
Learning to Explain with ABML

Martin Možina, Matej Guid, Jana Krivec, Aleksander Sadikov, and Ivan Bratko

Faculty of Computer and Information Science, University of Ljubljana, Slovenia,
martin.mozina@fri.uni-lj.si

Abstract. The main advantage of machine learning algorithms that
learn simple symbolic models is in their capability to trivially provide
justifications for their decisions. However, there is no guarantee that
these justifications will be understood by experts and other users. In-
duced models are often strange to the domain experts as they understand
the problem in a different way. We suggest the use of argument based
machine learning (ABML) to deal with this problem. This approach com-
bines machine learning with explanations provided by domain experts.
An ABML method is required to learn a model that correctly predicts
learning examples and is consistent with the provided explanations. The
present paper describes an application of ABML to learning a complex
chess concept of an attack on the castled king. The explanation power
of the learned model for this concept is especially important, as it will
be used in a chess tutoring application.

Keywords: machine learning, argument based machine learning, learn-
ing to explain, chess

1 Introduction

The common weakness of state-of-the-art machine learning algorithms achieving
the best results in terms of accuracy (e.g. ensemble methods or SVMs) is their
inability to explain their predictions. Domain experts and users alike perceive
these methods and their predictions as black boxes. However, machine learning
is often used to get a better understanding of the relation between inputs and
outputs, especially so if machine learning is used as a knowledge acquisition
tool [3]. In such cases, it is usually preferable to use methods like decision trees,
rule-based models, or linear models that produce hypotheses that are mostly
easily understood and interpreted.

Yet, even easily understood models are not always enough. The induced
correlations can often seem illogical or simply strange to the domain experts
as they would explain the same case using different terms. Pazzani [7] showed
experimentally that people will grasp a new concept more easily if the concept
is consistent with their knowledge. More elaborate studies of understanding new
concepts were produced by the cognitive learning community [10]. They showed
that when we learn about new presented materials, we always start off with our
prior knowledge and try to merge them. If the new concepts are inconsistent



with our prior knowledge, the new knowledge will likely be distorted or even
rejected.

A recently developed approach called Argument Based Machine Learning
(ABML) [6] is an extension of classical machine learning (ML) that allows the use
of experts’ explanations provided in the form of arguments for particular learning
examples. An ABML method is required to learn a model that correctly predicts
learning examples and is consistent with the provided explanations. Therefore,
the explanations direct the search towards models that are more comprehensible
in the light of experts’ background knowledge. The benefit is twofold: (a) new
knowledge is assimilated more easily, and (b) the accuracy of the model is usually
increased.

We are interested in building systems for automated commentary and intel-
ligent tutoring. The main characteristic of such systems is that their knowledge
has to facilitate good explanation. In the present paper we present part of our
work targeted at creating a program for automated commentary of chess games.
The current chess software is terribly lacking in this respect; the chess-playing
programs have long ago surpassed the human world-champion level of play, yet,
they are completely unsuitable for providing commentary [11]. This is to be ex-
pected as they were designed for the former, and their language, so to speak,
is not intended for the latter. The situation is in many ways reminiscent of the
difference between SVMs and decision trees or rules as described in the first
paragraph.

The paper is organized as follows. We first briefly introduce the ABML
paradigm, and then we present its application for learning a difficult concept
that will be featured in automated commentary. Afterwards, the results of both
machine learning and ABML are presented and compared to one another, giving
special consideration to the ability of both paradigms to give explanations for
their decisions. Last section contains conclusions and specifies some necessary
future work.

2 Argument Based Machine Learning

Argument Based Machine Learning (ABML) [6] is machine learning extended
with some concepts from argumentation. In this section, we give a short summary
of ABML taken from [6].

Argumentation is a branch of artificial intelligence that analyzes reasoning
where arguments for and against a certain claim are produced and evaluated [8].
A typical example of such reasoning is a law dispute at court, where plaintiff
and defendant give arguments for their opposing claims, and at the end of the
process the party with better arguments wins the case.

Arguments are used in ABML to enhance learning examples. Each argument
is attached to a single learning example only, while one example can have several
arguments. There are two types of arguments; positive arguments are used to
explain (or argue) why a certain learning example is in the class as given, and
negative arguments are used to explain why it should not be in the class as given.



We used only positive arguments in this work, as negatives were not required.
Examples with attached arguments are called argumented examples.

Arguments are usually provided by domain experts, who find it natural to
articulate their knowledge in this manner. While it is generally accepted that
giving domain knowledge usually poses a problem, in ABML they need to focus
on one specific case only at a time and provide knowledge that seems relevant
for this case and does not have to be valid for the whole domain. The idea can
be easily illustrated with the task of commenting chess games. It would be hard
to talk about chess moves in general to decide precisely when they are good
or bad. However, if an expert is asked to comment on a particular move in a
given position, he or she will be able to offer an explanation and provide relevant
elements of this position. Naturally, in a new position the same argument could
be incorrect.

An ABML method is required to induce a theory that uses given arguments
to explain the examples. Thus, arguments constrain the combinatorial search
among possible hypotheses, and also direct the search towards hypotheses that
are more comprehensible in the light of expert’s background knowledge. If an
ABML method is used on normal examples only (without arguments), then it
should act the same as a normal machine learning method.

In this paper, we will use a modified version of the ABCN2 [6] method (the
modification is described in the following section), which is an argument based
extension of the well known method CN2 [2]. ABCN2 learns a set of unordered
probabilistic rules from argumented examples. In ABCN2, the theory (a set of
rules) is said to explain the examples using given arguments, when there exists
at least one rule for each argumented example that contains at least one positive
argument in the condition part. This definition is a bit simplified, since it omits
the use of negative arguments, as they are not relevant for this paper1.

2.1 Interactions between expert and ABML

In ABML, experts are asked to provide their prior knowledge in the form of
arguments for the learning examples rather than the general domain knowledge.
However, asking experts to give arguments to the whole learning set is not likely
to be feasible, because it would require too much time and effort. The following
loop describes the skeleton of the procedure that picks out critical examples -
examples that ABML can not explain without some help:

1. Learn a hypothesis with ABML using given data.
2. Find the most critical example and present it to the expert. If a critical

example can not be found, stop the procedure.
3. Expert explains the example or changes the class of the example; the expla-

nation is encoded in arguments and attached to the learning example.
4. Return to step 1.

1 Due to space limitations, we will only roughly describe some of the mechanisms of
ABML (see [6] or/and its website www.ailab.si/martin/abml for precise details).



To finalise the procedure we need to contemplate the following two questions:

– How do we select “critical” examples?
– How can we achieve to get all necessary information for the chosen example?

Identifying critical examples The main property of critical examples is that
the current hypothesis can not explain them well, or, in other words, it fails to
predict their class. Since ABCN2 gives probabilistic class prediction, we define
the most critical example as the example with the highest probabilistic error.
The probabilistic error can be measured in several ways. We use a k-fold cross-
validation repeated n times (e.g. n = 4, k = 10), so that each example is tested
n times. The most critical example is thus the one with highest average proba-
bilistic error.

Are expert’s arguments good or should they be improved? Here we
describe in details the third (3) step of the above algorithm, where the expert is
asked to explain the critical example. First, the expert considers the class of the
example whether it is incorrectly labelled. In such a case, the class value of the
example is changed. Otherwise, the expert explains the example with arguments.
Using expert’s arguments, ABML will sometimes be able to explain the critical
example, while sometimes this will still not be entirely possible. In such cases,
we need additional information from expert. The whole procedure for one-step
knowledge acquisition is described with the next 5 steps:

Step 1: Explaining critical example. In this step, the expert is asked the
following question: ”Why is this example in the class as given?” The answer
can be either ”I don’t know” (the expert is unable to explain the example)
or a set of arguments A1, . . . , Ak all confirming the example’s class value
can be given. If the system gets the answer “don’t know”, it will stop this
procedure and try to find another critical example.

Step 2: Adding arguments to example. Arguments Ai are given in natural
language and need to be translated into domain description language (at-
tributes). Each argument supports its claim with a number of reasons. When
a reason is simply an attribute value of the example, then the argument is
simply added to the example. On the other hand, if reasons mention other
concepts, not currently present in the domain, these concepts need to be
included in the domain as new attributes before the argument can be added
to the example.

Step 3: Discovering counter examples. Counter examples are used to spot
if arguments suffice to successfully explain the critical example or not. If
ABML fails to explain the example, then the counter examples will show
where the problem is. Here, ABML is first used to induce a hypothesis H1

using previous learning data only and H2 using learning data together with
new arguments. A counter example is defined as: it has a different class value
from the critical example, its probabilistic error increases in H2 with respect
to H1, and H2 mentions arguments (given to the critical example) while
explaining the counter example.



Step 4: Improving arguments. The expert needs to revise the initial argu-
ments with respect to the counter example. This step is similar to steps 1
and 2 with one essential difference; the expert is now asked ”Why is critical
example in one class and why counter example in the other?” The answer is
added to the initial argument.

Step 5: Return to step 3 if counter example found.

3 Case Study: Experimental Setup

Our goal was to formalize the concept of an attack on the castled king for the
purposes of generating automatic commentary. That is, the computer should be
able to reliably judge whether and why a particular side in a chess game aims
at attacking the opponent’s king that has already castled.

The concept of attack on the castled king can be considered as a positional
concept of high complexity. There is some general agreement in the chess litera-
ture and among chess players about the intuition behind this concept. However,
small details may prevail in an assessment whether particular side has chances to
generate pressure against the opponent’s king, and many factors can potentially
influence such an assessment (see Fig. 1). Moreover, chess masters usually also
rely on dynamic factors in chess positions when estimating chances of attacking
successfully, while our concept should be static in its nature for its ultimate
purpose of annotating chess games (see [4] for details). Our formalized model,
however, does not aim at correctly estimating chances of success when attacking,
but merely to estimate whether the attack is possible at all.

Fig. 1. In the position in the left-hand diagram White-to-move gains a strong attack
by applying the classic bishop sacrifice: 1.Bd3xh7+ Kg8xh7 2.Nf3-g5+. However, by
only the f7 pawn being on f5 square as shown in the right-hand diagram, White does
not have any pressure against the opponent’s king at all.



3.1 Data set description

The positions in the data set were gathered from the Chess Informant database
(see http://www.sahovski.com). Our chess experts (woman grandmaster Jana
Krivec and FIDE master Matej Guid) selected 577 middlegame positions from
real chess games where the black player has castled on the king side and white
still has a queen on the board. They classified each position either as attack
(white has chances for an attack) or no attack (white cannot or is not planning
to attack the black king). Of the 577 positions, 350 were labelled as attack and
228 as no attack. We then randomly selected 277 positions for learning and 278
for testing; stratification was used to preserve class distributions in both subsets.

Initially, the chess experts carefully selected twelve attributes they consid-
ered useful for identifying an attack on the king in a chess position. Each
of these attributes corresponds to a well-known chess position feature that is
regularly considered by chess players. Some examples of such attributes are:
pawn attack (number of white pawns on files f,g, and h that progressed to fourth
row or higher), pawn defense (number of black pawns protecting the black king),
close combat pieces (number of white pieces in the area around the black king),
etc. As will become evident later, this set of descriptive attributes was signifi-
cantly enlarged during the interaction between the expert and the computer.

3.2 Problem definition

Our goal is to learn a set of rules for classifying a position with respect to whether
the white player is attacking the black king or not. Rules will be evaluated
according to the following criteria:

Classification accuracy: the usual measure in machine learning for evaluating
goodness of a learned model.

Precision and recall: besides classification accuracy, we aim at high precision,
since in our tutoring application, the cost of misclassifying an example with-
out attack as attack is much higher as misclassifying an example with attack
as no attack.

Explanation power of rules: it is not the accuracy of classification that is
most important to meet the requirements stated in the introduction to our
application: it is the quality, in terms of interpretability, of the rules gener-
ated that is crucial, as we aim at providing good commentary.

Since our main intention is to use these rules to explain why there is an attack in
a position, we decided to learn only rules for the class attack. However, to avoid
low precision with such rules, we modified the ABCN2 algorithm to induce only
rules with pure class distributions, namely, a rule can cover only positions with
an attack and should not cover any positions without an attack. Furthermore,
the procedure for selecting critical examples in the ABML refinement loop had
to be changed to return only positions with an attack. If a negative position
(without attack) became critical — which is possible, as we use internal cross-
validation — the critical example became a positive position covered by the rule
that misclassified the negative example.



4 Case study: experiments and results

The first set of rules was generated from examples without any arguments.
ABCN2 altogether induced 12 rules achieving 84% classification accuracy, 87%
precision, and 86% recall. The high accuracy, precision and recall imply that the
initial set of attributes was relatively well-defined. Afterwards, we began with
the ABML refinement loop. In the remainder of this section we will present a
single iteration of the loop to illustrate the interaction between the experts and
the algorithm and then, at the end, provide results of the final model.

Figure 2 shows one of the critical examples, automatically selected by our
algorithm.

Fig. 2. Computer: “Why is it possible for White to attack the opponent’s king?” (left)
But why is it NOT possible for White to attack the opponent’s king here? (right)

Current rules at the time failed to classify the example on the left-hand
diagram as attack, as it was previously judged by the experts. The following
question was given to the experts: “Why is it possible for White to attack the
opponent’s king?” The experts used their domain knowledge to give the following
arguments: “White rook is placed on a half-open file in front of the castled position
of the black king and there are several white pieces joining the attack.” Based
on the experts’ explanation, the following argument was attached to this critical
position:

– “open file is true” (white queen or white rook are placed on an open or
half-open file f, g or h),

– “attacking pieces is high” (number of white pieces that attack one of the
following squares: f6, g6, h6, f7, g7, h7, g8 or h8 ).

Note that both attributes were already included into the domain at the time.
The following rule covering the critical example was produced:

IF open file is true AND attacking pieces > 1
AND defends around king <=10

THEN ATTACK = true;



The method automatically found additional restrictions to improve the ex-
perts’ explanation. The attribute defends around king expresses the number of
squares in the square f5-h5-h7-f7 defended by black pieces including black pawns.

Afterwards, the algorithm found a counter-example to this argument shown
on the right-hand diagram in Figure 2. Now the question to the experts was: But
why is it NOT possible for White to attack the opponent’s king here? The experts
were asked to compare this position to the position in the critical example. They
gave the following answer: “White queen indeed is placed on a half-open file in
front of the castled position of the black king, but here it just does not seem so
strong. In general, having a white queen or a white rook placed on an open or
half-open file g or h is stronger than on an open or half-open file f.”

Previously, the attribute open file indicated an open file f, g, or h with a
strong piece on it. During this step, it was changed so that only open or half-
open files g or h counted.

Fig. 3. Computer: “Why is it NOT
possible for White to attack the op-
ponent’s king in this position, com-
paring to the one on the left-hand
diagram in Fig. 2?” Again, the ex-
perts have been asked to give a
description based on their general
knowledge in the presented domain.
Their answer was: “In this position,
more black pieces participate in the
defence of the king.”

Then, the position shown in Fig. 3 became the new counter-example. The
experts again explained the difference between the critical and the new counter-
example: “In this position, more black pieces participate in the defence of the
king.”. A new attribute, defends by pieces around king, was therefore programmed
and included into the domain. It is the number of squares in the square f5-h5-h7-
f7 defended by black pieces, not counting black pawns. Based on the experts ex-
planation, the previous argument was now extended by “defends by pieces around king
is low.” With the new attribute and the extended argument the following rule
was obtained:

IF open file is true AND attacking pieces > 1
AND defends by pieces around king <=13

THEN ATTACK = true;

The algorithm could not find any counter-examples to the above argument,
therefore the ABML refinement loop proceeded to the next iteration.

In total, the ABML process consisted of 38 iterations. In ten of those itera-
tions, experts decided to change the class of the example and in others arguments



were provided. Arguments altogether suggested 14 new attributes that increased
the number of attributes to 26. The final model contained 16 rules and the im-
provement of the model’s quality is obvious: the classification accuracy increased
to 91%, precision to 93% and recall to 92%.

A possible criticism of this experiment could be the high number of iterations
between the expert and the algorithm. According to our previous experience with
ABCN2, this number was always considerably smaller. At the moment, we are
unable to explain it; finding an explanation for this phenomenon remains for the
future work.

5 Comparison of Explanation Power

The previous section showed the difference in discrimination power between
the stand-alone machine learning and ABML. While the increased accuracy of
ABML is certainly useful, it is the reasons for this or that decision that are
likely to be of even greater importance from the viewpoint of creating intelli-
gent commentary. The present section thus attempts to evaluate the difference
in explanation power between the two paradigms. The evaluation mostly relies
on the opinions of chess experts, consequently being somewhat subjective.

Let us start by appraising the rules themselves. Stand-alone ML produced
12 rules. Three of those rules included at least one of the two terms that the
experts marked as counter-intuitive if not downright absurd. These terms are:
(1) the attacking side has less than three pieces on the offensive, and (2) the
defending side has more than two pawns shielding the king. Even without expert
opinion it is clear that it should be just the other way around: the more pieces
the attacking side has, and the lesser pawn shield the defending side has, the
higher chances of an attack. However, it is not uncommon for ML to produce
such seemingly nonsensical explanations as an artefact of the data. In our case,
it is likely the consequence that no learning positions where one side would
have many attacking pieces and the other no pawn shield were included. Such
positions are rarely, if ever, encountered in professional play as the weaker side
would already resign by then.

On the other hand, ABML produced 16 rules, and none of them included
any illogical terms as deemed by the experts.

The emphasis we give to such illogical terms is not unwarranted. While such
terms can often be ignored when pure discriminative power is the (main) issue,
they are very harmful when the model is used to explain the data, and even
more so when used for tutoring. A teacher using illogical argumentation (even
of a correct decision) is never a good idea.

How harmful are the three rules using illogical terms in our case? ML rules
correctly decided that one side aims at attacking the opposing king in 131 cases,
however, the harmful argumentation was present in no less than 112 of these 131
cases. Imagine your teacher using the wrong argumentation in 85% of the cases.

The difference in the number of rules between the two paradigms is also worth
noting. Basically, each rule represents a specific pattern of arguing in favor of



one side aiming to attack the opponent’s king. Having more rules thus means
having a wider range of concepts with which the system can explain the target
notion. Such increased richness of the explanation language is usually a desirable
property when building a commentating/tutoring system.

Figures 4 and 5 illustrate the difference in explanation power between the
rules learned by the two paradigms. The second figure presents a position in
which the ML rules do not detect the attack, while the first figure shows position
where both ML and ABML correctly detected the attack, yet the explanation
they offered differs significantly. Reason that seemed illogical to experts is written
in italic. The chess experts examined over 30 explanations and unanimously
preferred the richer and correct explanation given by the ABML.

Fig. 4. ML rules: is attack, since pawn attack>0 (number of pawns on files f,g,h
and on rows 4,5,6), pawn defense>2 (number of black pawns surrounding the black
king), and pieces on king side>0 (number of white pieces without pawns on files f,g,h).
ABML rules: is attack, since strong piece attack>0 (number of strong pieces that can
get to an open or semi open file on files f,g,h in 1 move), defends pieces around king<6
(number of squares defended by pieces around black king), and pawns fifth row>0
(number of white pawns on files f,g,h on fifth row).

6 Related Work

The learning algorithm our work is based on, ABCN2, combines expert expla-
nations with a rule learning algorithm, which can be seen as a special type of
integrating machine learning and knowledge acquisition. It was already shown
that a combination of a domain expert and machine learning yields the best re-
sults [14]. In the field of inductive logic programming (ILP), several approaches
were proposed and they all can integrate prior expert knowledge with machine
learning (e.g. HYPER and FOIL). Additionally, ABML refinement loop is also
an interactive algorithm; it queries experts in turns for more knowledge. In lit-
erature, several similar approaches were already proposed, e.g. [1, 9]. However,
these systems require experts to directly revise the learned models or to provide
new attributes that would enable further learning, whereas in our system, the
experts are asked to explain particular learning examples. We prefer the latter



Fig. 5. ML rules: no attack. ABML rules: is attack, since attacking pieces>2
(number of pieces attacking area around black king), defends pieces around king<6,
knight go on safe spot>0 (number of squares around king where knight can be safely
positioned), and close defending pieces<2 (number of black pieces standing close to
the black king)

principle, since empirical observations have shown that humans are better at
providing specific explanations than providing generic knowledge pertaining to
the problem.

According to its name, explanation-based generalization (EBG) [5] could be
the closest relative to ABML. However, this technique heavily relies on the pro-
vided general prior knowledge (not explanations). First, EBG uses this prior
knowledge to automatically construct explanations of individual learning exam-
ples, and the “learned” model is then a logical generalization of these explana-
tions. Note that EBG is not inductive learning; it assumes perfect and complete
knowledge of the domain, which makes it inapplicable in domains where com-
plete knowledge is unavailable.

An interesting extension of EBG is the DISCIPLE system [13, 12] for learning
rules in problem solving domains. This system uses the EBG technique if perfect
domain theory is available. However, in the case of imperfect theory, the system
will ask the expert for explanation of examples and use these explanations to
construct general rules. Knowledge elicitation through explanations in DISCI-
PLE is similar to that of ABML, however the methods differ in the selection of
critical examples and how expert’s explanations are used in learning.

7 Conclusion

We argued a case for using a new paradigm, ABML, instead of classical machine
learning for the purpose of learning high-level concepts and their explanations.
One potential use of such concepts and explanations is for generating automatic
commentary and/or tutoring. The paper showed how the interaction between the
experts and ABML can lead to improved argumentation power of the learned
models that go along with the increased accuracy of such models.

The concept chosen for the case study in the paper is a very complex one,
especially so, because its notion is a bit vague. However, we believe the concept



was successfully grasped by the final model, albeit requiring more work than
initially thought. The amount of work required seems disproportionate in com-
parison with other, similar concepts that we successfully learned in the past. It
is possible, though, that the notion of an attack in chess is just vague enough
for the experts to be a very difficult problem to tackle. An analysis of this is an
obvious avenue for the future work.

Acknowledgments. This work was partly funded by ARRS, Slovenian Re-
search Agency.

References

1. Wray Buntine and David Stirling. Interactive induction. Machine intelligence,
12:121–137, 1991.

2. Peter Clark and Robin Boswell. Rule induction with CN2: Some recent improve-
ments. In Machine Learning - Proceeding of the Fifth Europen Conference (EWSL-
91), pages 151–163, Berlin, 1991.

3. Edward A. Feigenbaum. Some challenges and grand challenges for computational
intelligence. Source Journal of the ACM, 50(1):32–40, 2003.

4. Matej Guid, Martin Možina, Jana Krivec, Aleksander Sadikov, and Ivan Bratko.
Learning positional features for annotating chess games: A case study. In Lecture
Notes in Computer Science, volume 5131, pages 192–204, 2008.

5. Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli. Explanation-
based generalization: A unifying view. Machine Learning, 1(1):47–80, 1986.

6. Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based machine learning.
Artificial Intelligence, 171(10/15):922–937, 2007.

7. Michael J. Pazzani. Influence of prior knowledge on concept acquisition: Experi-
mental and computational results. Journal of Experimental Psychology: Learning,
Memory and Cognition, 17:416–432, 1991.

8. Henry Prakken and Gerard Vreeswijk. Handbook of Philosophical Logic, second
edition, volume 4, chapter Logics for Defeasible Argumentation, pages 218–319.
Kluwer Academic Publishers, Dordrecht etc, 2002.

9. Debbie Richards. Ripple down rules: a technique for acquiring knowledge. pages
207–226, 2003.

10. Jeremy Roschelle. Learning in interactive environments: Prior knowledge and new
experience. In J. H. Falk and L. D. Dierking, editors, Public institutions for personal
learning: Establishing a research agenda, pages 37–51, 1995.

11. Aleksander Sadikov, Martin Možina, Matej Guid, Jana Krivec, and Ivan Bratko.
Automated chess tutor. In Proceedings of the 5th International Conference on Com-
puters and Games, 2006.

12. G. Tecuci, M. Boicu, C. Boicu, D. Marcu, B. Stanescu, and M. Barbulescu. The
disciple-rkf learning and reasoning agent. Computational Intelligence, 21(4):462–
479, 2005.

13. G. Tecuci and Y. Kodratoff. Apprenticeship learning in imperfect domain theories.
Machine Learning: An Artificial Intelligence Approach, 3:514–551, 1990.

14. Geoffrey I. Webb, Jason Wells, and Zijian Zheng. An experimental evaluation of
integrating machine learning with knowledge acquisition. Mach. Learn., 35(1):5–23,
1999.


