) theenablingrule: a transitiort is enabled at a markingl/ (in ), abbreviated/[t) -,
iff W(s,t) < M(s), for any places;

(b) thecomputing rule: if M[t). thent mayoccur yielding a new marking/ ', abbre-
viated M [t), M’, defined byM'(s) = M(s) — W (s,t) + W(t,s), foranys € S.

The transition rule is extended homomorphically to sequences of transitialW§ Xy, M,
and M [wt), M’ whenever there is a marking "’ such thatM [w),M" and M " [t), M’,
whereM andM' are markings ofy, w € T* andt € T.

Lety = (X, Mp) be a marked Petri net. A word € T* is called atransition sequence
of v if there exists a marking/ of v such thatM[w)~ M. Moreover, the marking/ is
calledreachablein . The set of all reachable markings-pis denoted byM o)~ (or [M)
when- is clear from context).

A Petri nety is calledn-safe, wheren > 1 is a natural number, ifi/(s) < n for all
reachable marking8/; v is calledsafe if it is n-safe for some:. Clearly, a Petri net is
safe iff it has a finite set of reachable markings.

2 TheHomeMarking Problem

A homemarking of a system is a marking which is reachable from every reachable marking
in the system. For Petri nets, home markings are defined as follows.

Definition 2.1 A marking M of a Petri nety = (X, M) is called ahome marking of +y if
M e [M'") forall M' € [My).



The Home Marking Problem (HMP)
Instance: v = (X, My) and a markingV/ of v;

Question: isM a home marking ofy ?

In [5], home spaces of Petri nets are considered. A home space of a Petrj ieainy set
H S of markings ofy such that for any reachable markinfjthere is a marking/ ' € HS
reachable froml/. If HS is singleton, its unique element is a home marking.

A set A of markings of a Petri net is calledlinear if there are a marking/ of v and a
finite set{ M, ..., M,,} of markings ofy such that

(VM € A) (V1 <i<n)3k € N)(M' =M + zn:kiM,»).

i=1

The main result proved in [5] states that it is decidable whether or not a linear set of
markings is a home space. Therefore, the home marking problem is decidable because
any singleton set is linear.

The concept of a home marking can also be considered for extended Petri nets (like in-
hibitor, reset etc.) by taking into consideration their transition relation. In what follows
we show that it is undecidable whether or not a marking of an inhibitor Petri net is a home
marking. First, recall the concepts of an inhibitor net and counter machine.

A k-inhibitor net (k > 0) is a coupley = (X, 1), whereX is a net and is a subset of
S x Tsuchthatt' NI = and|{s € S|(s,t) € I}| < kforallt € T.

Lety = (X, I) be an inhibitor net)M a marking ofy andt € T'. Then,
Mt),; & Mtys A (Vs € S)((s,t) eI = M(s)=0),
and
Mt)y ;M < M[t)y; N M[t)ysM'.
A deterministic counter machine (DC' M) is a 6-tupled = (Q, qo,¢¢, C, xo, I), Where:

(1) @ is a finite non-empty set aftates, go € @ is theinitial state, andgy € @ is the
final state;

(2) C is afinite non-empty set aounters. Each counter can store any natural number,
andzg : C' — N is the initial content of the counters;

(3) I is afinite set ofnstructions. For each state there is exactly an instruction that can
be executed in that state; fgf there is no instruction. An instruction for a states
of the one of the following forms:

- increment instruction - I(q, ¢, q')

q : begin
c:=c+1,
gotoq’

end.



- testinstruction - I(q,c,q',q")

q : if ¢ = 0thengo tay’
else begin
c:=c—1;
go toq”
end.

Let A = (Q,qo,qf,C,z0,I) be aDCM. A configuration of A is a pair(g, z), where
g € @ andz : C' — N. A configuration(q, z) is calledinitial wheng = qo andz = z¢; a
configuration(q, z) is calledfinal wheng = g.

Let A = (Q, g0, 45, C, z0,I) be aDC M. Define the binary relatioh 4 on the configura-
tions of A by:
(¢,z) Fa (¢',x") iff one of the following holds:

(1) there is an increment instructidiiq, ¢, ¢') such thate’(c) = z(c) + 1 andz’(¢') =
z(d), Ve € C —{c};

(2) there is a test instructiaf(q, ¢, q1, g2) such that

(2.1) ifz(c) =0, theng’ = ¢; andz’ = z;
(2.2) if z(c) # 0, thenq’ = ¢, 2'(c) = z(c) — 1 andz'(d') = =z(c') for all
ceC—{c}.

The Halting Problem for counter machines is to decide whether or not a given DCM
reaches a final configuration. It is well-known that this problem is undecidable [10].

Theorem 2.1 The home marking problem for 1-inhibitor Petri nets is undecidable.

Proof We show that the halting problem for DCM can be reduced to the home marking
problem for 1-inhibitor Petri nets.

Let A = (Q, g0, 45, C,x0,I) be aDCM. Define an 1-inhibitor Petri net as follows:

e to eachu € Q U C we associate a place,;

e to each increment instructidiq, ¢, ¢') we associate a transitigras in Figure 1(a),
and to each test instructidiig, ¢, ¢', ¢'') we associate two transitionsandt” as in
Figure 1(b).

A configurations = (¢, z) of A is simulated by the markingy/ given by:

My(sq) = 1,
Ms(s¢) = 0, V¢' € Q —{q},
My(s.) = xz(c), VeeC.

Let M, be the marking corresponding to the initial configuration, drxé the set of pairs
(s¢,t'), wheres. andt’ are as in Figure 1(b).

The nety = (X, J, Myp) is an 1-inhibitor net, and we have:
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Figure 1: (a) The casE(q, ¢, q'); (b) The casd(q, ¢, ¢, q")
(*) o = (q,z) is reachable i from oy = (qo, zo) iff M, is reachable iny from M.

Modify now the nety as in Figure 2 (all places and transitionsyoére pictorially repre-
sented in the dashed box labelledythe places* and the other transitions are new and

specific toy; ).

Figure 2: An inhibitor net instance associated to a DCM instance

We prove that4 halts iff v, has a home marking. Assume first thathalts, and let
(q7,z) be the final configuration wheA halts. ThenM (, .)(s,,) = 1. Therefore, the
newly added transitions can be applied yielding the marking, . . ., 0) which is a home
marking of~y; (this marking can be reached from any reachable marking,ofia the
markingM, ; »)-

Conversely, assume that has home markings but does not halt. Lef\/ be a home
marking of ;. Then,M(s,,) = 0 (otherwise,A halts). Now we can easily see that
the places* will be arbitrarily marked (each transition id induces a transition i,
which increases by one the plag® without the posibility to remove tokens from it be-



causeM (s,,) = 0. Therefore M can not be reached from all reachable markings of
contradicting the fact that/ is a home marking of;. O

3 Confluent and Noetherian Petri Nets

A Petri net isconfluent if its firing relation is confluent, i.e., for any two reachable mark-
ings there is a marking reachable from both of them. This concept proved to be of great
importance when we are dealing with the set of reachable markings of a Petri net. It has
been considered explicitly for the first time, in connection with Petri nets, in [1], where it
has been calledirectedness.

Definition 3.1 AnmPN v = (X, M) is confluent if [M1) N [Ms) # 0 for all markings
My, My € [Mp).

Directly from definitions we obtain the following result.
Theorem 3.1 If anmPN has a home marking then it is confluent.

The converse of Theorem 3.1 does not hold generally. For example, the Petri net in Figure
3 is confluent but it does not have any home marking. In case of safe Petri nets, the
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Figure 3: A confluent net which does not have a home marking

confluence property implies the existence of home markings.
Theorem 3.2 A safem PN has a home marking iff it is confluent.

The proof of Theorem 3.2 is identical to the proof of Lemma 8.3 in [4] for ordinary Petri
nets.

The concept of anoetherian relation is another very important concept in the theory of
binary relations. As for the confluence property, a Petri net is cabbetherian if its firing
relation is noetherian.

Definition 3.2 An mPN is callednoetherian if it does not have infinite transition se-
guences.

Theorem 3.3 Any confluent and noetherian marked Petri net has an unique home mark-
ing.



Proof Lety = (X, M,) be a confluent and noetherianP N. Since~ is noetherian,
there is a markind/’ € [M,) such that-(M'[t)), for any transitiort. We will show that
M' is the unique home state of

For every reachable markiny of v the confluence property leads to the existence of a
markingM" such thatV" € [M) N[M'). Then, the property of/' leads to the fact that
M'" = M'. ThereforeM' € [M) which shows thall/’ is the uniqgue home marking of

|

Using the coverability tree of a Petri net [12, 9] we can easily prove that the noetherianity
property is decidable.

Theorem 3.4 It is decidable whether am PN is noetherian or not.

Proof AnmPN + is noetherian iff for any leaf node of the coverability tree of;, the

label ofv has no other occurrence on the path from the roat t8ince the coverability

tree of a Petri net is always finite and can effectively be constructed, the property of being
noetherian is decidablé&l

Let us denote by (N, H, #*, S) the class of confluent (noetherian, having home mark-
ings, having an unique home marking, safe). It is easily seen that any noethdriain

has a finite set of reachable markings (equivalently, it is a safe net). The converse of this
statement does not hold generally as we can easily see from the net in Figure 4(a). A
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Figure4d: @y e SNH* —N;(0)yeH - S;(c)yeSNH —H*

pictorial view of the relationships between these classes of nets can be found in Figure 5.
Some strict inclusions follow from the examples in Figure 4, and some of them are rather
trivial.

It is important to know which nets are confluent. In [1] it has been proved that live and
1-safe free-choice Petri nets are confluent. The result has been extended in [15] to live and
safe free-choice Petri nets. Further, Recalde and Silva proved in [14] that live and safe
equal-conflict Petri nets have home markings (therefore, they are confluent), and the result
has been extended to deterministically synchronized sequential process systems in [11].
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Figure 5: Relationships between classes of Petri nets

4 HomeMarkingsand State Space Inclusions

The home marking problem can be naturally related to some particular versions of the
space inclusion problem for Petri nets [7]. In order to define them we need first the fol-
lowing concept.

Definition 4.1 Lety = (¥, Mo) be amPN andM a marking ofy. Thedual of v wr.t.
M, denoted by, is the Petri net defined as follows:

- 7= (3, M);

-Y=(S,T,F,W);

-T={llteT};

- (s,1) € Fiff (t,5) € F,foralls € S andt € T, and
(t,s) € Fiff (s,t) € F,foralls € Sandt € T

(
- W(s,t) = W(t,s) andW (%,s) = W(s,t), foralls € S andt € T.

For a sequence = t; ---t, of transitions of a Petri neL denote byu the sequence
U=ty 1.

Lemmad4.l Let ¥ be a Petri net and/, and M, markings of¥. Then, the following
hold:

(1) forevery transition sequeneec T'*, M, [u)y, My iff M;[u)sMy;
(2) M, is reachable fromd/, in X iff M is reachable frond/, in .

Proof (1) can be obtained by induction on the lengthiafsing the fact that undoes the
effect oft, and (2) follows from (1)

Now, we can prove the following simple but important result.



Proposition 4.1 Lety = (X, My) be a Petri net and/ a marking ofy. Then,M is a
home marking ofy iff [Mo). C [M)-.

Proof Let us suppose first thal/ is a home marking of. Then, for every marking
M € [My)., there is a sequence of transitiong T'* such thatV/[v). M. From Lemma

4.1 it follows thatM [v)-M, which shows thafl/ is reachable frond/ in 7. Therefore,

(Mo),, € [70).

Conversely, let\f be a reachable marking fn The proposition’s hypothesis leads to the
fact that)M is reachable iry. Then, from Lemma 4.1 it follows thal/ is reachable from
M in ~. Therefore M is a home marking of. O

Recall now the space and sub-space inclusion problems as defined in [7] (in what follows,
the components of the Petri nét will be denoted bys;, T;, F;, andW;, respectively).

The Space Inclusion Problem (SIP)

Instance: 71 = (21, M}) andy, = (22, MZ) such thatS; = S;
Question:  doefM), C [Mg)., hold?

The Sub-space Inclusion Praoblem (SSIP)

Instance: 1 = (X1, M}), y2 = (Z2, M), andS C Sy N Sa;
Question:  doefMg)., |s € [Mg).,|s hold ?

It is known that both SIP and SSIP are undecidable [7]. Proposition 4.1 leads us to con-
sidering the following versions of SIP and SSIP (in what follopis the dual ofy w.r.t. a
markingM of v).

The Dual Space Inclusion Problem (DSIP)
Instance: vy = (X, M) and a markingV/ of ;

Question:  doefMy)., C [M)- hold ?,

The Dual Sub-space Inclusion Problem (DSSIP)
Instance: v = (X, My), amarkingM of v, andS’ C S;

Question:  doefMo). |s+ C [M)-|s hold ?

From Proposition 4.1 it follows that HMP and DSIP are recursively equivalent and, there-
fore, DSIP is decidable because HMP is decidable [5].

Definition 4.2 A marking M of a Petri nety = (X, M,) is called ahome sub-marking of
ywrt. S C Sif for any markingM € [My) there is a marking/’ € [M) such that
M'|g = Mgr.



The Home Sub-marking Problem (HSM P)

Instance: v = (X, My), amarkingM of v, andS’ C S;
Question:  isM a home sub-marking of w.r.t. S’ ?

Our concept of a home sub-marking is, in fact, the same as that in [5] where it has been
proven that the HSMP is decidable. HSMP and DSSIP are not recursively equivalent as
HMP and DSIP are. In fact, we shall prove that DSSIP is undecidable for a proper sub-
class of Petri nets and, therefore, undecidable for the whole class of Petri nets.

Definition 4.3 A 3-tuple (%, s1, s2) is called atwo-way Petri net 2wPN, for short) if
¥ is a Petri nets; ands, are places o, and there is a partition df, T = T' U T",
such that's; = 7" = s}, *s2 = T" = s3, andW (s, t') = W(t',s1) = W(sa,t") =
W(t",s;) =1forallt' € T" andt” € T".

Pictorially, a2wPN is like in Figure 6 (its set of places SU {s1, s2}, wheres; # s,
andsy, so ¢ S)

S
Tl — TII
Jo= =0~
—/

Figure 6: A pictorial view of a two-way Petri net

Theorem 4.1 The dual sub-space inclusion problem 2arP N is undecidable.

Proof We prove the undecidability of DSSIP by reducing SIP to it.

Let v, andy, be an instance of SIP. We consider theP N ¥ as given in Figure 6, but
with the following differences:

-S5=5=25
-T' = T andT" = T2,
- the arcs and their weights betweBnandS are given byF; andW, respectively;

- the arcs and their weights betweBn andS are given byF'» andWW ,, respectively.

Consider then the markingdl, = (M,1,0) andM = (M§,0, 1), and the marked Petri
netsy = (£, My) andy = (X, M).

Thus, we have obtained an instance of DSSIR{oP N satisfying:

[Mp),, € IM5).,, & [Mo),|s C [M)s]s.



Therefore, SIP is reducible to DSSIP fap PN ; the theorem follows then from the unde-
cidability of SIP [7].O

Clearly, DSSIP for the whole class of Petri nets is undecidable, being undecidable for a
sub-class of them.

Conclusions

The existence of home markings is a widely studied subject in the theory of Petri nets [6, 1,
15, 2, 14, 4, 13], but only for very particular classes of them. Thus, in [1] it has been proven
that live and 1-safe free-choice Petri nets have home markings. The result has successively
been extended to live and safe free-choice Petri nets [15], live and safe equal-conflict Petri
nets [14], and deterministically synchronized sequential process systems [11]. All these
results make use, more or less directly, of a confluence property which is induced by
liveness and safety.

In this paper we have studied the home marking problem for Petri nets. We have proven
several results that can be summarized as follows:

e the home marking problem for inhibitor Petri nets is undecidable;
¢ confluent and notherian Petri nets have an unique home marking;

¢ the dual sub-space inclusion problem for Petri nets is undecidable.

All these results have been obtained by relating the concept of a home marking to some
important concepts in Petri net theory, like confluence, noetherianity, and state space inclu-
sion. Further study of these concepts is, in our opinion, an important subject of research.
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