
Explanation-Aware Software Design of the
Semantic Search Engine KOIOS

Björn Forcher1, Thomas Roth-Berghofer1,2,
Michael Sintek2, and Andreas Dengel1,2

1 Knowledge Management Department,
German Research Center for Artificial Intelligence (DFKI) GmbH

Trippstadter Straße 122, 67663 Kaiserslautern, Germany
2 Knowledge-Based Systems Group, Department of Computer Science,

University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern

{first.lastname}@dfki.de

Abstract. The provision of explanations in knowledge based systems
has a long tradition in computer science. Regarding expert systems, sev-
eral interesting contributions were proposed, but an overall method for
explanation generation is missing. Furthermore, various approaches have
never been realised or have never been followed up with respect to cur-
rent technologies. Explanation-Aware Software Design (EASD) aims at
making software systems smarter in interactions with their users. The
long-term goal is to develop methods and tools for engineering and im-
proving such capabilities. In this paper we present the idea of EASD
including an abstract model for explanation generation. We describe in
detail the realisation of that approach for the semantic search engine
KOIOS using Semantic Web technology.3

Key words: explanation-awareness, explanation generation, semantic
search

1 Introduction

Software systems need the ability to explain ‘reasoning processes’ and their re-
sults as those abilities can substantially affect their usability and acceptance.
Explanation-aware Software Design (EASD) aims at making software systems
smarter in interactions with their users [1]. The long-term goal is to develop
methods and tools for engineering and improving such capabilities.

KOIOS 4 is a semantic search engine that enables keyword-based search on
graph-shaped RDF data. It first computes a set of relevant SPARQL queries al-
lowing users to select the most appropriate ones. Subsequently, a selected query
3 This research work was supported in part by the research program THESEUS in
the MEDICO project, funded by the German Federal Ministry of Economics and
Technology (01MQ07016). Responsibility for this publication lies with the authors.

4 http://projects.dfki.uni-kl.de/KoiosWebUI/



is used to search in a respective triple store. Since SPARQL queries are some-
times hard to read, it is necessary to prepare the queries in a more user-friendly
way. In addition, it is helpful to know how the keywords relate to the SPARQL
queries. System developers, for instance, may want to test the search engine. In
this context, explanations are interesting when the system presents unexpected
results. It may turn out that the implementation of the search algorithm is incor-
rect. Hence, explanations can help to correct a system or improve it. Non-expert
users are not interested in the exact implementation of the search algorithm.
Instead, they just need simple support to choose the most useful query.

For addressing these issues, we developed and integrated an explanation fa-
cility into KOIOS. The facility is used to justify computed search results by
revealing a connection between keywords and queries. The justifications are de-
picted as semantic networks in an attempt to make search results more plausible
for users. The facility is based on the concept of EASD including a complex model
for explanation generation. That means that the provision of explanations is an
integral part of the development of KOIOS the mentioned user groups and their
explanation needs.

The paper is structured as follows. The next section gives a brief overview
of relevant research on explanation generation. Sections 3 and 4 presents the
concept of EASD and our current model for computing explanations. Section 5
describes the semantic search engine KOIOS and motivates the need for ex-
planations. Finally, we illustrate how we realised the explanation component of
KOIOS regarding EASD. We conclude the paper with a summary and outlook.

2 Related Work

Explanation facilities were important components of Expert Systems (ES) sup-
porting the user’s needs and decisions. In those early systems, explanations were
often nothing more than (badly) paraphrased rules that lacked important as-
pects, or too much information was given at once [2].

Wick and Thompson [3] implemented the Reconstructive Explainer (REX)
that implements the concept of reconstructive explanations for expert systems.
REX transforms a trace, i. e., a line of reasoning, into a plausible explana-
tion story, i. e., a line of explanation. The transformation is an active, complex
problem-solving process using additional domain knowledge. The degree of cou-
pling between the trace and the explanation is controlled by a filter that can
be set to one of four states regulating the transparency of the filter. The more
information of the trace is let through the filter, the more closely the line of ex-
planation follows the line of reasoning. We took up the theme of (re-)constructing
explanations in our current work.

In [4], Ducassé and Noyé describe a stratified model for user-oriented program
analysis including explanations. It contains three steps to explain solutions of
logic programs, namely Extraction, Analysis, and Visualisations. The model uses
several sources of input such as source codes, execution information and other
specifications which are integrated by the extraction step. The result of the



extraction is the trace that is analysed and abstracted in the following step. The
resulting data of the second step is presented to the user. Ishizaka and Lusti [5]
extend that model by defining a trace model as first step.

The Semantic Web community also addresses the issue of explainability. The
Inference Web effort [6] realises an explanation infrastructure for complex Se-
mantic Web applications. Inference Web includes the Proof Markup Language
(PML) for capturing explanation information. PML can be used as interlingua
and offers constructs to represent where information came from (provenance) or
how it was manipulated (justifications). The Inference Web comprises different
tools and services in order to manipulate and edit PML models including various
interaction modes such as exploration or filtered explanation views. We also con-
sider different explanation views in order to provide useful kinds of interaction
for realising understandable explanatory dialogues. However, the current work is
concerned with explaining system processes. As PML is especially designed for
representing justifications of reasoning results it is not part of the explanation
facility of KOIOS.

3 Explanation-Aware Software Design

In this section we present our current research about Explanation-Aware Soft-
ware Design (EASD). The concept comprises two key aspects regarding devel-
opment and runtime of the system. In the following, we will elaborate on some
general aspects regarding integrating explanations in knowledge-based systems.
Subsequently, we present an abstract architecture and a multi-layered explana-
tion model for corresponding facilities.

The first key aspect aims at integrating explanation capabilities into the en-
tire system development process. Swartout and Moore [7] formulated the five
desiderata fidelity, understandability, sufficiency, low construction overhead, and
efficiency. Explanations respect fidelity if they build on the same knowledge the
system uses for reasoning. Understandability comprises such factors as user sen-
sitivity and feedback. User sensitivity addresses the user’s goals and preferences
but also her knowledge of the system and respective domain. Feedback is im-
portant as users do not necessarily understand a given explanation. The system
should offer certain kinds of dialogue and different perspectives so that users
can get a better understanding. This includes that the explanation is sufficient.
Finally, integrating such explanation capabilities should not be too complicated
and the explanation component should not affect the performance of the system.

We consider the understandability and sufficiency aspects as highly relevant
for EASD. In general, the system is used by various kinds of users such as end-
users, experts or developers. Each user group has different requirements and
comes with different a priori knowledge with respect to the system itself and
according domains. In this context, the explanation need of the system function-
ality must be addressing goals and preferences of users [8], such as Transparency
and Justification. The first goal aims at imparting an understanding of how a
system found an answer. This allows users to check the system by examining



the way it reasons and allows them to look for explanations for why the system
has reached a surprising or anomalous result. The justification goal aims at in-
creasing confidence in the advice or solution offered by a system by giving some
kind of support for the conclusion suggested by the system. This goal allows for
a simplification of the explanation compared to the actual process the system
goes through to find a solution.

Depending on the goal, a particular explanation method is indicated. Here,
the term ‘method’ denotes the dialogue and presentation of the explanation in
a graphical or textual way, but also the kind of explanation. Spieker [9] dis-
tinguishes several useful kinds, among them concept explanations and action
explanations. Concept explanations concern questions such as What is (the se-
mantics of) . . . ?. The purpose of action explanations is to explain the cause or
provide a justification for a fact or a current situation.

Obviously, it is not possible to foresee all conceivable explanations with re-
spect to all user groups. However, this is not the claim of EASD. The main
contribution is not to add the explanation capability after a system is developed
or to provide arbitrary explanations as it happened in many expert systems [2].
Instead, EASD intends to give developers the means to integrate suitable and
understandable explanations into the design process of the entire system. For
instance, one of our long-term goals is to extend UML in order to provide ex-
planations in Java programs.

As mentioned before, the second key aspect of EASD becomes important at
runtime of the system. The system has to be aware of the explanation scenario
itself enabling a goal-oriented dialogue. In general, an explanation problem can-
not be solved by a single explanation. Often, only an explanatory dialogue [10]
can satisfy the explanation need.

We consider three participants in any explanation scenario [11]. We call the
system or agent that provides the solution to some problem, a technical device,
a plan, or a decision to be explained the originator. This agent is interested in
which way the user reacts after receiving the explanation. The user is the sec-
ond participant. He is the addressee of the explanation. Finally, the explainer
presents the explanation to the user. This agent is interested in transferring the
intention of the originator to the user as correctly as possible. The explainer se-
lects the style of the explanation and is responsible for the computational aspects
as well as for organising a dialogue if needed. The user applies the explanation in
some way. With this application, in principle, a utility is connected, either for the
user or for the originator. It depends on the application which utility dominates.
Sometimes the user is mainly interested in reacting properly and sometimes the
primary interest is on the side of the originator.

4 Multi-Layered Explanation Model

We propose an abstract architecture and a multi-layered explanation model for
providing explanations as depicted in Fig. 1. The mentioned scenario implies
that the originator has to provide detailed information about to its behaviour



and solutions regarding the fidelity desideratum. Therefore it is necessary that
the originator prepares some kind of log or trace representing the initial starting
point for the explainer to generate explanations. Regarding (potential) user ques-
tions, this information is step-by-step transformed into an adequate explanation
including representational information.

Originator Explainer

Problem solving

Tracing

Presentation

Externalisation

Construction

Selection

U
ser interace

(a) Architecture

Trace Model

Selection Model

Construction Model

Externalisation Model

Presentation Model

M
ed

ia
tio

n 
M

od
el

(b) Explanation Model

Fig. 1. Explanation-Aware Software Design

Depending on the coupling, originator and explainer share information
sources that are required for explanation generation. However, the originator
can have access to information which is hidden from the explainer and vice
versa. At least, they have to share the tracing information.

As its name implies, the tracing process collects all information with respect
to the behaviour of the originator for constructing the trace model. As it is not
useful to collect virtually everything (efficiency desideratum), the information
need must be predefined in the system design with respect to the explanation
need of users. However, this contradicts the low construction overhead desider-
atum which should also be taken into account.

Any kind of explanation concerns only certain parts of the entire trace and
thus, these parts must be identified. The respective transformation process,
called selection process, extracts information from the trace with respect to
user questions and dialogue situation representing basic explanation informa-
tion. Hence, the selection represents a filter for the trace model.

This information does not necessarily represent complete explanation infor-
mation. For this purpose, the selection model must be adapted to the current
user requirements and context. The corresponding process is called construc-
tion process which is similar to the concept of reconstructive explanations as
presented in Sect. 2. Here, supporting information can be added or confusing
information can be removed. The construction process is used to span the entire
explanation space comprising several possible explanation alternatives. Hence,
the construction model contains the content of the explanation including domain
knowledge and context depended information.



Explanation is information that is communicated by text, charts, tables, etc.
Each communication form has different application possibilities in an explana-
tion scenario. Text can describe complicated conceptions whereas charts can
reveal qualitative connections in a simple way [12]. The externalisation process
transforms the content model into a formal description for communicating expla-
nations which is named as externalisation model. In this work, we put a special
emphasis on semantic networks based on mathematical graphs for depicting ex-
planations. However, we will consider further formal descriptions of tables, lists
or natural language in the future.

The result of that process is not intended to represent the final explanation
information because presentation information is missing. For instance, a mathe-
matical graph model does not contain any layout information or written natural
language uses a certain font. However, layout and style are important aspects of
explanations influencing readability and understandability. For instance, high-
lighting important concepts in a textual explanation can serve as substantial and
helpful support. The final transformation process transforms the externalisation
model into the presentation model that can be leveraged by rendering engines
to depict the explanation.

The main difference between this and existing approaches as presented in
Sect. 2 is strict separation between content and form of an explanation. This
allows depicting one and the same explanation in different forms which plays an
important role with respect to user preferences [13].

A further difference is the explicit integration of the externalisation process.
Each kind of externalisation offers various kinds of user interactions. For in-
stance, lists can be sorted by means of a certain criterion or hyperlinks in texts
can be followed. Regarding mathematical graphs, different exploration methods
are conceivable such as closing of certain explanation paths. However, the most
interesting aspect may be the application of various graph algorithms, such as
shortest path algorithms. In case the construction model contains several pos-
sible explanation alternatives in form of paths the shortest explanation can be
presented [14]. If users doubt that one, the next shortest path can be offered.
Hence, the externalisation and presentation model play an important role to
realise the understandability desideratum.

A further difference to other approaches is the concept of explanation-
awareness at runtime of the system. For being explanation-aware the explainer
has to trace his own transformation process including the results of the single
process steps. Consequently, the explainer is aware of how content and presen-
tation correspond to each other. In addition, it is aware of why an explanation
is given in the current explanation scenario enabling explanatory dialogues and
analysis of given explanations. This kind of information is stored in the media-
tion model addressing the sufficiency desideratum. For instance, if the explainer
knows that a particular node of a graph-based explanation represents a domain
concept, it can offer a respective concept explanation.

In the next sections we show how we realised the presented approach in the
semantic search engine KOIOS.



5 The Semantic Search Engine KOIOS

KOIOS is a semantic search engine that enables keyword-based search on graph-
shaped RDF data. KOIOS first computes a set of relevant SPARQL queries
allowing users to select the most appropriate ones. Consequently, a selected
query is used to search in a respective triple store. The main advantage is that
users do not need explicit knowledge about the query syntax or the underlying
ontologies. The presented approach is based on the work of [15] and [16].

For computing queries, the keywords are mapped to elements of input RDF
data in a first step. Based on these keyword elements, a search is performed on
the graph data to determine a connecting element. As its name implies, it is a
particular graph element connecting the keyword elements. The paths between
the keyword elements and the connecting elements are analysed to create a
matching subgraph. For each subgraph, a conjunctive query is constructed by
mapping the graph elements to query elements. To achieve a scalable search, the
input data is preprocessed obtaining two data indices. The keyword index is used
to realise the keyword mapping. For searching, a graph index is derived which
represents a kind of summary of the input data containing structural patterns
only. At runtime, this index is extended with the keyword elements obtained by
means of the keyword index. Therefore, the extended graph comprises sufficient
information to compute the SPARQL query.

The presentation of search results in common search engines always includes
some hint why a particular result is relevant with respect to the keywords.
Google, for instance, shows title, text snippets and URI of retrieved documents
and highlights keywords contained therein. This information represents some
kind of explanation or justification which describes a connection between search
and result. In the end, it can help the user to open only relevant documents.

In case of KOIOS, explaining search results for end-users is bit more compli-
cated. The justification has to contain the information how keywords are mapped
to keyword elements and how the elements are connected. Finally, the interpre-
tation as query has to be explained. In general, the same applies for developers
when they debug the system. However, they need more detailed information and
further intermediate results.

In the next section we describe how we used Semantic Web technology to
realise some basic explanations.

6 Explanation Generation in KOIOS

In this section we present the realisation of the explanation facility of KOIOS
using Semantic Web technology. For this purpose, we developed three RDFS
ontologies which are used to describe the models of the explanation component.
In addition, we implemented for each process a set of rules specifying how to
transform a certain model.

As presented in Sect. 3 the starting point of the explanation generation is a
kind of log provided by the originator. For that purpose, we developed a simple



process ontology in RDFS which comprises primitive concepts and relations for
representing the KOIOS process called KOIOS Process Language (KPL). It pro-
vides different specialisations of the basic class Process such as KeywordMapping,
GraphSearch or QueryConstruction. In addition, KPL offers several classes for
input and output of these processes. For instance, the class IndexHit is used to
capture the mapping form keywords to a specific element of the input graph. As
KOIOS is implemented in JAVA we used AspectJ5 to design a logging module.
The module instantiates the trace model of a particular search and provides it
for the explainer for further processing. Here, the benefit of using aspect-oriented
programming is that the logging module can be completely decoupled from the
originator KOIOS.

For realising a graph based view on the process model we also developed the
Mathematical Graph Language (MGL). In a nutshell, the MGL ontology includes
primitive concepts and relations for representing knowledge about simple math-
ematical graphs and is described using RDFS. It contains three main constructs,
namely Graph, Node and Edge indicating the corresponding mathematical con-
cepts. In addition, the class Markup and its two differentiations Labelling and
Weighting can be used to annotate graph elements. All related markups are part
of a certain Marker which also has two subclasses, i.e., Labeller and Weighter.

MGL is used to describe the externalisation model but it does not contain
any information of visualising a graph. Although an intuitive visualisation of a
mathematical graph and labelling information is possible, the layout of the graph
is important. Especially the sequence of KOIOS processes should be arranged
properly for clarity reasons. Thus, we conceived a third ontology for visualising
graph based information called VGL. The ontology provides elementary con-
structs for structuring graph nodes in a grid or circle layout. In addition, VGL
offers a variety of node visualisations by means of symbols or icons including
labels. Hence, the VGL is used to describe the visualisation model.

So far, we described the necessary ontologies to describe the different layers
of the explanation model. For constructing the layers we used HEPHAISTOS
which is a transformation language for the Semantic Web. It is based on Horn
logic but is especially designed for querying and transforming RDF models.
Although the formal semantics of RDF (open world) and Horn logic (closed
world) are not conforming, HEPHAISTOS is a useful tool particularly with
respect to explanation generation. The name of the language is inspired by the
Greek god of forge, Hephaistos, who ‘transformed’ workpieces into other forms.
Similar to such approaches as TRIPLE [17] or OntoBroker6, the core language
of HEPHAISTOS supports RDF primitives, i. e., name spaces, resources, and
statements. It also includes the representation of contexts of statements which
extends statements by a fourth dimension to quadruples. The core language
can be compiled into Horn logic programs and executed by Prolog systems. For
integrating the Java framework RDF2Go7 with HEPHAISTOS we implemented

5 http://www.eclipse.org/aspectj/
6 http://www.ontoprise.de/en/home/products/ontobroker/
7 http://semanticweb.org/wiki/RDF2Go



a JNI interface to the Prolog system XSB.8 The rule in Fig. 2 illustrates a
simplified rule of the externalisation process which maps instances of the KPL
class ‘IndexHit’ to instances of the MGL class ‘Node’ including labels.

01: <r1>
02:
03: true(H,uri(’rdf’,’type’),uri(’kpl’,’IndexHit’),

uri(’kpl’,’ConstContext’)),
04: true(H,uri(’kpl’,’element’),E,uri(’kpl’,’ConstContext’)),
05: X = true(H,uri(’kpl’,’keywords’),K,uri(’kpl’,’ConstContext’)),
06: map([H],N),
07: map([X],L)
08:
09: ->
10:
11: true(N,uri(’rdf’,’type’),uri(’mgl’,’Node’),uri(’kpl’,’GraphContext’)),
12: true(L,uri(’mgl’,’about’),N,uri(’kpl’,’GraphContext’)),
13: true(L,uri(’mgl’,’label’),K,uri(’kpl’,’GraphContext’)),
14: true(L,uri(’rdf’,’type’),uri(’mgl’,’Labeling’),uri(’kpl’,

’GraphContext’)),
15: true(H,uri(’kpl’,’isMappedTo’),N,uri(’kpl’,’MediationContext’)).

Fig. 2. Simplified rule of the externalisation process

The rule comprises three sections, namely rule declaration, input pattern and
output pattern. The first section <r1> simply names the rule and has no further
function. The following section describes the input pattern with respect to the
construction model. It also includes instructions how elements of the construc-
tion model are mapped to elements of the externalisation model. In addition, it is
also possible to add further constraints for separating similar rules from one an-
other. The last section only contains the output pattern of the rule. It comprises
quads for the externalisation and the mediation model as well (line 15). The rule
contains three important predicates. The true predicate is used to represent ei-
ther triples or quads depending on the number of arguments. The example only
uses quads whereas the fourth argument represents the context or the URI of the
explanation model. An URI is expressed by means of the uri predicate. In case
the predicate has two arguments, the first argument represents an abbreviation
of a namespace and the second argument a local name. Finally, the map predi-
cate is used to ‘construct’ new resources out of existing ones (lines 6-7). The first
argument is always a list of resources whereas the new resource is represented by
the second argument. For mapping triples or quads, the equal operator has to
be used (line 5). Every fact is assigned a unique ID. The equal operator employs
the ID to construct an URI and assigns it to a variable. As a consequence, it is
possible to map a set of triples to one resource.
8 http://xsb.sourceforge.net/



For explaining search results of KOIOS we provided for each explanation
need of end-users and developers a set of rules that transforms step-by-step the
trace model into a visual model. The information of the visual model is leveraged
by a particular renderer returning a Java JPanel with the entire explanation.

Fig. 3 shows the graphical user interface of KOIOS. In this case, the un-
derlying graph-shaped data corresponds to YAGO9 representing a huge knowl-
edge base that is derived from Wikipedia10 and WordNet.11 The figure depicts
a search for Barack Obama and everything this person wrote. The white left
panel contains one of five computed SPARQL queries whereas the right white
panel presents the respective result of the query. The interaction panel below is
used to browse through the SPARQL queries, to change the interaction with the
SPARQL queries, and to request certain kinds of explanations. In this version of
KOIOSwe realised only two kinds of explanation. Clicking on the earth symbol
above the question mark symbol the user can obtain conceptual explanations
of the instances and classes contained in a query. While maintaining the same
externalisation mode the connections to other elements are revealed.

Fig. 3. Graphical User interface of KOIOS

The second kind of explanation is retrieved by clicking on the ques-
tion mark symbol. Thereupon a new panel is opened containing action ex-
planations. The explanations are intended for developers and try to justify
the keyword-element mappings (justification goal). Regarding the example
from Fig. 3 the developer may be interested in why the query contains a
yago:wordnet_person instead of a yago:wordnet_politician. Fig. 4 provides the
9 http://www.mpi-inf.mpg.de/yago-naga/yago/

10 http://en.wikipedia.org/
11 http://wordnet.princeton.edu/



hint that the resource yago:Barack_Obama is typed with yago:wordnet_person
and yago:wordnet_politician as well. However, the justification also provides the
weights of both classes in the summary graph which is indicated by the float value
in the node label. Hence, the class yago:wordnet_person is considered most in
the computation process addressing the transparency goal.

Fig. 4. Justification of keyword-element mapping

7 Summary and Outlook

In this paper we presented the explanation facility of the semantic search engine
KOIOS. The facility was developed making use of Explanation-Aware Software
Design (EASD) principles, which advocate the integration of explanation capa-
bility into the entire system development process. For that purpose, the explana-
tion need of select users is collected implying particular explanation goals such
as learning or transparency. Depending on such goals well defined explanation
methods ensure that explanations fulfil user requirements. EASD explanation
generation is based on a multi-layered explanation model and an iterative trans-
formation process. In case of KOIOS, a process model is stepwise transformed
into a visualisation model with respect to a particular user question. The con-
structed explanation model allows different views on explanations and enables
various explanation methods such as sophisticated explanatory dialogues or the
provision of alternative explanations.

The current process ontology of KOIOS is dedicated to its search algorithm.
The next step of our work is to generalise the ontology for using it in other



knowledge-based systems. In addition, the provision of transformation rules for
each explanation need is quite difficult due to syntax errors. Here, reusable rule
patterns seem to be indicated.

References

1. Roth-Berghofer, T.: ExaCt manifesto: Explanation-aware computing (2009) http:
//on-explanation.net/content/ExaCt_Manifesto.html.

2. Richards, D.: Knowledge-based system explanation: The ripple-down rules alter-
native. In: Knowledge and Information Systems. Volume 5. (2003) 2–25

3. Wick, M.R., Thompson, W.B.: Reconstructive expert system explanation. Artif.
Intell. 54(1-2) (1992) 33–70

4. Ducassé, M., Noyé, J.: Logic programming environments: Dynamic program analy-
sis and debugging. J. Log. Program. 19/20 (1994) 351–384 model of user-oriented
program analysis.

5. Ishizaka Alessio, L.M.: How to program a domain independent tracer for explana-
tions. Journal of Interactive Learning Research 17(1) (2006) 57–69

6. McGuinness, D.L., Ding, L., Glass, A., Chang, C., Zeng, H., Furtado, V.: Expla-
nation interfaces for the semantic web: Issues and models. In: Proceedings of the
3rd International Semantic Web User Interaction Workshop (SWUI’06). (2006)

7. Swartout, W.R., Moore, J.D.: Explanation in second generation expert systems.
Second generation expert systems (1993) 543–585

8. Sørmo, F., Cassens, J.: Explanation Goals in Case-Based Reasoning. In Gervás, P.,
Gupta, K.M., eds.: Proceedings of the ECCBR 2004 Workshops. Number 142-04 in
Technical Report of the Departamento de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Madrid (2004) 165–174

9. Spieker, P.: Natürlichsprachliche Erklärungen in technischen Expertensystemen.
Dissertation, University of Kaiserslautern (1991)

10. Du, G., Richter, M.M., Ruhe, G.: An explanation oriented dialogue approach and
its application to wicked planning problems. Computers and Artificial Intelligence
25(2-3) (2006)

11. Roth-Berghofer, T.R., Richter, M.M.: On explanation. Künstliche Intelligenz 22(2)
(2008) 5–7

12. Wright, P., Reid, F.: Written information: Some alternatives to prose for expressing
the outcomes of complex contingencies. Journal of Applied Psychology 57 (2)
(1973) 160–166

13. Kemp, E.A.: Communicating with a knowledge-based system. In Brezillon, P., ed.:
Improving the Use of Knowledge-Based Systems with Explanation. (1992)

14. Roth-Berghofer, T., Forcher, B.: Improving the understandability of semantic
search explanations. International Journal of Knowledge Engineering and Data
Mining (IJKEDM) (2010) to appear.

15. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2semantic: A lightweight keyword
interface to semantic search. In: In Proceedings of the 5th International Semantic
Web Conference (ESWC’08. (2008)

16. Tran, D.T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (rdf) data. In: Proc. of the
25th Intern. Conference on Data Engineering (ICDE’09), Shanghai, China (2009)

17. Sintek, M., Decker, S.: TRIPLE – a query, inference, and transformation language
for the semantic web. In: ISWC ’02: Proc. of the First International Semantic Web
Conference on The Semantic Web, London, UK, Springer-Verlag (2002) 364–378


