
Ontological Stream Reasoning via Syntactic
Approximation

Yuan Ren, Jeff Z. Pan, and Yuting Zhao

Dept. of Computing Science
University of Aberdeen

Aberdeen, UK

Abstract. Traditionally Description Logic (DL)-based ontologies are only used
to capture static knowledge. Recently the fast development of the Semantic Web
and its evolving data raises the requirements of reasoning services on dynamic
knowledge streams. In this paper, we present an efficient ontology stream reason-
ing approach which combines the delete and re-derive algorithm and the syntactic
approximation to guarantee soundness and tractability. Compared with existing
works, it allows stream reasoning for ontologies in very expressive language pro-
files and requires no prior knowledge about the streams.

1 Introduction

Traditionally Description Logic (DL)-based ontologies are only used to capture static
knowledge. That is to say, the knowledge base is assumed to be permanent. However
the dynamics of knowledge is becoming more and more frequent in various applica-
tions, including real time reasoning in ontology editors, sensor data streams, semantic
web content updates and mobile semantic web [13, 12]. In these cases, in reasoning
we should consider the erasure of old knowledge and adding of new knowledge. This
raises the requirements of stream reasoning, in which people want to do reasoning with
changing knowledge [17, 18].

In [19] a delete and re-derive (DRed) approach is adopted from the stream data pro-
cessing in relational database. When the updates of knowledge base occur, the stream
reasoner first erases all the entailments that rely on the removed axioms, then re-do the
reasoning over the remaining axioms and added axioms to entail new results. Later, [6]
realized that if the time window of stream is fixed, we can use a time tag to annotate
each entailed axiom, so that when the time of expiration comes, the stream reasoner
immediately knows whether an entailment can be erased. Similarly, when a new entail-
ment is derived, the stream reasoner immediately knows when it will expire. However,
the applicability of the later approach relies on the prior knowledge of fixed stream time
window. Further more, both of these works still focus on rather simple languages such
as RDF and RDFs and relatively small knowledge base.

In this paper, we propose a novel approach which applies syntactic approximation to
reduce the reasoning complexity. Instead of trivially using syntactic approximate rea-
soning to compute entailments, we extend it with the traceability information among

entailments, so that when erasing axioms, we can efficiently detect the entailments im-
pacted by such erasure. When adding axioms, we augment the syntactic approximation
with the incremental reasoning facility of EL+/EL++ [16].

The remainder of the paper is organized as follows: In Sec.2 we introduce back-
ground knowledge of DL, ontology and the syntactic approximation. In Sec.3 we re-
view existing works on stream reasoning and propose the big picture of our approach.
The next two sections present our approach. First in Sec.4 we extend the syntactic ap-
proximation so that we maintain the traceability relations among them when we derive
entailments. In Sec.5 we utilize the traceability information to efficiently analyze the
impact of erasure of axioms. And further apply incremental reasoning technique to deal
with adding of axioms. Our proposal is implemented and evaluated in Sec.6. In Sec.7
we discuss two possible extensions of our approach. Sec.8 summaries the paper.

2 Background

2.1 DL and Ontology

DL is a family of logic-based knowledge representation formalisms. They vary in lan-
guage expressive power and computational complexities. In this paper we focus on the
DL SROIQ and EL++. For the sake of conciseness, we highlight the parts of syntax
and semantics that are of special interest in our approximate reasoning approach. Com-
plete specifications of these two languages can be found in [10] and [1, 2], respectively.

In DL, concept and role expressions are composed with language constructs. Let >
be the top concept, ⊥ the bottom concept, A an atomic concept, n an integer number,
a an individual, r an atomic role, in SROIQ, concept expressions C, D can be induc-
tively composed with the following constructs:> | ⊥ |A |CuD | ∃R.C | {a} | ¬C | ≥
nR.C | ∃R.Self where R is a role expression which is either r or an inverse role R−.
And ∃R.Self is a self-restriction.

Conventionally,CtD,∀R.C and≤ nR.C are used to abbreviate¬(¬Cu¬D),¬∃R.¬C
and ¬ ≥ (n+1)R.C, respectively. {a1, a2, . . . , an} can be regarded as abbreviation of
{a1}t{a2}t . . .t{an}. Without loss of generality, in what follows, we assume all the
concepts to be in their unique negated normal forms (NNF)1 and use ~C to denote the
NNF of ¬C. We also call >,⊥, A, {a} basic concepts because they are not composed
by other concepts or roles. Given a knowledge base Σ (an ontology or a TBox, or an
ABox), we use CNΣ (RNΣ) to denote the set of basic concepts (atomic roles) in Σ.
EL++ supports > | ⊥ | A | C uD | ∃r.C | {a}, where r is an atomic role.
A DL ontology O =< T ,A > is composed of a TBox T and an ABox A. A TBox

is a set of concept and role axioms. Both SROIQ and EL++ support concept inclusion
axioms (CIs, e.g. C v D) and role inclusion axioms (RIs, e.g. r v s, r1 ◦ . . . ◦ rn v
s). SROIQ supports also other axioms such as functionality of roles (e.g. func(r)),
inverse roles (e.g. inverseRole(r, s)), etc. If C v D and D v C, we write C ≡ D. If
C is non-atomic, C v D is a general concept inclusion axiom (GCI). An ABox is a set
of assertion axioms. Both SROIQ and EL++ support the concept assertion axioms,

1 An SROIQ concept is in NNF iff negation is applied only to atomic concepts, nominals or
Self-restriction. NNF of a given concept can be computed in linear time [9].

e.g. a : C, role assertion axioms, e.g. (a, b) : R, individual equality, e.g. a = b and
inequality, e.g. a 6= b.

If an axiom α can be derived from an ontology O, we say that α is entailed by O,
denoted by O |= α. α is an entailment of O.

2.2 Syntactic Approximation

Syntactic approximation [14, 15] is an approximate reasoning technique that reduces
DL reasoning in SROIQ to EL++. The reasoning complexity is thus reduced from
2NEXPTIME-Complete to PTIME-Complete while the results are guaranteed correct.
In this subsection, we briefly recall the syntactic approximation technique and its fea-
tures. For more details about proofs, readers are referred to [14, 15]. In later sections, we
will extend the current approach to support required closed world reasoning services.

The idea of syntactic approximation from SROIQ and EL++ is to first encode
non-EL++ expressions with fresh names, then maintain their semantics with additional
axioms and separate data structures. For example, complement relations between an
named conceptA and the new name, e.g. nA, assigned to its complement ¬A are main-
tained in the Complement Table (CT). In reasoning phase, additional completion rules
will be used to partially recover the semantics.

In approximation, we only consider concepts corresponding to the particular TBox
in question. We use the notion term to refer to these “interesting” concept expressions.
More precisely, a term is: (i) a concept expression in any axiom, or (ii) a singleton of
any individual, or (iii) the complement of a term, or (iv) the syntactic sub-expression
of a term. In order to represent all these terms and role expressions that will be used in
EL++ reasoning, we first assign names to them.

Definition 1. (Name Assignment) Given S a set of concept expressions, E a set of
(negative) role expressions, a name assignment fn is a function as for each C ∈
S (R ∈ E), fn(C) = C (fn(R) = R) if C is a basic concept (R is named), oth-
erwise fn(C) (fn(R)) is a fresh name.

Now we can transform ontologies into EL++ with additional data structures by the
following definition.

Definition 2. (EL++
CQ Transformation) Given an Ontology O and a name assignment

fn, its EL++
CQ transformation Afn,EL++

CQ
(O) is a triple (T , CT,QT) constructed as

follows:

1. T , CT and QT are all initialized to ∅.
2. for eachC v D (C ≡ D) inO, T = T ∪{fn(C) v fn(D)} (T = T ∪{fn(C) ≡
fn(D)}).

3. for each EL++ role axiom β ∈ O, add β[R/fn(R)] into T .
4. for each a : C ∈ O, T = T ∪ {{a} v fn(C)}.
5. for each (a, b) : R ∈ O, T = T ∪{{a} v ∃fn(R).{b}, {b} v ∃fn(Inv(R)).{a}}.
6. for each a .

= b ∈ O, T = T ∪ {{a} ≡ {b}}.
7. for each a 6 .= b ∈ O, T = T ∪ {{a} v ¬{b}}
8. for each term C in T , CT = CT ∪ {(fn(C), fn(~C))}, and

(a) ifC is the formC1u. . .uCn, then T = T ∪{fn(C) ≡ fn(C1)u. . .ufn(Cn)},
(b) if C is the form ∃r.D, then T = T ∪ {fn(C) ≡ ∃r.fn(D)},
(c) if C is the form ∃R.Self , then T = T ∪ {fn(C) ≡ ∃fn(R).Self}
(d) if C is the form ≥ nR.D, then

i. if n = 0, T = T ∪ {> v fn(C)}
ii. if n = 1, T = T ∪ {fn(C) ≡ ∃fn(R).fn(D)}

iii. otherwise, T = T ∪ {fn(C) ≡ fn(D)fn(R),n}, and QT = QT ∪
{(fn(C), fn(R), n)}.

(e) otherwise T = T ∪ {fn(C) v >}.
9. for each pair of names A and r, if there exist (A, r, i1), (A, r, i2), . . . , (A, r, in) ∈
QT with i1 < i2 < . . . < in, T = T ∪{Ar,in v Ar,in−1 , . . . , Ar,i2 v Ar,i1 , Ar,i1 v
∃r.A}

Step 2 rewrites all the concept axioms; Step 3 preserves all the EL++ role axioms;
Step 4 to 7 rewrite all the ABox axioms and internalize them into the approximated
TBox; Step 8 defines terms and constructs the complement table CT and cardinality
table QT ; Particularly, in step 8.(d), fn(D)fn(R),n is a fresh name. Obviously, this
is unique for a given tuple of D, R and n. We call them cardinality names. Similarly,
≤ nR.D will be approximated via the approximation of its complement≥ (n+1)R.D.
In step 9, for each pair of name assignmentA, r in T , a subsumption chain is added into
T because ≥ inr.A v . . . v≥ i2r.A v≥ i1r.A v ∃r.A.

We call this procedure an EL++
CQ approximation.The EL++

CQ approximation approx-
imates an ontology into an EL++ ontology ([14, Proposition 1]) with a table maintain-
ing the complementary relations and another table maintaining the cardinality relations.
This approximation can be computed in linear time ([14, Proposition 2]).

Given an EL++
CQ transformation (T , CT,QT), we normalize axioms of form C v

D1 u . . . u Dn into C v D1, . . . , C v Dn, and recursively normalize role chain
r1 ◦ . . . ◦ rn v s with n > 2 into r1 ◦ . . . ◦ rn−1 v u and u ◦ rn v s. Because C,
Di are basic concepts, this procedure can be done in linear time. In the following, we
assume T to be always normalized. For convenience, we use a complement function
fc : CNT 7→ CNT as: for each A ∈ CNT , fc(A) = B if (A,B) ∈ CT . Note that
if A is a cardinality name, then it does not have a complement. In what follows, when
applying fc(A) we always assume thatA is not a cardinality name but a assigned name.

With the normalized approximation, the reasoning can be realized by extending
EL++ completion rules with support for the CT and QT . Given an ontology EL++

CQ
transformation (T , CT,QT), the completion rules will compute, for each basic concept
A, a subsumer set S(A) ⊆ CNT such that if B ∈ S(A) then A v B, and for each
named role r, a relation set R(r) ⊆ CNT × CNT . For each basic concept A, S(A) is
initialized to {A,>} and for each named role r, R(r) is initialized to ∅. An example of
such rules can is illustrated as follows:

IfA ∈ S(B) and fc(B) /∈ S(fc(A)), then S(fc(A)) := S(fc(A))∪{fc(B)}

This rule asserts the reverse subsumption between concepts to supplement the absence
of negation, i.e. A v B →~A v~B.

The whole set of rules (R1-R16) can be found in [14]. Reasoning with them is
tractable and sound ([14, Theorem 1 and 2]).

As in classical reasoning, unsatisfiability checking of a concept C can be reduced
to entailment checking of C v ⊥; ontology inconsistency checking can be reduced to
entailment checking of > v ⊥ or {a} v ⊥.

3 Technical Motivation

In this section, we present a technical definition of stream reasoning, then show its
significance and difficulty by analyzing exisiting works.

3.1 Stream Reasoning

As we introduced in early sections, a stream can be realized by updates on an ontology.
Such updates consist of erasure of existing axioms and adding of new axioms.

Definition 3. An ontology stream is a sequence of ontologies O(0),O(1), . . . con-
structed as follows:

1. O(0) is an initial ontology;
2. O(i+ 1) = O(i) \ Er(i) ∪Ad(i).

where Er(i) ⊆ O(i) makes up a sequence of erased axioms. Ad(i) makes up a se-
quence of added axioms.

The change from O(i) to O(i + 1) is an update. It’s important to note that the
sequences of erased axioms and added axioms are not necessarily known to reasoners
in advance, i.e. when computing Ans(O(i), q), a stream reasoner does not necessarily
know Er(j) and Ad(j) if j ≥ i.

For a stream O(0),O(1), . . . and a reasoning problem q, applications ask for rea-
soning answers of q on O(i), denoted by Ans(O(i), q). Such answers can be directly
computed on O(i), i.e. Ans(O(i), q) = f(O(i), q), which means the answer is a func-
tion of the O(i) and q. We call this the naive approach.

More interestingly, people would like to computeAns(O(i+1), q) based onAns(O(i), q)
so that partial results can be reused, i.e.Ans(O(i+1), q) = g(Ans(O(i), 1), q, Er(i), Ad(i)),
which means the answer is a function of Ans(O(i+1)), q, Er(i) and Ad(i). Note that,
when Er(i) = ∅ for all i in the stream, stream reasoning is reduced to incremental
reasoning because no axiom is erased. When Ad(i) = ∅ for all i in the stream, stream
reasoning is reduced to incremental revision because no axiom is added.

3.2 Existing Works

There have been many works regarding querying streaming data on the semantic web.
[7] proposed an extension of SPARQL to process data streams. Similarly, C-SPARQL [5,
4], another extension of SPARQL can continuously query from a RDF knowledge base.

More related works focus on continuously and incrementally updating and mate-
rializing ontological knowledge bases. [19] adopted the Delete and Re-derive (DRed)
algorithm [8] from traditional data stream management systems and proposed a declar-
ative variant of it. When change occurs, the “stream reasoner” first overestimates the

consequences of the deletion, then “cash-back” the over-deleted consequences that can
be derived by other facts, and finally adds new entailments that are derived from the
new facts. This approach maintains ontologies in logical databases and update them
with logical programs thus it applied to ontology languages that can be translated to
Datalog programs, such as RDF(S) and DLP. Also, the relations among asserted ax-
ioms and their consequences have to be maintained by additional rules so that when
the asserted axioms are erased it is easy to final their consequences. This makes the
maintenance program substantially large than the original program.

Similar idea was used in [6] with an additional assumption that the time window
of stream is fixed and known to the stream reasoner. So that it is no longer needed
to maintain the relations among asserted axioms and their consequences. Instead, the
relation between a consequence and a time point should be maintained so that when
the time comes, the stream reasoner expires corresponding consequences. However,
this still requires updating expiration time of existing entailments when new facts are
asserted into the ontology, which ends up with computing all possible justifications for
each entailment, making it difficult to apply this approach to more expressive languages
than RDF(S). Furthermore, if the time window is not known to the stream reasoner, this
approach can not work.

3.3 Our Approach

Compared with existing works, our approach will have the following differences:

1. We apply syntactic approximation to stream reasoning. This enables stream reason-
ing for more expressive ontology languages.

2. Both asserted axioms and their consequences are entailed by the current ontology.
When doing reasoning, we can keep traceability relations between the deriving facts
and the derived facts. Such relations can be easily used to find impacted entailments
in deletion.

3. When dealing with newly added axioms, we incrementally compute new entail-
ments. Since we approximate ontologies to EL++, we can use its tractable incre-
mental reasoning facility [16].

In the next sections, we first extend syntactic approximation to maintain traceability
information on the fly, then use such information in updating ontologies.

4 Augmenting Syntactic Approximation with Traceability
Information

In this section, we investigate how to further extend our proposed syntactic approxima-
tion to maintain the traceability among entailments.

The basic idea is to construct a directed traceability graph, whose nodes are en-
tailments, whose edges are dependency between entailments such that if there exists
an edge from entailment e1 to entailment e2 then e2 is derived from e1 (together with
other entailments). It is obvious that a node can have multiple inbound edges if the
entailment is derived from multiple other entailments. Asserted axioms and tautology

axioms do not have any inbound edges or only have inbound edges from themselves. In
case of syntactic approximation, the traceability is established in two phases: the first
phase is on the approximation and normalization (Sec 4.1), while the second phase is
on reasoning (Sec 4.2).

4.1 Traced Approximation and Normalization

In the approximation and normalization phase, the input is a given ontology O, while
the output is an extended syntactic transformation (T , CT,QT). As introduced in Sec
2, in (T , CT,QT), elements of CT and QT are used to represent the semantics of
some new names in T . Therefore we only need to get trace of axioms in T . Such
traceability are maintained in a Traceability Graph TG = (N,E). An element e ∈ N
is an entailment of O and (T , CT,QT) and E ⊆ N × N represents the derivation
among entailments. This is realized by the following definition:

Definition 4. (Traced Syntactic Transformation) Given an ontologyO withAfn,EL++
CQ

(O) =
(T ′, CT ′, QT ′), then its traced syntactic transformation tAfn,EL++

CQ
(O) is a four-tuple

(T , CT,QT, TG), TG = (N,E) constructed as follows:

1. T = T ′, CT = CT ′ and QT = QT ′.
2. N = O and E = ∅.
3. for each C ≡ D ∈ O, N = N ∪ {fn(C) v fn(D), fn(D) v fn(C)} and
E = E ∪ {(C ≡ D, fn(C) v fn(D)), (C ≡ D, fn(D) v fn(C))},

4. for each a .
= b ∈ O, if {a} v {b}, {b} v {a} 6∈ N then N = N ∪ {{a} v

{b}, {b} v {a}} and E = E ∪ {(a .
= b, {a} v {b}), (a .

= b, {b} v {a})}
5. for each C v D ∈ O, if fn(C) v fn(D) 6∈ N thenN = N ∪{fn(C) v fn(D)}

and E = E ∪ {(C v D, fn(C) v fn(D))}
6. for each a : C ∈ O, if {a} v fn(C) 6∈ N then N = N ∪ {{a} v fn(C)} and
E = E ∪ {(a : C, {a} v fn(C))},

7. for each (a, b) : R ∈ O,N = N∪{{a} v ∃fn(R).{b}, {b} v ∃fn(Inv(R)).{a}}
andE = E∪{((a, b) : R, {a} v ∃fn(R).{b}), ((a, b) : R, {b} v ∃fn(Inv(R)).{a})}

8. for each a 6 .= b ∈ O, if {a} v fn(¬{b}) 6∈ N , then N = N ∪ {{a} v fn(¬{b})}
and E = E ∪ {(a 6= b, {a} v fn(¬{b}))}.

9. for each R ≡ S ∈ O, N = N ∪ {fn(R) v fn(S), fn(S) v fn(R)} and
E = E ∪ {(R ≡ S, fn(R) v fn(S)), (R ≡ S, fn(S) v fn(R))},

10. for each R v S ∈ O, if fn(R) v fn(S) /∈ N then N = N ∪ {fn(R) v fn(S)}
and E = E ∪ {(R v S, fn(R) v fn(S))},

11. for each R1 ◦ R2 v S ∈ O, fn(R1) ◦ fn(R2) v fn(S) /∈ N and E = E ∪
{({R1 ◦R2 v S}, fn(R1) ◦ fn(R2) v fn(S))},

12. for each axiom β of the form R1 ◦ . . . ◦ Rn v S ∈ O with n > 2, N =
N ∪ {fn(R1) ◦ fn(R2) v un−2, u1 ◦ fn(Rn) v fn(S)} ∪

⋃
2≤k≤n−2{uk ◦

fn(Rn+1−k) v uk−1}E = E∪{(β, fn(R1)◦fn(R2) v un−2)}∪
⋃

2≤k≤n−2{(β, uk◦
fn(Rn+1−k) v uk−1)} ∪ {(β, u1 ◦ fn(Rn) v fn(S))}

The above definition creates traceability information for T when approximation and
normalization are performed.

1. Step-3 and 5 deal with GCIs.
2. Step-4, 6 to 8 deal with internalized ABox axioms.
3. Step 9 to 12 deal with RIs. Note that in Step 3, 4 and 9, equivalent concept/role

axioms are normalized, because the completion rules work on normalized axioms.
4. Similarly, in Step-12, role chain axioms are normalized. More precisely, an axiom
R1 ◦ . . . ◦ Rn v S with n > 2 is approximated and then normalized in to ax-
ioms fn(R1) ◦ fn(R2) v un−2, un−2 ◦ fn(R3) v un−3, . . . , u2 ◦ fn(Rn−1) v
u1, u1◦fn(Rn) v fn(S), where ui are fresh new names. Their counter-parts, with
the inverse role of ui are also maintained. And all these axioms have their trace-
ability relation with R1 ◦ . . . ◦ Rn v S maintained in TG. It is obvious that such
normalization yields the same results as the normalization we mentioned in Sec.2.

It is also important to make Step-3 before 4, make 4 before 5 and 6, and make Step-9
before the other role axioms , because there might be duplications in approximating ax-
ioms. In this case we only maintain one of them to maintain tractability of the solution.
For example, in {{a} ≡ A, {a} v A, a : A} the same approximated axiom {a} v A
has three different asserted axioms. According to Def.4 only ({a} ≡ A, {a} v A) will
be maintained in TG.

Proposition 1. For an ontologyO, its traced syntactic transformation tAfn,EL++
CQ

(O) =
(T , CT,QT, TG) can be computed in linear time.

According to the above proposition and Def.4, given a traced syntactic transforma-
tion (T , CT,QT, TG), all the axioms in T generated by Step-2 and 3 in Def.2 have
been normalized traced to their asserted axioms in O. The other axioms, i.e. those gen-
erated by Step-8 and 9 of Def.2 do not have traceability information because they are
actually tautologies and do not rely on axioms in O. These axioms will still need to
be normalized and the normalized axioms should be added into TG as nodes. In what
follows, we always assume T to be completely normalized.

4.2 Traced Reasoning

In the reasoning, the input is a traced syntactic transformation (T , CT,QT, TG), and
the output are the subsumer sets of basic concepts and relation sets of atomic roles.
We need to maintain the traceability information regarding elements of these sets. For
example, B ∈ S(A) only if A v B can be inferred, then we should add A v B as a
node in the TG and connect it to other entailments.

In addition, the computation of subsumption closure of roles are implicitly treated
in the original reasoning paradigm. Here we make them explicit and maintain the trace-
ability information as well. We use r v∗ s to denote that r v s can be derived. In
initialization of the reasoning, we have r v∗ r for every r ∈ RNT . Obviously r v∗ r
should be added into TG without inbound edges.

To this end, we can maintain the traceability of inferences results when applying
the completion rules. For each rule, the descendent axiom should be added into the TG
as a new node, and an edge should be created from each of the antecedent axioms to
the descendent axiom. For example, suppose the traceability graph TG = (N,E), the
traced completion rule for role subsumption is as follows:

If r1 v∗ r2, r2 v r3 and r1 v r3 not inferred then infer r1 v∗ r3, N =
N ∪ {r1 v∗ r3} and E = E ∪ {(r1 v∗ r2, r1 v∗ r3), (r2 v r3, r1 v∗ r3)}

Another example is the rule we showed at the end of Sec.2.2:

IfA ∈ S(B) and fc(B) /∈ S(fc(A)) then S(fc(A)) := S(fc(A))∪{fc(B)},
N = N ∪ {fc(A) v fc(B)} and TT = TT ∪ {(B v A, fc(A) v fc(B))}

The other rules can be extended in a similar way. A useful optimization when gener-
ating traceability edges is that, if a node is not reachable from any asserted axiom, we
do not need to generate any outbound edges from it. This is because when erasing as-
serted axioms from the ontology, such a node will not be impacted. Thus, an entailment
derived from it will be impacted only if it is also connected to another impacted node.

Obviously, the traced completion rules have the same time complexity and reason-
ing quality as the original rules:

Theorem 1. For any ontologyO and its traced syntactic transformation (T , CT,QT, TG),
TBox reasoning by traced completion rules will terminate in polynomial time w.r.t.
|CNO|+ |RNO| and is soundness guaranteed.

Because the syntactic approximation computes the subsumption between all named
concepts in “one go”, thus the tAfn,EL++

CQ
(O), especially the traceability graph TG =

(N,E), can be regarded as a by-product of Ans(O, q) for any ontologyO and any rea-
soning problem q. If the reasoning problem is to classify the ontology, thenAns(O, q) ⊆
N because N contains all the entailed concept subsumptions.

In previous works [11], similar techniques are used to compute justifications in a
glass-box manner. The major differences are:

1. In justification computation, the traceability information is used in a backward man-
ner, i.e. given an entailment, finding all asserted axioms that derive it. In stream rea-
soning, as we will show, the traceability information is used in a forward manner,
i.e. given an asserted axiom, finding all entailments impacted by it.

2. In justification computation, traceability information is recursively collapsed, i.e.
the intermediate entailments are not part of the justification, only the original ax-
ioms are. In stream reasoning, the intermediate entailments also count because they
are also part of the reasoning results.

5 Stream Reasoning with Traced Syntactic Approximation

We follow the idea of DRed to split the updates of ontologies into two steps: erasing
and adding.

5.1 Erasing Axioms from Ontology

In the erasing step, the traceability graph provides a convenient way to find all entail-
ments impacted by the erased axioms. More precisely, suppose tAfn,EL++

CQ
(O(i)) =

(T (i), CT (i), QT (i), TG(i)), where TG(i) = (N(i), E(i)), and we want to erase
Er(i) ⊆ O(i) from theO(i), then we can construct an erased approximation eAfn,EL++

CQ
(O(i), Er(i)) =

(T E(i), CTE(i), QTE(i), TGE(i)), where TGE(i) = (NE(i), EE(i)), as follows:

1. NE(i) = N(i) \ {α|α is reachable in TG(i) from elements of Er(i)}.
2. EE(i) = E(i) \ {(α, β)|(α, β) ∈ E(i) and α /∈ NE(i)}.
3. T E(i) = T (i) \ {α|α ∈ T (i) and α /∈ NE(i)}.
4. CTE(i) = CT (i) \ {(a, b)|a and b are not concept names in T E(i)}.
5. QTE(i) = QT (i) \ {(a, r, n)|ar,n is not a concept name in T E(i)}.

As we can see, all the entailments (including the erased axioms themselves) reach-
able from the erased axioms are removed from the approximation and the traceability
graph. The corresponding traceability edges are removed as well.

Consequently, the reasoning results should be erased:

1. for any role r in T (i) and not in T E(i), erasing all role subsumption involving R.
And removing R(r).

2. earsing all role subsumptions r v∗ s ∈ N(i) and r v∗ s /∈ NE(i).
3. for any basic concept A in T (i) and not in T E(i), removing S(A).
4. for any basic concepts A, B such that B ∈ S(A), if A v B /∈ NE(i), then
S(A) = S(A) \ {B}.

5. for any role name r, basic concepts A and B such that (A,B) ∈ R(r), if A v
∃r.B /∈ NE(i), then R(r) = R(r) \ {(A,B)}.

Similar as the DRed approach, such erasure may lose some information. Using our
old example O(i) = {{a} ≡ A, {a} v A, a : A}, we only have ({a} ≡ A, {a} v
A) ∈ E(i). If {a} ≡ A ∈ Er(i) then we will have {a} v A /∈ NE(i). Compared
to tAfn,EL++

CQ
(O(i) \ Er(i)) this loses information, because {a} v A still remains in

O(i) \ Er(i) or can still be approximated from a : A. As a consequence, any further
entailments reachable from {a} v A are all missing. We will need to re-approximate
and re-derive these entailments with the added axioms.

5.2 Adding Axioms into Ontology

In the adding step, we need to re-perform the approximation and reasoning. Such re-
performing can be optimized with the erased approximation. More precisely, suppose
the erased approximation eAfn,EL++

CQ
(O(i), Er(i)) = (T E(i), CTE(i), QTE(i), TGE(i)),

where TGE(i) = (NE(i), EE(i)), and we want to add Ad(i) into the ontology (Ad(i)
can be ∅), then we can construct an added approximation aAfn,EL++

CQ
(O(i), Er(i), Ad(i)) =

(T A(i), CTA(i), QTA(i), TGA(i)), where TGA(i) = (NA(i), EA(i)), as follows:

1. Generating T A(i), CTA(i) and QTA(i) from O(i) \ Er(i) ∪ Ad(i) with respect
to Def.2. But in Step 1, instead of initializing T A(i), CTA(i) and QTA(i) with ∅,
initializing them with T E(i), CTE(i) and QTE(i), respectively.

2. Generating TGA(i) from (T A(i), CTA(i), QTA(i)) with respect to Def.4. But
in Step 2, instead of initializing NA(i) and EA(i) with ∅, initializing them with
NE(i) and EE(i), respectively.

In the first step, we re-approximate the updated ontology by making use of the remain-
ing approximation after erasure. In the second, we re-compute the traceability graph

by making use of the remaining traceability graph after erasure. Compared with a re-
approximation from scratch tA(O(i+1)) = (T (i+1), CT (i+1), QT (i+1), TG(i+1))
we have the following properties: T A(i) = T (i+1), CTA(i) = CT (i+1), QTA(i+
1) = QT (i+ 1) and TGA(i) = TG(i+ 1).

Thus, the reasoning results can be updated accordingly. Simply applying the traced
completion rules again then we will get the results on O(i + 1). Because we have
already obtained partial results on the S sets, R sets and role subsumptions, such a
completion procedure will be more efficient than computing all results from scratch.
And the reasoning is still tractable and sound:

Theorem 2. For any ontology O(i), erased axioms Er(i) ⊆ O(i) and added axioms
Ad(i), performing erasing as introduced in Sec.5.1 and adding as introduced in Sec.5.2
will terminate in polynomial time w.r.t. |CNO(i)∪Ad(i)|+|RNO(i)∪Ad(i)| and the results
are the same as reasoning on O(i) \ Er(i) ∪Ad(i).

6 Evaluation

We implemented the proposed approach in our REL reasoner. In order to evaluate its
performance, we tested it with large ABox stream reasoning. Due to the lack of stream
reasoning benchmark, we generated our test data from existing benchmark ontologies
and simulated streams. The ontology we used is the well-known Lehigh University
Benchmark (LUBM) ontology 2. It has a simple TBox but arbitrarily large ABox. In
our evaluation, we generate one university with 15 departments. All experiments were
conducted in an environment of 64-bit Windows 7 Enterprise with 1.60 GHz CPU and
3G RAM allocated to JVM 1.6.0.07.

We do the following pre-processing to simulate an ontology stream:

1. We randomly partition the ABox into 15 sub-ABoxes of same size. We call them
A0,A1, . . . ,A14.

2. We re-merged the TBox T and sub-ABoxes A0 to A4 into O(0), as the initial
ontology for stream reasoning.

3. Hence, we generate streams as follows: O(i + 1) = O(i) \ Ai ∪ Ai+5. In other
words, in each update, we erase the Ai from O(i) and add Ai+5 into it to create
O(i+ 1). Thus, O(1) = T ∪ A1 ∪ A2 . . .A5, . . . ,O(10) = T ∪ A10 ∪ . . .A14.

Now we create a stream with 10 updates. In each update, 20% of the ABox is
changed.

For each stream ontology O(i), we perform ABox reasoning and query for the
types of all individuals. This is because, in LUBM a certain type of an individual can
have multiple sources, e.g. direct assertion, or through some domain/range axioms, or
through subsumption closure of its other types. While the relation between two indi-
viduals are usually either directly asserted, or derived through role subsumption, i.e.
without multiple sources.

We accomplish such a reasoning task with both the naive approach (re-do reasoning
on O(i) from scratch) and the stream reasoning approach. We record the time of both

2 http://swat.cse.lehigh.edu/projects/lubm/

approaches to evaluate the effectiveness of the stream reasoning approach. The results
are summarized in the following table (Table 1).

Table 1. Evaluation Results (O(0) shows the time for the initial ontology. Max(O(i)),
Min(O(i)) and Ave(O(i)) show the maximal, minimal and average time for the updated on-
tologies, respectively. Time unit is second.)

Approach O(0) Max(O(i)) Min(O(i)) Ave(O(i))

Naive
19.223

13.897 10.667 11.5997
Stream Reasoning 3.982 2.175 2.5076

From the table we can see that, when the updating part makes up to 20% of the
ABox, the stream reasoning approach is still significantly faster than the naive approach.

It is interesting to see how many percentages of the ABox can be updated while
the stream reasoning approach remains faster than the naive approach. To answer this
question, we further process the sub-ABoxes as follows:

1. We merged n (n=4,5,6,7) sub-ABoxes with the TBox to make the initial ontology,
i.e. O(0) = T ∪A0 ∪ . . . An−1.

2. For each n, the updated part varies from 1 sub-ABox to (n− 1) sub-ABoxes.

For example, when n = 5, we update the ontology with 1, 2, 3, 4 sub-ABoxes,
respectively. Thus, the Update/Ontology ratio (update ratio for short, ABox only) is
20%, 40%, 60% and 80%, respectively.

For each n and each update ratio, we do same reasoning as before with both the
naive approach and the stream reasoning approach, and then compute the TStream Reasoning/TNaive
ratio (time ratio for short), where TStream Reasoning and TNaive are time for the two
approaches, respectively. The relation between update ratio and time ratio is illustrated
in Figure 1.

From this figure, we can see that stream reasoning approach always pays off no
matter how large the ABox is, and how large the updated part is. This justifies the
usability of our approach.

7 Further Extensions

Although not implemented, we introduce two extensions of our approach in this section.
Both of them try to trade time consumption with space consumption:

1. Maintaining Erased Information: there is a possibility that erased axioms may be
added back into the ontology again in the future. With the current solution, we still
need to re-compute all information related to them. A potential extension is that,
instead of immediately removing all corresponding information in erasure, we label
them as “erased” and do not use them in subsequent approximation and reasoning.
When they are added back into the ontology, we remove the “erased” label and
certain results can be enabled immediately without reasoning. Consequently the

Fig. 1. The relation between update ratio and time ratio.

size of the TG will increase with the stream, i.e. |TG| is polynomial w.r.t. |O(0) ∪
Ad(1) ∪Ad(2) ∪ . . . |.

2. Maintaining Complete Traceability Information: as our early example {{a} ≡
A, {a} v A, a : A} shows, an entailment {a} v A can have multiple sources. In
the current solution we only maintain one of them in the TG. So that when such
a source is erased, we need to re-perform approximation and reasoning to obtain
the entailment. A potential extension is to maintain traceability information from
all the sources in the TG and erase an entailment only if all the asserted axioms
it is reachable from are erased. For example, when erasing {a} ≡ A from the
above ontology, A v {a} should be erased but {a} v A should not. Therefore
entailments have multiple sources do not need to be re-computed. However, the
complexity of this extension is comparable to computing all justifications, i.e. the
computation is NP-Complete w.r.t. |O(i) ∪Ad(i)|.

8 Conclusion

In this paper, we presented an approach to ontological stream reasoning via syntactic
approximation. We took advantage of the complexity reduction brought by approxi-
mation technology and enabled stream reasoning for relatively complex languages and
large knowledge bases by extending syntactic approximation with a traceability graph.
And then we use such a graph to erase entailments from the ontology, and use incremen-
tal reasoning facility to handle the added axioms. Evaluation on benchmark ontology
shows that our approach works nicely in practice. In the future, we would like to further
improve the scalability of our approach. Combining with the time tag approach is also
a potential improvement.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In Proceedings IJCAI-05,
2005.

2. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL Envelope Further. In
Kendall Clark and Peter F. Patel-Schneider, editors, In OWLED-2008, 2008.

3. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

4. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus. An
execution environment for c-sparql queries. In EDBT ’10, 2010.

5. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus. C-sparql: Sparql for continuous querying. In WWW2009, 2009.

6. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus. Incremental reasoning on streams and rich background knowledge. In
ESWC2010, 2010.

7. Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming sparql extending sparql to
process data streams. In ESWC08, 2008.

8. Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incre-
mentally. In SIGMOD ’93, 1993.

9. Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß. Subsumption Algorithms
for Concept Description Languages. In ECAI-90, pages 348–353. Pitman Publishing, 1990.

10. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irresistible SROIQ. In KR
2006, 2006.

11. Sik Chun (joey) Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vasconcelos. A
fine-grained approach to resolving unsatisfiable ontologies. In In Proc. of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence (WI-2006), 2006.

12. Marko Luther and Sebastian Bohm. Situation-Aware Mobility: An Application for Stream
Reasoning. In in Proc. of 1st International Workshop on Stream Reasoning (SR2009), 2009.

13. Bijan Parsia, Christian Halaschek-wiener, and Evren Sirin. E.s.: Towards incremental rea-
soning through updates. In in OWL DL. In: Proc. WWW-2006. (2006), 2006.

14. Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Soundness Preserving Approximation for TBox
Reasoning. In the Proc. of the 25th AAAI Conference Conference (AAAI2010), 2010.

15. Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Towards Soundness Preserving Approximation for
ABox Reasoning of OWL2. In the Proc. of the International Description Logic Workshop
(DL2010), 2010.

16. Boontawee Suntisrivaraporn. Module Extraction and Incremental Classification: A Prag-
matic Approach for EL+ Ontologies. In ESWC’08, 2008.

17. Emanuele Della Valle, Stefano Ceri, Daniele Braga, Irene Celino, Dieter Frensel, Frank van
Harmelen, and Gulay Unel. Research Chapters in the Area of Stream Reasoning. In in Proc.
of 1st International Workshop on Stream Reasoning (SR2009), 2009.

18. Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s a streaming
world! reasoning upon rapidly changing information. IEEE Intelligent Systems, 24:83–89,
2009.

19. Raphael Volz, Steffen Staab, and Boris Motik. Incementally maintaining materializations
of ontologies stored in logic databases. In Journal of Data Semantics II, LNCS, Vol 3360,
2:1–34, 2005.

