
Collaborative enterprise knowledge mashup

Devis Bianchini, Valeria De Antonellis, Michele Melchiori

Università degli Studi di Brescia – Dip. di Ing. dell’Informazione

Via Branze 38 – 25123 Brescia (Italy)

{bianchin, deantone,melchior}@ing.unibs.it

Abstract. In this paper, we describe a proposal of semantic techniques to

support enterprise mashup within or across collaborative partners. Mashups are

Web applications that integrate data and/or application logics originated from

third parties and made available through Web APIs. The aim of the presented

techniques is to enable effective searching of mashup components and their

composition, by making possible proactive suggestion of mashup components

and progressive mashup composition. The approach, called SMASHAKER,

includes a model of component semantic descriptor, techniques for building a

component repository where semantic descriptors are semantically organized

according to similarity and coupling links, and supports an exploratory

perspective in mashup development.

1 Introduction

An enterprise mashup is defined as a Web-based application that combines existing

content, data or services, from independent sources, by empowering also end users to

create and adapt situational application to solve a specific problem. Enterprise

mashup focuses on the User Interface integration by extending concepts of Service-

Oriented Architecture with the Web 2.0 philosophy [3]. In mashup, data and services

are made available through heterogeneous APIs. To better support developers during

enterprise mashup development, it is crucial therefore abstract from underlying

heterogeneity [1,4].

In this paper, we propose a novel conceptual approach to support progressive

construction of collaborative enterprise mashups apt to combine multiple data and/or

application logics. The approach is based on semantic annotation of components and

semantic matching techniques for their organization, selection and composition.

2 Mashup construction in SMASHAKER

A mashup application is obtained by assembling, possibly with the minimum

programming effort, available ready-to-use components. Generally speaking, mashup

developing is a process composed of the following phases: (a) component selection

from a repository or from the Web; (b) definition of event-operation associations and

6 Devis Bianchini, Valeria De Antonellis, Michele Melchiori

I/O mappings among the selected components; (c) development of programming code

to actually glue components and their user interfaces to get the final application. Our

approach, called SMASHAKER, aims to supports the phases (a) and (b). The output

of these phases is what we call a conceptual mashup, describing the selected

components, associations and mapping. A recommendation system based on this

development model should suggest to the developer the components that can be used

as alternatives or that can be properly composed in the conceptual mashup.

Different roles must be considered in an enterprise mashup development context

[3]:

 the provider of the mashup component, that is in charge of supplying the

component description with its annotation to enable easy combination with other

components;

 the consumer, who selects and combines the mashup components to build a

conceptual mashup; we refer to this role in the following of the paper with a more

specific term, mashup designer.

According to the SMASHAKER vision, the component APIs are semantically

annotated, classified and made available to be assembled in a conceptual mashup

through the following steps, schematically shown in Fig. 1.

Semantic annotation. Each available component is described by means of an

annotation of its API. In this phase, the meanings of APIs are made explicit by

associating API elements (inputs/outputs/operations) to concepts defined in domain

ontologies. The result of this step is a collection of semantic descriptors.

Matching and linking of semantic descriptors. Semantic-based matching

techniques are applied to the semantic descriptors previously defined to establish

automatically similarity and coupling links between component descriptors.

The links, as result of this phase, are stored in a Mashup Component Repository

(MCR) to be available for the following step.

Fig. 1. The SMASHAKER approach to mashup development.

Collaborative enterprise knowledge mashup 7

Component recommendation. Similarity and coupling links are exploited to obtain

proactive recommendation of MCR components. In particular, in this step our

framework enables: (i) proactive suggestion of component descriptors ranked with

respect to their similarity with the mashup designer’s requirements; (ii) interactive

support to mashup designer for component composition, according to the exploratory

perspective. The result of this step is a conceptual mashup, where component

descriptors are properly connected.

3 The component semantic descriptor

To describe a component different elements must be considered. First, it must

export a Web API, that is, a list of operations (methods signatures). For each

operation, its I/O parameters are specified. Second, according to [1], integration of

mashup components is typically event-driven: when the user interacts with the UI of

components, it reacts with certain state changes and the other components must be

aware of such changes to update their UIs accordingly. Each component has a set of

events and event outputs. An event of a component can be connected to an operation

of another component in a publish/subscribe-like mechanism. In a component

semantic descriptor (SD), names of operations, operation I/Os and event outputs are

annotated with concepts from domain ontologies. Furthermore, a component is

associated to a set of categories, to provide a domain-driven classification of the

component itself.

As an example of component semantic descriptor (SD), Fig. 2 shows a component

called MapViewer for map visualization similar to the well known Google Map. The

API of this component includes one operation to show a location on the map by

specifying an address, city and country. Moreover, when the user clicks on the map to

select a specific point, an event is triggered.

<SemanticComponent name="MapViewer_SD"

url="http://www.mapview.com">

<categories>

<item>Mapping</item>
</categories>
<operation address="show"

 semanticReference="http://localhost:8080/Travel.owl#showLocation">
<input
 semanticReference="http://localhost:8080/Travel.owl#Address"/>

<input
 semanticReference="http://localhost:8080/Travel.owl#Country"/>
<input semanticReference="http://localhost:8080/Travel.owl#City"/>

</operation>
...
<event address="selectedCoordinates">

<output
 semanticReference="http://localhost:8080/Travel.owl#Coordinates"/>

</event>

</SemanticComponent>

Fig. 2. An example of component semantic descriptor

8 Devis Bianchini, Valeria De Antonellis, Michele Melchiori

4 The mashup component repository

In our approach, component semantic descriptors are organized in a Mashup

Component Repository, to better support collaborative enterprise mashup. In the

repository, descriptors are related in two ways: (i) semantic descriptors SDi and SDj of

components which show an high relatedness between their I/O and therefore can be

potentially wired in the final mashup application to the combine functionalities they

offers, are connected through a functional coupling link; (ii) semantic descriptors SDi

and SDj of components which perform the same or similar functionalities, are

connected through a functional similarity link.

To identify coupling or similarity links (resp.), semantic matching techniques can

be used. In particular, we have defined the coupling degree coefficient CouplIO()and

the functional similarity degree coefficient SimIO(). These coefficients are based on

the computation of name affinity NA() between pairs of, respectively, (i) operations

names, (ii) I/Os names and (iii) event outputs names used in the semantic descriptors

to be matched [2]. NA() evaluation is based both on a terminological (domain-

independent) matching based on the use of WordNet and on a semantic (domain

dependent) matching based on ontology knowledge.

In particular, SimIO(SDR, SDC) between SDR and SDC is computed to quantify how

much SDC provides at least the operations and I/Os required in SDR. and is maximum

when SDC provides at least the operations of SDR.

CouplIO(SDi, SDj) is maximum if every event ev in SDi has a corresponding

operation op in SDj and, in particular, every output of ev has a corresponding input in

op, no matter if SDj provides additional operations.

4.1 Collaborative mashup developing

The MCR can be exploited for searching, finding and suggesting suitable components

to be used in mashup developing. The designer starts by specifying a request SDR for

a component in terms of desired categories, operations and I/Os. A set of components

SDi which present a high similarity with the requested one and such that at least a

category in SDR is equivalent or subsumed by a category in SDi are proposed.

Components are ranked with respect to SimIO values. Once the consumer selects one

of the proposed components, additional components are suggested, according to

similarity and coupling criteria: (i) components that are similar to the selected one

(the consumer can choose to substitute the initial components with the proposed

ones); (ii) components that can be coupled with already selected ones during mashup

composition. Each time the consumer changes and selects another component, the

MCR is exploited to suggest the two sets of suitable components.

5 Conclusions

In this paper, we described a semantic framework for mashup component selection

and suggestion for composition in the context of collaborative enterprise mashup.

Collaborative enterprise knowledge mashup 9

Mashup components are semantically described and organized according to similarity

and coupling criteria, and effective (semi-)automatic design techniques have been

proposed.

6 References

1. Daniel, F., Casati, F., Benatallah, B. and Shan, M.C. (2009) Hosted Universal

Composition: Models, Languages and Infrastructure in mashArt, 28th Int. Conference on

Conceptual Modeling (ER09), pages 428-443.

2. Bianchini, D., De Antonellis, V., Melchiori, M. (2008) Flexible Semantic-based Service

Matchmaking and Discovery, World Wide Web Journal, 11(2):227-251.

3. Hoyer, V. and Stanoevska-Slabeva, K. (2009) Towards a Reference Model for grassroots

Enterprise Mashup Environments, 17th European Conf. on Information Systems (ECIS).

4. Abiteboul, S., Greenshpan, O. and Milo, T. (2008) Modeling the Mashup space,

Workshops on Web Information and Data Management, pages 87-94.

