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Abstract. A common task in many domains with a temporal aspect
involves identifying and tracking clusters over time. Often dynamic data
will have a feature-based representation. In some cases, a direct mapping
will exist for both objects and features over time. But in many scenarios,
smaller subsets of objects or features alone will persist across succes-
sive time periods. To address this issue, we propose a dynamic spectral
co-clustering method for simultaneously clustering objects and features
over time, as represented by successive bipartite graphs. We evaluate the
method on a benchmark text corpus and Web 2.0 bookmarking data.

1 Introduction

In many domains, where the data has a temporal aspect, it will be useful to anal-
yse the formation and evolution of patterns in the data over time. For instance,
researchers may be interested in tracking evolving communities of social network
users, such as clusters of frequently interacting authors in the blogosphere, or
circles of users with shared interests on social media sites. In the case of online
news sources, producing large volumes of articles on a daily basis, it will often
be useful to chart the development of individual news stories over time.

For many of these problems it may be of interest to simultaneously identify
clusters of both data objects and features. This task, often referred to as co-
clustering, has been formulated as the problem of partitioning a bipartite graph,
where the two types of nodes correspond to objects and features [1]. However,
to the best of our knowledge, this work has been limited to static applications,
where temporal information is unavailable or has been disregarded.

A popular recent approach to the problem of clustering dynamic data has
been to use an “offline” strategy, where the dynamic data is divided into dis-
crete time steps. Sets of step clusters are identified on the individual time steps
using a suitable clustering algorithm, and these step clusters are associated with
one another over successive time steps [2]. However, clusters may change con-
siderably between time steps. This can be problematic, both for the purpose of
matching clusters between time steps, and for supporting users to follow and
understand how groups are changing over time. To address this problem, both
current and historic information can be incorporated into the objective of the
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Fig. 1. A dynamic co-clustering scenario where 2 clusters appear in 2 time steps. Note
that a subset of both objects (bookmarks) and features (tags) persists across time.

clustering process [3]. Benefits of this approach include increasing the smooth-
ness of transitions between clusterings over time, and improving cluster quality
by incorporating historic information to reduce the effects of noisy data.

A number of additional considerations arise when tracking dynamic data
represented in feature spaces. Notably, a set of objects or features will not always
persist in the data across steps. In general, three different scenarios are possible:

1. Data objects alone persist across time steps. For instance, in bibliographic
networks, papers are only published at a single point in time, whereas authors
will generally be present in the network over an extended period of time.

2. Features alone persist across time. In a news collection, articles will appear
once, whereas terms may continue to appear as topics extend over time.

3. Both objects and features persist across time. For example, in the case of
Web 2.0 tagging portals, both the individual tags and the objects being
tagged (e.g.bookmarks, images) will appear in multiple time steps. A simple
example with just two clusters is shown in Figure 1.

Here we consider the problem of tracking nodes in multiple related dynamic
bipartite graphs. In Section 3 we describe the main contribution of this paper –
a dynamic spectral co-clustering algorithm for simultaneously grouping objects
and features over time, in any of the above scenarios. This algorithm takes into
account both information from the current time step, together with historic
information from the previous step. In our evaluations in Section 4 we show that
the proposed algorithm works both in the case where features alone persist over
time, and when objects and features persist. These evaluations are performed
on a labelled benchmark news corpus and Web 2.0 tagging data.

2 Related Work

2.1 Co-clustering

In certain problems it may be useful to perform co-clustering, where both ob-
jects and features are assigned to groups simultaneously. One approach to the
co-clustering problem is to view it as the task of partitioning a weighted bipar-
tite graph. Dhillon [1] proposed a spectral approach to approximate the optimal



normalised cut of a bipartite graph, which was applied for document clustering.
This involved computing a truncated singular value decomposition (SVD) of a
suitably normalised term-document matrix, constructing an embedding of both
terms and documents, and applying k-means to this embedding to produce a
simultaneous k-way partitioning of both documents and terms. Mirzal & Fu-
rukawa [4] provided a further theoretical grounding for spectral co-clustering,
demonstrating that simultaneous row and column clustering is equivalent to
solving the separate row and column clustering problems.

2.2 Dynamic Clustering

The general problem of identifying clusters in dynamic data has been studied by
a number of authors. Early work on the unsupervised analysis of temporal data
focused on the problems of topic tracking and event detection in document col-
lections [5]. More recently, Chakrabarti et al. [3] proposed a general framework
for “evolutionary clustering”, where both current and historic information was
incorporated into the objective of the clustering process. The authors used this to
formulate dynamic variants of common agglomerative and partitional clustering
algorithms. In the latter case, related clusters were tracked over time by match-
ing similar centroids across time steps. Two evolutionary versions of spectral
partitioning for classical (unipartite) graphs were proposed by Chi et al. [6]. The
first version (PCQ) involved applying spectral clustering to produce a partition
that also accurately clusters historic data. The second version (PCM) involved
measuring historic quality based on the chi-square distance between current and
previous partition memberships.

The application of dynamic clustering methods has been particularly preva-
lent in the realm of social network analysis, where the goal is to identify com-
munities of users in dynamic networks. Palla et al. [7] proposed an extension of
the popular CFinder algorithm to identify community-centric evolution events
in dynamic graphs, based on an offline strategy. This extension involved apply-
ing community detection to composite graphs constructed from pairs of con-
secutive time step graphs. Another life-cycle model was proposed in [2], where
the dynamic community finding approach was formulated as a graph colouring
problem. The authors proposed a heuristic solution to this problem, by greed-
ily matching pairs of node sets between time steps. The problem of clustering
data over time has also been considered in the temporal analysis domain. Kal-
nis et al. [8] described a density-based clustering approach where clusters persist
over time, despite continuous changes in cluster memberships. This corresponds
closely to the “assembly line” dynamic clustering scenario described in [2].

3 Methods

3.1 Problem Definition

We represent a dynamic feature-based dataset as a set of l bipartite graphs
{G1, . . . , Gl}. Each step graph Gt consists of two sets of nodes, representing the



nt data objects, and mt features present in the data at time t. Edges exist only
between nodes of different types, corresponding to non-zero feature values. We
can conveniently represent each step graph using a feature-object matrix At of
size mt × nt.

In the offline formulation of the dynamic co-clustering problem, the overall
goal is to identify a set of dynamic clusters of objects and features, which appear
in the data across one or more time steps. We refer to step clusters that are
identified on individual step graphs, which represent specific observations of
dynamic clusters at a given point in time. The formulation therefore has two
key requirements: a suitable clustering algorithm to cluster individual time step
graphs (ideally in a way that incorporates historic information), and an approach
to track these clusters across time steps. While our primary focus here is on the
former aspect, in Section 3.3 we also briefly discuss the latter aspect.

3.2 Dynamic Spectral Co-clustering

We now introduce a dynamic co-clustering algorithm that considers both historic
information from the previous time step, and the internal quality of the clustering
in the current time step. The algorithm consists of three phases: bipartite spectral
embedding, cluster initialisation, and a cluster assignment phase.

Spectral embedding. Following normalised cut optimisation via spectral co-
clustering described in [1], for a given time step feature-object matrix At, we
construct the degree-normalised matrix Ât = D1

− 1
2 AtD2

− 1
2 , where D1 and D2

are diagonal column and row degree matrices respectively. We then apply SVD
to Ât, computing the leading left and right singular vectors corresponding to
the largest singular values. Following the choice made by many authors in the
spectral clustering literature, we use kt dimensions corresponding to the expected
number of clusters. Although the issue of selecting the number of clusters is
not discussed in this paper, one potential approach is to choose kt based on the
eigengap method [9]. The truncated SVD yields matrices Ukt and Vkt . A unified
embedding of size (mt + nt)× kt is constructed by normalising and stacking the
truncated factors as follows:

Zt =
[
D1

−1/2Ukt

D2
−1/2Vkt

]
(1)

Prior to clustering, the rows of Zt are subsequently re-normalised to have unit
length, as proposed for spectral partitioning in [9]. This process provides us with
a kt-dimensional embedding of all nodes of both types in Gt.

Cluster initialisation. At time t = 1, we have no historic information. There-
fore to seed the clustering process, we use a variant of orthogonal initialisation
as proposed by Ng et al. [9] for spectral graph partitioning. This operates using a
“farthest-first” strategy as follows. The first cluster centroid is chosen to be the



mean vector of the rows in Zt. We then repeatedly select the next centroid to be
the row in Zt that is closest to being 90◦ from those that have been previously
selected. This process continues until kt centroids have been chosen.

For each time step t > 1, we initialise using clusters from the previous time
step. A simple approach is to map the clusters generated on the embedding for
time t− 1 to Zt. However, as noted previously, not all features and objects will
persist between time steps. To produce an initial clustering at time t, we identify
the intersection of the sets of nodes present in the graphs Gt−1 and Gt. The
clusters containing these are mapped to the embedding Zt, and we compute
the resulting centroids. If less than kt centroids are produced, the remaining
centroids are chosen from the rows of Zt using orthogonal selection as above.
We can then predict memberships for each unassigned row zi of Zt, using a
simple nearest centroid classifier to maximise the similarity:

max
C∈Ct

z
T

i µc (2)

where µc is the centroid of cluster Cc. This classification procedure yields a
predicted clustering for rows in Zt (i.e. a co-clustering of all objects and features
present at time t), which we denote Pt.

Cluster assignment. To recover a clustering from Zt, we apply a constrained
version of k-means clustering to the rows of the embedding, which takes into ac-
count both the internal quality of the current partition, and agreement with the
predicted partition Pt. We distinguish the latter from the membership preserva-
tion objective described in [6] – here we use predicted memberships for missing
objects and features missing from the previous step.

As a measure of current cluster quality, we use vector-centroid similarities
as in Eqn. 2. Historical quality is calculated based on the quantity pred(Pt, Ct),
which denotes the degree to which the predicted cluster assignments in Pt agree
with those in the current clustering Ct. To quantify this agreement, we use a
variant of pairwise prediction strength [10]:

pred(Pt, Ct) =
∑

C∈Ct

1
|C| (|C| − 1)

∑
(zi,zj)∈C

co(zi, zj) (3)

where co(zi, zj) = 1 if both rows were predicted to be coassigned in Pt, or
c(zi, zj) = 0 otherwise.

To combine both sources of information, the clustering objective then be-
comes a weighted combination of two objectives:

J(Ct) = (1− α) ·

(
k∑

c=1

∑
zi∈Cc

z
T

i µc

)
+ α · (pred(Pt, Ct)) (4)

This type of aggregation approach has been widely used for combining sources of
information, such as in dynamic clustering [3] and semi-supervised learning [11].



1. Build spectral embedding

– Construct the normalised feature-object matrix Ât = D1
− 1

2 AD2
− 1

2 .
– Compute Zt from the truncated SVD of Ât according to Eqn. 1.
– Normalise the rows of Zt to unit length.

2. Initialisation and prediction
– If t = 1, apply orthogonal initialisation to select a set of kt representative

centroids from the representations of the objects in the embedded space.
– For t > 1, recompute the kt−1 centroids based on last clustering but in-

cluding only the embedding of the relevant set of objects/features in the
current space.

– If not all rows of the embedding have been assigned, apply nearest centroid
classification to compute the predicted clustering Pt.

3. Compute clustering
– Apply constrained k-means to rows in Zt, initialised by centroids from Pt.

Fig. 2. Dynamic spectral co-clustering process, as applied for each time step t.

The parameter α ∈ [0, 1] controls the balance between the influence of historical
information and the information present in the current spectral embedding. A
higher value of α allows information from the previous time step to have a greater
influence, yielding a smoother transition between clusterings at successive time
steps. Naturally at time t = 1, the right-hand term in Eqn. 4 will be zero.

Eqn. 4 can be viewed as the standard spherical k-means objective [12], aug-
mented by a constraint reward term. We can find a local solution for this problem
by using an approach analogous to the semi-supervised PCKMeans algorithm
proposed by Basu et al. [11] for clustering with pairwise constraints. Specifically,
we apply an iterative k-means-like assignment process, re-assigning each row
vector zi from Zt to maximise:

max
C∈Ct

(1− α) · z
T

i µc + α · pred(zi, C) (5)

where the quantity pred(zi, C) represents the degree to which the predicted
assignment for the row zi in Pt agrees with the assignment of zi to cluster C.
This is given by the proportion of rows in C that were co-assigned with zi in Pt:

pred(zi, C) =
1

|C| (|C| − 1)

∑
(zi,zj)∈C

co(zi, zj) (6)

Once the algorithm has converged to a local solution, Ct provides us with a k-way
partitioning of all nodes in the graph Gt (i.e. features and objects). An overview
of the complete co-clustering process is shown in Figure 2.

3.3 Tracking Clusters Over Time

In the previous section we proposed an approach for co-clustering individual time
step graphs. The second aspect of the offline approach to dynamic clustering



involves identifying dynamic clusters composed from clusters associated across
time steps. We suggest that previous frameworks for tracking evolving dynamic
communities [2, 13] can be readily adapted to the dynamic bipartite case. In brief,
we construct a set of dynamic cluster timelines, each consisting of a set of clusters
identified at different time steps and ordered by time. At each step in the dynamic
co-clustering process, we match the predicted clusters (corresponding to clusters
from the previous time step) with the actual output of the co-clustering process
outlined in Figure 2. Matches are made based on the step cluster memberships
for subsets of objects and/or features persisting between pairs of consecutive
steps. This matching process will result in a set of dynamic clusters persisting
across multiple steps.

4 Evaluation

4.1 Benchmark Evaluation

To evaluate the performance of the algorithm proposed in Section 3.2, we re-
quired an annotated dataset with temporal information. For this purpose we
consider the bipartite document clustering problem, and use a subset of the
widely-used Reuters RCV1 corpus [14]. The RCV1-5topic dataset1 consists of
10,116 news articles covering a seven month period. Each article is annotated
with a single ground truth topical label: health, religion, science, sport, weather.
These topics are present across the entire time period of the corpus. We consid-
ered a number of different time step durations to split the seven month period
– one month, a fortnight, and one week – yielding 7, 14, and 28 step graphs
respectively. Naturally for this type of data, a subset of features (terms) will
persist across time, while objects (documents) appear in only one time step.

Our evaluations focused on the performance of the dynamic spectral co-
clustering algorithm on each time step graph in the RCV1-5topic dataset, using a
range of values α ∈ [0.1, 0.5] for the balance parameter. As a baseline competitor,
we used multi-partition spectral co-clustering as proposed by Dhillon [1]. To
provide a fair comparison, we use orthogonal initialisation for both algorithms,
and set the number of clusters kt at time t to the number of ground truth topics.

Temporal smoothness. One of the primary motivations for dynamic co-
clustering is to increase smoothness in the transitions between time step clus-
terings. To quantify the degree to which the proposed algorithm can enforce
temporal smoothness, we measure the agreement between successive clusterings
in terms of their normalised mutual information (NMI) [15]. Note that NMI
values were calculated only over the terms common to each pair of consecutive
time steps – documents are not considered as they do not persist.

Figure 3 shows a comparison of agreement values for the three different time
window sizes. Dynamic co-clustering leads to a higher level of agreement than

1 Datasets for this paper are available at http://mlg.ucd.ie/datasets/dynak.html



standard spectral co-clustering for all three time window sizes. The effect be-
comes significantly more pronounced as α increases. This is to be expected, as
increasing the parameter leads to a higher weighting for the historic information
in Eqn. 4. For α ≥ 0.5, the resulting co-clusterings are often almost identical to
the predicted co-clustering Pt, with the constrained k-means process converging
to a solution after 2-5 iterations.

Clustering accuracy. To quantify algorithm accuracy, we calculated the NMI
between clusterings and the relevant annotated document label information for
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Fig. 3. Comparison of agreement (in terms of NMI) between successive feature clus-
terings, generated by spectral co-clustering and dynamic co-clustering (α ∈ [0.1, 0.5]),
on the RCV1-5topic dataset for monthly, fortnightly, and weekly time steps.



each time step. Figure 4 illustrates a comparison of the accuracy achieved by
traditional spectral co-clustering and dynamic co-clustering on the RCV1-5topic
dataset for the three different time step sizes. We observed that, for monthly
and fortnightly time steps, the accuracy achieved by dynamic co-clustering was
not significantly higher. However, for the weekly case, there was a noticeable
increase in accuracy. In the case of α = 0.5, dynamic co-clustering lead to higher
accuracy on 21 out of 28 of the weekly graphs.

These results could appear surprising given the increases in temporal smooth-
ness demonstrated Figure 3. However, on closer inspection, it is apparent that
there is a strong concept drift effect in the data, as the composition of topics
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Fig. 4. Comparison of accuracy (in terms of NMI) for document clusterings generated
by spectral co-clustering and dynamic co-clustering (α ∈ [0.1, 0.5]), on the RCV1-5topic
dataset for monthly, fortnightly, and weekly time steps.



changes over seven months. Therefore, for longer time periods, there is a greater
change in the clusters identified in successive time periods. In such cases we ex-
pect historic information to be less useful. For the shorter weekly time windows,
where there is less scope for drift between steps, we expect the use of historic
information to improve accuracy. These results highlight the importance of se-
lecting an appropriate time step size for offline dynamic clustering.

4.2 Evaluation on Web 2.0 Data

For the second phase of our evaluation, we applied the proposed co-clustering al-
gorithm to a Web 2.0 data exploration problem. Unlike the RCV1 data, subsets
of both objects (bookmarks) and features (tags) persist over time. We use a sub-
set of the most recent data from a collection harvested by Görlitz et al. [16] from
the Del.icio.us web bookmarking portal. The subset covers the 2000 top tags
and 5000 top bookmarks across an eleven month period from January-November
2006. We divided this period into 44 weekly time steps, and for each time step
we constructed a bipartite graph – the nodes represent tags and bookmarks,
and the edges between them denote the number of times each bookmark was
assigned a given tag during the time step. On average, each graph contained
approximately 3750 bookmarks and 1760 tags. For each time step, we applied
dynamic co-clustering for kt = 20 to identify high-level topical clusters.

Figure 5 illustrates the agreement between both tag and bookmark clus-
terings identified by dynamic co-clustering for a balance parameter range α ∈
[0.1, 0.5]. As with the RCV1-topic data, an increase in the value of α leads to clus-
ters that are considerably more similar to those produced in the previous step,
yielding smoother transitions between both feature and object clusters across
time. In the extreme case of α = 0.5, there is effectively no change between the
predicted memberships and the final output of the co-clustering algorithm.

A number of authors (e.g. [17]) have suggested analysing the stability or
“loyalty” of object member-cluster memberships across time. In the bipartite
case, we can quantify this for both objects and features – we suggest the latter can
be used to generate meaningful labels for dynamic clusters. For the tagged data,
we score the fraction of time steps at which a tag is assigned to a given dynamic
cluster. Over a sufficiently large number of steps, for each dynamic cluster we can
produce a robust ranking of tags based on their respective membership stability
scores. Examining the range of α parameters, we found the trade-off afforded
by α = 0.1 lead to the most interpretable label sets. In Table 1 we show the
resulting descriptive labels selected for the dynamic clusters that exhibited the
highest average tag membership stability, together with a suggested topic based
on the tags. These descriptions highlight a range of general areas of interest
covering sites frequently bookmarked by users during 2006.

5 Conclusion

In this work, we have described a spectral co-clustering algorithm for simul-
taneously clustering both objects and features in dynamic feature-based data,



0.5

0.6

0.7

0.8

0.9

1.0

 4  8  12  16  20  24  28  32  36  40  44

A
gr

ee
m

en
t (

N
M

I)

Time Step - Week

Dynamic (0.1)
Dynamic (0.3)
Dynamic (0.5)

(a) Object (Bookmark) Clustering Agreement

0.5

0.6

0.7

0.8

0.9

1.0

 4  8  12  16  20  24  28  32  36  40  44

A
gr

ee
m

en
t (

N
M

I)

Time Step - Week

Dynamic (0.1)
Dynamic (0.3)
Dynamic (0.5)

(b) Feature (Tag) Clustering Agreement

Fig. 5. Agreement between successive object and feature clusterings, identified by dy-
namic co-clustering (α ∈ [0.1, 0.5]), on the Del.icio.us dataset across 44 weeks.

Topic Top 10 Tags

IT shortcuts, tweaks, opensource, security, troubleshooting, system,
livecd, keyboard, sysadmin, ssh

Education academic, school, mathematics, education, spanish, grammar,
elearning, learning, math, slang

Music & Video podcasts, mp3blog, youtube, television, movie, bittorrent, divx,
torrent, p2p, npr

News & Media newspapers, culture, opinion, society, iraq, news, journalism, envi-
ronment, activism, political

Web Browsing explorer, thunderbird, browser, opera, firefox, extensions, mozilla,
greasemonkey, computing, plugin

Table 1. Top 10 tags for 5 most stable clusters (in terms of tag memberships over
time) identified on the Del.icio.us dataset by dynamic co-clustering (α = 0.1).

represented as a sequence of bipartite graphs. The co-clustering algorithm in-
corporates both current and historic information into the clustering process. A
key aspect of the approach is that it is applicable in domains where objects or



features alone persist across time steps. In applications on both dynamic text
and bookmark tagging data, the proposed approach was successful in identifying
coherent clusters, while also ensuring a consistent transition between clusterings
in successive time steps.
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