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Foreword

Modeling and analyzing networks is a major emerging topic in different research
areas, such as computational biology, social science, document retrieval, etc. By
connecting objects, it is possible to obtain an intuitive and global view of the
relationships between components of a complex system.

Nowadays, the scientific communities have access to huge volumes of network-
structured data, such as social networks, gene/proteins/metabolic networks, sen-
sor networks, peer-to-peer networks. Most often, these data are not only static,
but they are collected at different time points. This dynamic view of the system
allows the time component to play a key role in the comprehension of the evo-
lutionary behavior of the network (evolution of the network structure and/or of
flows within the system). Time can help to determine the real causal relation-
ships within, for instance, gene activations, link creation, information flow.

Handling such data is a major challenge for current research in machine
learning and data mining, and it has led to the development of recent innovative
techniques that consider complex/multi-level networks, time-evolving graphs,
heterogeneous information (nodes and links), and requires scalable algorithms
that are able to manage huge and complex networks.

DyNaK workshop is motivated by the interest of providing a meeting point
for scientists with different backgrounds that are interested in the study of large
complex networks and the dynamic aspects of such networks. It includes con-
tributions from both aspects of networks analysis: large real network analysis
and modelling, and knowledge discovery within those networks. Even though
each type of real complex networks has some peculiarities related to its specific
domain, many aspects of the modeling and mining techniques for such networks
are shareable. For instance, gene networks and social networks share a common
architecture (scale-free), and involve similar data mining and machine learning
methods: module/community extraction, hub single-out, information-flow anal-
ysis, missing link detection and link prediction.

DyNaK also host a special session on Sentiment Analysis and Opinion Min-
ing. Every day, millions of people write their opinions about any issue in social
media, such as social news sites, review sites, and blogs. The distillation of knowl-
edge from this huge amount of unstructured information is a challenging task.
Sentiment Analysis and Opinion Mining are two areas related to Natural Lan-
guage Processing and Text Mining that deal with the identification of opinions
and attitudes in natural language texts. The Opinion Mining session of Dy-
NaK includes results from academics and practitioners in the task of extracting
knowledge from user generated contents.

We received 18 submissions: 7 were accepted as long presentations, and 2
as short presentations. In addition to the technical papers, the program also in-
cludes three invited talks by Tanya Berger-Wolf (University of Illinois, USA), Ste-
fan Kramer (Technische Universität München, Germany) and Carlos Rodrìguez
(Research Center, Barcelona-Media, Spain), and an industrial keynote by Enrico
Bucci (BioDigitalValley Srl, Italy).
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Finding structure in dynamic networks (and
what it means for zebras)

Tanya Berger-Wolf

University of Illinois, USA

Abstract

Social creatures interact in diverse ways: forming groups, mating, sending emails,
and sharing ideas. Some of the interactions are accidental while others are a
consequence of the underlying explicit or implicit social structures. One of the
most important questions in sociology is the identification of such structures,
which are variously viewed as communities, hierarchies, or “social profiles”.

In analyzing social networks, one property has largely been ignored until re-
cently: interactions and their nature change over time. The notion of “structure”
is intricately linked with the dynamics of social interactions. On one hand, it is in
longitudinal data that the emergence of structures and the laws governing their
development can be observed and inferred. On the other hand, the existence of
such structures that constrain social interactions is what allows us to predict the
behavior and nature of dynamic networks. The necessity to delve into the dy-
namic aspects of networking behavior may be clear, yet it would not be feasible
without the data to support such explicitly dynamic analysis. Rapidly grow-
ing electronic networks, such as emails, the Web, blogs, and friendship sites, as
well as mobile sensor networks on cars, humans, and animals, provide an abun-
dance of dynamic social network data that for the first time allow the temporal
component to be explicitly addressed in network analysis.

I will present several examples of computational approaches we have de-
veloped to infer structure in dynamic networks and show applications of this
analysis to population biology, from humans to zebras.
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Learning Real-Time Automata from
Multi-Attribute Event Logs

Stefan Kramer

Technische Universität München, Germany

Abstract

Network structures often arise as descriptions of complex temporal phenomena in
science and industry. Popular representation formalisms include Petri nets and
(timed) automata. In process mining, the induction of Petri net models from
event logs has been studied extensively. Less attention, however, has been paid
to the induction of (timed) automata outside the field of grammatical inference.
In the talk, I will present work on the induction of timed automata and show how
they can be learned from multi-attribute event logs. I will present the learning
method in some detail and give examples of network inference from synthetic,
medical and biological data.
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Protein-centered biological networks by
automatic caption analysis

Enrico M. Bucci

BioDigitalValley Srl, Italy

Abstract

In former years, a lot of attention has been paid to the retrieval of meaningful
biological information connecting proteins and genes, i.e. relationships between
different players in the cascade of molecular events regulating the physiology and
pathology of cells, tissues and eventually organisms. The main goal is to develop
genes/proteins connection models able to explain complex biological phenomena
in terms of emerging properties of large, structured networks, whose topology
and detailed structure account at least in part for these properties. This implies
the use of experimental methods able to collect information on a large number
of different proteins under different conditions, and then properly connecting
the data to the results obtained all over the world, so to get a coherent picture
in a larger frame. In particular, to encompass a larger body of information and
to figure out how some experimental study fits to the accumulated knowledge,
methods are required to retrieve the available data on all proteins involved in
the study (the target proteins), as well as on all proteins, which are connected
by some piece of information to the targets. To this aim, a method consists
in parsing automatically the scientific literature, retrieving co-occurring names
of proteins, genes or other kinds of molecules and attempting to identify some
terms which qualifies the relationship between the identified proteins. This task
is a non trivial one, giving the ambiguity in gene/protein nomenclature (which
affects both precision and recall of the relevant data), and the strong dependence
of the type of relationship on the context at multiple levels. Most of the available
methods parse only the abstracts of the scientific literature; however, the infor-
mation contained in the abstracts is often incomplete, due to the fact that only
those genes/proteins which are in the main scope of the paper are discussed,
while often data on a number of other proteins are contained elsewhere.

In an attempt to overcome these limitations, we focussed on the analysis
of the figure captions contained in the scientific literature. The captions of a
paper refer in most cases to the experiments described in the paper, and thus
contain an enriched amounts of data describing the biology of different pro-
teins, including the relationship between them. Moreover, since terms referring
to gene/proteins and other terms related to experimental methodologies are si-
multaneously present in a reduced textual space, it is possible to identify groups
of proteins studied with a certain experimental technique; by properly filtering
for a specific technique, is possible to characterize the type of relationship be-
tween the proteins. For example, proteins co-occurring in a caption describing
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a double-hybrid experiment are most likely binding partners, while proteins co-
occurring in a caption describing a 2D-gel experiments are probably co-expressed
in a given condition/biological sample.

We thus developed Protein Quest, a tool which automatically and efficiently
parse both the abstract and the captions of scientific paper in a pdf document.
Results obtained from more than 2.000.000 free, full-text papers will be dis-
cussed, with reference to the topological characterization of the obtained cooc-
currence networks and to the dependence of their topology from different query
strategies; moreover, some specific, disease-oriented networks and predictions
will be presented.
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Discovering Inter-Dimensional Rules in Dynamic
Graphs

Kim-Ngan T. Nguyen1, Löıc Cerf1, Marc Plantevit2, and Jean-François
Boulicaut1

1 Université de Lyon, CNRS, INRIA
INSA-Lyon, LIRIS Combining, UMR5205, F-69621, France

2 Université de Lyon, CNRS, INRIA
Université Lyon 1, LIRIS Combining, UMR5205, F-69622, France

Abstract. Data mining methods that exploit graph/network have be-
come quite popular and a timely challenge is to consider the discovery
of dynamic properties in evolving graphs or networks. In this paper, we
consider the dynamic oriented graphs that can be encoded as n-ary rela-
tions with n ≥ 3 such that we have a least 3 dimensions: the dimensions
of departure (tail) and arrival (head) vertices plus the time dimension. In
other terms, it encodes the sequence of adjacency matrices of the graph.
In such datasets, we propose a new semantics for inter-dimensional rules
in dynamic graphs. We define rules that may involve subsets of any di-
mensions in their antecedents and their consequents and we propose the
new objective interestingness measure called the exclusive confidence. We
introduce a first algorithm for computing such inter-dimensional rules
and we illustrate the added-value of exclusive confidence for supporting
the discovery of relevant rules from a real-life dynamic graph.

1 Introduction

Graph mining is a popular topic. Many researchers have considered pattern dis-
covery from large collections of graphs while others focus the analysis of one large
graph or network. In the latter case, we observe two complementary directions of
research. On one hand, global properties of graphs are studied (e. g., power-law
distribution of node degrees or diameters). On the other hand, it is possible to
use data mining algorithms to identify local patterns in the graphs (e. g., fre-
quent subgraphs, clique patterns). Such local techniques can indeed benefit from
the huge research effort on 0/1 data analysis, i. e., a graphs is seen as particular
0/1 table (the two involved domains being identical): its adjacency matrix.

In this paper, we investigate local pattern discovery from dynamic directed
graphs, i. e., from of collection of static directed graphs that all share the same
set of uniquely identified vertices. For instance, Fig. 1 depicts a dynamic di-
rected graph involving four nodes. Four snapshots of this graph are available.
The dynamic graph can be represented as the sequence of its adjacency matri-
ces underneath. It describes the relationship between the tail vertices in D1 =
{d1, d2, d3, d4} and the head vertices in D2 = {a1, a2, a3, a4} at the timestamps
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in D3 = {t1, t2, t3, t4}. Every ’1’, in the adjacency matrices is at the intersection
of three elements (di, aj , tk) ∈ D1×D2×D3, which indicate a directed edge from
di to aj at time tk. Therefore at least three dimensions are necessary to encode
a dynamic graph, which can be seen as a ternary relation (the one depicted in
Fig. 1 is called RE). However, more dimensions may be used, for instance to
encode information on edges and/or time aspects with different granularity.
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1
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4

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4

d1 1 1 1 1 1 1 1 1 1
d2 1 1 1 1 1 1 1 1 1 1
d3 1 1 1 1 1 1 1 1 1 1
d4 1 1 1 1 1 1 1 1

t1 t2 t3 t4

Fig. 1: The dynamic graph RE ⊆ {d1, d2, d3, d4}×{a1, a2, a3, a4}×{t1, t2, t3, t4}.

Studying descriptive rule mining from dynamic graphs is a rather new re-
search topic and most of previous work impose severe restrictions on the form of
the rules. The key contribution of this paper is the proposal of a quite general
form of rules. These rules may involve any subset of dimensions in both the
left-hand side and the right-hand side. In particular, the temporal dimensions
can either explicitly appear in the rules or be used to measure the importance
of the rules (i. e., the number of timestamps where the rule holds). Taking into
account these different ways is complementary. It provides relevant patterns de-
scribing the evolution of a dynamic graph at a local level. Two examples of
inter-dimensional rules that we want to extract are given in Fig. 2. Fig. 2a de-
picts a rule that is preserved at several timestamps. It intuitively means that if,
at a time, the edges from vertices 2, 3 and 4 have the same heads then these
heads are exclusively vertex 3. Rule in Fig. 2b means that if there are pairs of
edges whose tails are nodes 3 and 4 and whose heads are the same vertex then it
mainly occurs at times t2 and t3. To express the a priori relevancy of such rule,
we use a straightforward extension of the classical frequency measure and an
original extension of the confidence measure, the so-called exclusive confidence.
The second contribution of this paper deals with the design of an algorithm that
computes the a priori interesting rules. It exploits the principles (typically the
enumeration strategy) of [7], i. e., the state-of-the-art algorithm for exploring the
search space of multi-dimensional associations.

In Sect. 2, we provide the needed definitions to build the new pattern domain
of inter-dimensional rules. Then, in Sect. 3, we define such rules and the exclusive
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{d2, d3, d4} → {a3}

(a)

3

4

{t
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{d3, d4} → {t2, t3}

(b)

Fig. 2: Example of rules.

confidence semantics. Sect. 4 introduces the first algorithm that computes a
priori interesting rules from a dynamic graph. Sect. 5 deals with the empirical
validation and various experiments on a real-life dynamic graph. Sect. 6 discusses
related work and, finally, Sect. 7 briefly concludes.

2 Preliminary Definitions

Given n finite domains D = {D1, . . . ,Dn} and an n-ary relation R ⊆ ×i=1..nDi,
the patterns of interest only involve some of the domains D′ ⊆ D. E. g., the ana-
lyst may want to focus on subgraph patterns (D′ = {D1,D2} in RE). She may,
instead, want to discover pattern involving temporal dimensions. Without loss of
generality, the dimensions are assumed ordered such that D′ = {D1, . . . ,D|D′|}.
We now formally define an association on D′.

Definition 1 (Association). ∀D′ = {D1, . . . ,D|D′|} ⊆ D, ×i=1..|D′|Xi is an
association on D′ iff ∀i = 1..|D′|, Xi 6= ∅ ∧Xi ⊆ Di.

×Di∈D\D′Di is called support domain. The support of an association generalizes
that of an itemset in a binary relation (n = 2 and |D′| = 1) [1]. Its formal
definition uses the concatenation operator, denoted ’·’. E. g., (d2, a3) · (t1) =
(d2, a3, t1).

Definition 2 (Support s). ∀D′ ⊆ D, let X an association on D′. Its support,
denoted s(X), is s(X) = {u ∈ ×Di∈D\D′Di | ∀x ∈ X, x · u ∈ R}.

The following definitions will ease the exposition of this paper.

Definition 3 (Projection π). ∀D′ = {D1, . . . ,D|D′|} ⊆ D, let X = X1×· · ·×
X |D′| an association on D′. ∀Di ∈ D, πDi(X) is Xi if Di ∈ D′, ∅ otherwise.

Definition 4 (Union ⊔). ∀DX ⊆ D and ∀DY ⊆ D, let X an association on
DX and Y an association on DY . X ⊔ Y is the association on DX ∪ DY for
which ∀Di ∈ D, πDi(X ⊔ Y ) = πDi(X) ∪ πDi(Y ).

Definition 5 (Complement \). ∀DX ⊆ D and ∀DY ⊆ D, let X an associa-
tion on DX and Y an association on DY . Y \ X is the association on {Di ∈
DY | πDi(Y ) 6⊆ πDi(X)} for which ∀Di ∈ D, πDi(Y \X) = πDi(Y ) \ πDi(X).

In RE , depicted in Fig. 1, {d1, d2} × {a1, a2} is an association on {D1,D2},
whereas {a1, a2} is not because πD1({a1, a2}) = ∅. It is an association on {D2}.
Their respective supports are s({d1, d2} × {a1, a2}) = {t1, t2} and s({a1, a2}) =
{(d1, t1), (d1, t2), (d1, t3), (d2, t1), (d2, t2), (d3, t1), (d4, t4)}.
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3 Inter-Dimensional Rules in Dynamic Graph

Given a dynamic graph, encoded as an n-ary relationR on D, the analyst chooses
the domains DX ⊆ D and DY ⊆ D at, respectively, the left-hand side and the
right-hand side of the rules to discover. E. g., to list rules involving tail vertices
at their antecedents and timestamps at their consequents, DX only contains one
dimension of the relation (the tail vertices) and so does DY (the timestamps).
Notice that DX ∩DY must be empty. An inter-dimensional rule on (DX ,DY ) is
a couple of associations3. The first one on DX , the second one on DY .

Definition 6 (Inter-dimensional rule). ∀DX ⊆ D, ∀DY ⊆ D, X → Y is
an inter-dimensional rule on (DX ,DY ) iff X is an association on DX , Y is an
association on DY and DX ∩ DY = ∅.

In RE , {d3} → {a3, a4} is an inter-dimensional rule on ({D1}, {D2}). The
rule {d3}×{a3, a4} → {d4} is not an inter-dimensional rule because elements in
D1 appear both at its left-hand side and at its right-hand side.

A rule is frequent if many “objects” verifies it. These objects are elements
of a support domain for the rule, which is, in fact, ×Di∈D\(DX∪DY )D

i, i. e., that
of the association (on DX ∪ DY ) union of its antecedent and its consequent.
The rule can be trusted, i. e., has a large enough confidence, if there is a high
conditional probability to observe the consequent when the antecedent holds. In
the context of inter-dimensional rules in dynamic graphs, a natural definition of
the frequency exists. On the contrary, it is hard to define a confidence measure.

The (relative) frequency of an inter-dimensional rule in a dynamic graph is,
in the support domain, the proportion of elements in the support of the union
of its antecedent and its consequent.

Definition 7 (Frequency). ∀DX ⊆ D, ∀DY ⊆ D, the frequency of an inter-
dimensional rule X → Y on (DX ,DY ) is f(X → Y ) = |s(X⊔Y )|

|×Di∈D\(DX∪DY )D
i| .

In RE , recursively applying Definitions 7, 4 and 2 gives f({d3} → {a3, a4}) =
|s({d3}×{a3,a4})|

|D3| = |{t2,t3,t4}|
|{t1,t2,t3,t4}| = 3

4 .

Is it sensible to directly generalize the confidence measure of association
rules in binary relations to n-ary relations? Doing so, the confidence of a rule
X → Y would be |s(X⊔Y )|

|s(X)| . Unfortunately, this semantics is not satisfactory.
Indeed, s(X ⊔ Y ) and s(X) are disjoint sets and the ratio of their cardinal-
ities does not make any sense. For instance, in RE , consider the rule {d3} →
{a3, a4}. We have s({d3}×{a3, a4}) = {t2, t3, t4} (i. e., a set of timestamps) while
s({d3}) = {(a1, t1), (a2, t1), (a3, t1), (a3, t2), . . . } (i. e., a set of couples (head
vertices,timestamps)). However, it is possible to introduce a factor such that
|s(X)| and |s(X ⊔ Y )| become comparable. The idea is to multiply |s(X ⊔ Y )|
by the cardinalities of its projections in the domains in DY .

3 The term “inter-dimensional association rule” often means, in the literature, a rule
with one element per dimension. Our definition is more general.
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Definition 8 (Confidence). ∀DX ⊆ D, ∀DY ⊆ D, the (exclusive) confi-
dence of an inter-dimensional rule X → Y on (DX ,DY ) is c(X → Y ) =
|s(X⊔Y )|×|×Di∈DY

πDi (Y )|
|s(X)| .

Roughly speaking, the remedial factor, applied to |s(X⊔Y )|, allows to count the
elements in s(X⊔Y ) “in the same way at the numerator and at the denominator
of the fraction”. For example, consider the rule {d3} → {a3, a4} in RE , its
exclusive confidence is c({d3} → {a3, a4}) = |s({d3}×{a3,a4})|×|{a3,a4}|

|s({d3})| = 6
10 .

Fig. 3 depicts, at every timestamp, the dynamic graph in Fig. 1 but it only
keeps the ten edges with the vertex 3 as a tail. This number, “10”, is found at
the denominator of the fraction to compute the confidence. At its numerator,
“6” actually is the count of those, among these 10 edges, that go to the vertices
3 and 4 at the same timestamp. They are thick in Fig. 3. At time t1, there is an
edge from d3 to a3 but there is no edge from d3 to a4 at this time. This “lowers”
the confidence of the rule because a4 is at its consequent too. At time t4, there is
an edge from d3 to a2. This also “lowers” the confidence in the fact that if d3 is
the tail of an edge then its head is either a3 or a4 (and not another vertex). That
is why, this semantics of the confidence is said “exclusive”. If c({d3} → {a3, a4})
was 1, i. e., the maximal possible value, then, in every snapshot of the graph
where the vertex 3 has a non-null output degree, it would always have two
outgoing edges that would bind it with the vertex 3 and 4. Any other edge, with
the vertex 3 as its tail, “lowers” the confidence.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

t1 t2 t3 t4

Fig. 3: Computing the confidence of {d3} → {a3, a4}.

Notice that the same speech applies to inter-dimensional rules involving the
temporal dimension. E. g., Fig. 3 could illustrate, as is, the computation of
c({d3} → {t2, t3, t4}), hence the same result 6

10 . This time however, the tick
edges must be understood as those shared by the snapshots of the dynamic
graph at t2, t3 and t4 (“edgewise and” operation between the three graphs).

4 Computing Rules

Given an n-ary relation R ⊆ ×Di∈DDi and the parameters (DX ,DY ) (subsets of
D and such that DX ∩DY = ∅), µ ∈ [0, 1] and β ∈ [0, 1], the a priori interesting
inter-dimensional rules X → Y are such that (i) X is an association on DX , (ii)
Y is an association on DY , (iii) f(X → Y ) ≥ µ and (iv) c(X → Y ) ≥ β.

Our method, namely Gear, first rewrites the relation by combining the
components which are neither in DX nor in DY . In other terms, it builds the
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support domain Dsupp = ×Di∈D\(DX∪DY )D
i. The resulting relation, RA is de-

fined on the dimensions DA = DX ∪ DY ∪ {Dsupport}. Then, Gear extracts,
in RA, every association A on DX ∪ DY satisfying |s(A)|

|Dsupp| ≥ µ. It entails that
⊔Di∈DX

πDi(A) → ⊔Di∈DY
πDi(A) is a frequent inter-dimensional rule (and re-

ciprocally, hence the completeness). Its exclusive confidence is finally computed.
If it exceeds β, the rule is output.

The actual extraction of every frequent association A (associated with its
support Asupp ⊆ Dsupp), in RA, is now briefly detailed. A constraint-based ap-
proach is adopted, i. e., the problem is rewritten in terms of constraints and
the patterns satisfying them all are the frequent associations. Here are the con-
straints:

– Con-(DX∪DY )(A ⊔Asupp) ≡ ∀Di ∈ DX ∪ DY , πDi(A) 6= ∅;
– Cconnected(A ⊔Asupp) ≡ A ⊔Asupp ⊆ RA;
– Centire-supp(A ⊔Asupp) ≡ Asupp = s(A);
– C⌈µ×|Dsupp|⌉-freq(A ⊔Asupp) ≡ |Asupp| ≥ ⌈µ× |Dsupp|⌉.

Thanks to the last constraint, the frequency of the rule ⊔Di∈DX
πDi(A) →

⊔Di∈DY
πDi(A) must reach or exceed µ. Indeed, |s(A)|

|Dsupp| ≥ µ is equivalent to
|s(A)| ≥ ⌈µ×|Dsupp|⌉ and, because the third constraint (Asupp = s(A)) must be
satisfied as well, it is equivalent to |Asupp| ≥ ⌈µ×|Dsupp|⌉. The third constraint,
Centire-supp, forces a “closed” support. Indeed, by definition of the support (Def-
inition 2), adding an element to Asupp (= s(A)) necessarily violates Cconnected.
Thus, Centire-supp(A ⊔Asupp) is equivalent to ∀t ∈ Dsupp \Asupp, A ⊔ {t} 6⊆ RA.

The algorithm traverses the search space by recursively partitioning it into
two complementary parts (“divide and conquer”). In this way, a binary tree rep-
resents the performed enumeration. At every node of this tree, two associations,
namely U and V , are updated. U is the smallest association that may be dis-
covered in the enumeration sub-tree rooted by the node, whereas U ⊔ V is the
largest. That is why Gear is initially called with U = ∅ and V = ×Di∈DA

Di.
At every non-terminal node, an element e is chosen in ∪Di∈DA

πDi(V ). In the
enumeration sub-tree that derives from the first child, e is present in every U
association (i. e., e is “moved” from V to U). In the enumeration sub-tree that
derives from the second child, e is absent from every U association (i. e., e is “re-
moved” from V ). There are two reasons for an enumeration node to be a leaf of
the enumeration tree. The first reason is that at least one of the four constraints
is guaranteed to be violated by every U association in the sub-tree that would
derive from the node. It happens when:

– ∃Di ∈ DX ∪ DY such that πDi(U ⊔ V ) = ∅ (Con-(DX∪DY ) is violated);
– ∀Di ∈ DA, πDi(U) 6= ∅ ∧ U 6⊆ RA (Cconnected is violated);
– ∃t ∈ Dsupp \πDsupp(U ⊔V ) such that

(
(U ⊔V ) \πDsupp(U ⊔V )

)
⊔{t} ⊆ RA

(Centire-supp is violated);
– |πDsupp(U ⊔ V )| < ⌈µ× |Dsupp|⌉ (C⌈µ×|Dsupp|⌉-freq is violated).

The proofs of these pruning properties are based on generalizations of mono-
tone or anti-monotone properties that the four constraints have. The constraint

10



Cconnected is monotone, i. e., if an association X violates the constraints then
every larger association violates it as well. Since U is the smallest association in
the sub-tree, ¬Cconnected(U) is a safe pruning criterion. Dually, the three other
constraints are anti-monotone, i. e., if an association X violates one of them then
every smaller association violates it as well. That is why, to potentially prune the
sub-tree rooted by the current enumeration node, their variables are replaced by
the largest association in it: U ⊔ V . The second reason for an enumeration node
to be a leaf is the actual discovery of a frequent association U . It happens when
there is no more element to enumerate, i. e., when V = ∅.

An improved enumeration strategy avoids the generation of the nodes that
violate Cconnected. To do so, in every first child (where an element e is “moved”
to U), every element in ∪Di∈DA

πDi(V ) that would violate Cconnected if added
to U ⊔ {e} is “removed” from V . Algorithm 1 sums up the extraction of every
frequent inter-dimensional association rules with high enough confidences. Other
performance improvements (e. g., pertaining to the enforcement of Centire-supp)
were implemented. They actually are analog to what is done in [7] for the ex-
traction of closed patterns in n-ary relations. The Choose function is that of
[7] too. Another useful feature, inherited from [7], is the ability to addition-
ally and efficiently enforce any piecewise (anti)-monotone constraint the as-
sociations must satisfy. In some of the following experiments, the constraint
C(α1,...,α|DX∪DY |)-min-sizes (where (α1, . . . , α|DX∪DY |) ∈ N|DX∪DY |) will be used:

C(α1,...,α|DX∪DY |)-min-sizes(A ⊔Asupp) ≡ ∀Di ∈ DX ∪ DY , |πDi(A)| ≥ αi .

Algorithm 1: Algorithm Gear.
Input: (U, V )
Output: Every a priori interesting association rule involving every

element in ∪Di∈DX∪DY
πDi(U) and possibly some elements in

∪Di∈DX∪DY
πDi(V )

if Con-(DX∪DY )(U ⊔ V )∧ Centire-supp(U ⊔ V )∧ C⌈µ×|Dsupp|⌉-freq(U ⊔ V ) then
if V = ∅ then

if c(⊔Di∈DX
πDi(U) → ⊔Di∈DY

πDi(U)) ≥ β then
Output ⊔Di∈DX

πDi(U) → ⊔Di∈DY
πDi(U);

else
Choose e ∈ ∪Di∈DA

πDi(V );
Gear(U ⊔ {e},(V \ {e}) \ (f ∈
πDi(V ) | ¬Cconnected(U ⊔ {e} ⊔ {f}))Di∈DA

);
Gear(U , V \ {e});
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5 Experimental Study

Gear was implemented in C++ and compiled with GCC 4.2.4. This section
reports experiments, which were performed on a GNU/Linux

TM
system equipped

with an Intel R© Pentium R© 4 processor cadenced at 3 GHz and 1 GB of RAM.
Vélo’v is a bicycle rental service run by the urban community of Lyon,

France. 327 Vélo’v stations are spread over Lyon and its surrounding area. At
any of these stations, the users can take a bicycle and bring it to any other
station. Whenever a bicycle is rented or returned, this event is logged. Logs
represent more than 13.1 million rides along 30 months. This dataset is seen as
a dynamic directed graph evolving into two temporal dimension: the 7 days of
the week and the 24 one-hour periods in a day. A significant amount of bicycles
(local test inspired by the computation of a p-value), that are rented at the
(departure) station ds on day d (e. g., Monday) at hour h (e. g., from 1pm to
2pm) and returned at the (arrival) station as, translates to an edge from ds to
as in the graph timestamped with (d, h). In other terms, the (ds, as, d, h) in the
related relation RVélov’v ⊆ Departure × Arrival × Day × Hour. In the end,
this contains 117, 411 4-tuples, hence a 117,411

7×24×327×327 = 0.7% density.
We analyze the results of the experiments with regard to the following ques-

tions: (a) Do the discovered graph rules make sense? (b) How to handle time in
these rules? (c) What does the exclusive confidence definition capture?, and (d)
How does Gear behave with respect to the parameter settings?

We first searched for rules with time periods and departure stations (tail
vertices) at their antecedents; day information at their consequents. In this way,
stations that, at some time, “emit” bicycles towards many other stations, but
exclusively for some days, are discovered. With the minimum thresholds µ = 0.08
and β = 0.6, 35 rules are extracted. Fig. 4 reports three of them. The rule in
Fig. 4a means that most of the departures from Station 6002 and between 11am
and 12am occur on Sundays (c = 0.71). This makes sense: this station is at the
main entrance of the most popular park, where people like to ride on Sundays.
The rule in Fig. 4b means that there rarely are departures from Station 1002
between 1am and 3am except on Sundays (c = 0.62). This makes sense: this
station is located in a district with many pubs and the favored evenings to
party are on Saturdays. Furthermore the public transportation services stop at
midnight and the Vélo’v is a good alternative to come back home. The rule in
4c describes another known behavior. Many people living outside Lyon arrive
by train between 8am and 9am and use Vélo’v to finish their trips towards
their working place. Indeed, Station 3001 is at the train station inside the main
working district. This behavior is specific to the working days (c = 0.66).

To answer the question “which are the stations that often exchange bicy-
cles?”, we searched for rules whose antecedents are departure stations (i. e., tail
vertices) and consequents are arrival stations (i. e., head vertices). The support
domain of these rules are the Cartesian product of the seven days and the 24
hours. The constraint C2,2-min-sizes (see Sect. 4) is additionally enforced, i. e., ev-
ery rule must involve at least two departure stations and two arrival stations.
With µ = 0.03 and β = 0.8, Gear returns 27 rules. Fig. 5 reports some of them.
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6002
{Sun.}

11:0
0-1

2:00
am

{6002} × {11-12am} → {Sun.}
(s = 0.09, c = 0.71)

(a)

1002
{Sun.}

1:00
-3:0

0am

{1002} × {1-2am,2-3am} → {Sun.}
(s = 0.09, c = 0.62)

(b)

3001

Mon., Tue,

 Wed.,Thu., 

Fri.

8:0
0-9

:00
am

{3001} × {8-9am} → {working days}
(s = 0.13, c = 0.66)

(c)

Fig. 4: Example of rules of the form Departures × Hours → Days.

3088

10018

3088

10018

3002

3001

{10018, 3088} → {3002, 3001}
(s = 0.05, c = 0.86)

(a)

2008

7034

3001

7002

1002

2008

7034

3001

7002

{2008, 3001, 7002, 7034} → {1002, 2008}
(s = 0.04, c = 0.82)

(b)

Fig. 5: Example of rules of the form Departures → Arrivals.

Do some stations exchange many bicycles at favored hours every day? To
answer to this question, we search for rules whose antecedents consist of time
periods and departure stations (i. e., tail vertices); their consequents are arrival
stations (i. e., head vertices). To discover rules that hold every day, the minimal
frequency threshold is set to 1. With β = 0.8, Gear returns 40 rules which
contain at least one time period, two departure stations and two arrival stations.
These rules mean that there are some known time periods in which set of stations
maintain some privileged bicycle exchanges. Some of them are given in Fig. 6.
This kind of knowledge is valuable for the data owner. For instance, if there is no
available bicycle at a Vélo’v station then other Vélo’v stations that maintain
strong exchanges with it may be impacted as well.

1002

2026

1002

2026

4:00pm to 8:00pm 4:00pm to 8:00pm

{4-5pm, 5-6pm, 7-8pm} × {1002, 2026} → {1002, 2026}
(s = 1, c = 0.82)

(a)

3001

10048

3001

10048

5:00pm to 6:00pm 5:00pm to 6:00pm

{5-6pm} × {3001, 10048} → {3001, 10048}
(s = 1, c = 1)

(b)

Fig. 6: Example of rules of the form Hours × Departures → Arrivals.
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We now report a performance study of Gear discovering, in RVélo’v, every
frequent inter-dimensional rule of the form Departures × Hours→ Days. When
the minimal frequency threshold increases, the number of frequent associations
and the running time decrease (Fig. 7a obtained with β = 0). Indeed, Gear
prunes large areas of the search space where every association violates the con-
straint C⌈µ×|Dsupp|⌉-freq. When the minimum confidence threshold increases, the
number of rules decreases too (Fig. 7b obtained with µ = 0.08). Gear’s scalabil-
ity was tested on the extraction of these rules (still with a frequency exceeding
0.08). To do so the nodes of the graphs were replicated, up to ten times, with
their incoming edges only. It turns out that the algorithm scales linearly. More
precisely a linear regression of R 7→ TR

T1
(where R is how many times the arrival

stations are replicated; TR the running time on this replicated dataset) gives
y = 0.88x + 0.08 with 0.05 as a standard error. Since 0.88 < 1, it can be written
that Gear conforms to the proportions of the relation for faster extractions.
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 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  0.2  0.4  0.6  0.8  1

N
um

be
r 

of
 r

ul
es

Minimum exclusive confidence

Number of rules

(b) Number of rules w.r.t. β.

Fig. 7: Effectiveness of Gear.

6 Related Work

Mining graphs has recently received a lot of attention in the data mining com-
munity. Many different techniques (e. g., densification laws, shrinking diameter,
factorization, clustering, evolution of communities, etc.) [2, 15, 9, 17, 13, 11, 3, 16,
5]. In this section, we focus on methods that mine local patterns. [6] extracts
such patterns in labeled dynamic graphs. Frequent subgraph mining algorithms
are adapted to time series of graphs. The approach aims at finding subgraphs
that are topologically frequent and show an identical dynamic behavior over
time, i. e., insertions and deletions of edges occur in the same order of time. Due
to the complexity of the task, their algorithm is not complete. Computing the
overlap-based support measure means solving a maximal independent set prob-
lem and this approach uses a greedy algorithm. [10] proposes a fast algorithm
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to mine frequent transformation subsequences from a set of dynamic labeled
graphs (the labels on vertices and edges can change over time). Starting with
the hypothesis that the changes in a dynamic graph are gradual, they propose to
succinctly represent the dynamics with a graph grammar: each change between
two observed successive graph states is interpolated by axiomatic transforma-
tion rules. [18] studies how a graph is structurally transformed through time. The
proposed method computes graph rewriting rules that describe the evolution of
two consecutive graphs. These rules are then abstracted into patterns represent-
ing the dynamics of a sequence of graphs. [12] introduces the periodic subgraph
mining problem, i. e., identifying every frequent closed periodic subgraph. They
empirically demonstrate the efficiency and the interest of their proposal on sev-
eral real-world dynamic social networks. By showing that dynamic graphs can
be represented as ternary relations, [8] describes a constraint-based mining ap-
proach to discover maximal cliques that are preserved over almost-contiguous
timestamps. The constraints are pushed into a closed n-ary pattern mining al-
gorithm. [14] proposes a constraint-based approach too. It the evolution of dense
and isolated subgraphs defined by two user-parameterized constraints. Associ-
ating a temporal event type with each pattern captures the temporal evolution
of the identified subgraph, i. e., the formation, dissolution, growth, diminution
and stability of subgraphs between two consecutive timestamps. The algorithm
incrementally processes the time series of graphs. [4] introduces the problem of
extracting graph evolution rules satisfying minimal support and confidence con-
straints. It finds isomorphic subgraphs that match the timestamps associated
with each edge, and, if present, the properties of the vertices and edges of the
dynamic graph. Graph evolution rules are then derived with two different con-
fidence measures. This approach is the closest to ours: it aims at describing a
time-evolving graph with rules. Nevertheless, this work focuses on the dynamic
changes in the graph whereas we provide a generic framework to discover inter-
dimensional rules where the time is either in the rule or in its support.

7 Conclusion

We tackled the problem of describing dynamic graphs via rules that can involve
subsets of any dimension (including temporal dimensions) at its antecedent or
consequent. We proposed a new semantics for inter-dimensional rules in dynamic
graphs. It relies on a relevant objective interestingness measure called the exclu-
sive confidence. We introduced and implemented Gear, an effective solution for
computing such rules. Experiments on a real-world dynamic graph demonstrated
the interest of our proposal. A timely challenge is to look for primitive constraints
that can support more sophisticated knowledge discovery processes in dynamic
graphs. Some of these constraints would deal with the temporal dimension(s)
(e. g., time contiguity [8]). Other constraints would deal with the “form” of the
patterns to discover (e. g., cliques, dense subgraphs, etc.). Another challenge is
to revisit, in our setting, important techniques developed for classical association
rules, for instance, non redundancy aspects (see, e. g., [19]).
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Abstract. In spatial domains, objects present high heterogeneity and
are connected by several relationships to form complex networks. Mining
spatial networks can provide information on both the objects and their
interactions. In this work we propose a descriptive data mining approach
to discover relational disjunctive patterns in spatial networks. Relational
disjunctive patterns permit to represent spatial relationships that occur
simultaneously with or alternatively to other relationships. Pruning of
the search space is based on the anti-monotonicity property of support.
The application to the problem of urban accessibility proves the viability
of the proposal.

1 Introduction

A spatial network is a network of spatial objects, that is, objects characterized by
both a spatial localization (e.g. in a geo-referenced system) and a geometry (e.g.
an area). Nodes of spatial networks correspond to spatial objects, while links
express spatial relationships (e.g. adjacency). In some cases, links are defined on
the basis of other spatial objects (e.g. roads, railways, flights, rivers, etc.). A link
might be labeled with a numerical weight which denotes the distance between
two nodes. Although spatial networks are of great interest in the study of spatial
phenomena, such as urban accessibility, they have not yet received the attention
in data mining that they deserve. Yiu and Mamoulis [16] propose the extension
of some traditional clustering techniques to face the problem of grouping objects
in a large spatial network. In particular, the notion of shortest path between
networked nodes is used in partitioning, density-based and hierarchical clustering
methods. The same notion of shortest path is exploited in [8] for a problem of
outlier detection in a dynamic network, where node insertion/deletion is allowed.

In these, as well as in other related works, a spatial network is modeled
as a graph, which simplifies the network by removing the geometry. However,
this representation is sometimes oversimplified, since it considers neither the
heterogeneity of spatial objects (e.g. public services and private houses should
be described by different feature sets) nor the heterogeneity of the spatial re-
lationships expressed in links (e.g. connection by bus, railway or road). This
heterogeneity of spatial objects and relationships demands for different repre-
sentation formalisms and, consequently, a different class of data mining methods
which are able to handle this further complexity in the data.
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It has been recently argued that the (multi-)relational setting [6] is the most
suitable for spatial data mining problems, since it can deal with the hetero-
geneity of spatial objects, it can distinguish their different role (reference or
task-relevant), it can naturally represent a large variety of spatial relationships
among objects and it can accommodate different forms of spatial autocorrelation
[11]. Several spatial data mining methods have been developed according to the
multi-relational setting. They concern descriptive and predictive tasks such as
subgroup discovery[9], regression[12] and emerging patterns discovery[2].

In this paper, we extend our previous work on the task of spatial association
analysis thorough an inductive logic programming (ILP) approach [1, 10]. Both
spatial relationships and properties of spatial objects are represented as predi-
cates, while discovered patterns are defined as conjunctions of atomic formulas
built using these predicates. For instance, the following are two examples of spa-
tial patterns which are discovered by the ILP system SPADA [10]:

〈district(A), road(B), intersects(B, A)〉
〈district(A), road(B), crosses(B, A)〉

where the semantics of the two predicates intersects and crosses is defined by
means of the 9-intersection model defined for topological relationships [7]. The
support of these patterns is computed by means of a θ-subsumption test[14]
against the descriptions of the spatial networks. This is a crisp test which fails
when, all other things being equal, two descriptions differ only in the name of a
predicate. This brittleness is critical in spatial domains, where the computation
of spatial relationships, though supported by a formal semantics, depends on the
levels of abstraction granularity. For instance, for slightly different resolutions
we may observe either an intersects relationship or a crosses relationship.

To improve the robustness of the spatial association rule mining method
there are two alternatives. First, defining a hierarchy among spatial predicates,
which could be used to generalize over spatial relationships. Second, enabling the
generation of disjunctive patterns, that is patterns where two or more atoms may
be OR-ed to express the variance on the spatial relationship existing between
two objects. In this work we follow the second approach, since the definition of
a hierarchy among spatial predicates can be cumbersome in many applications.
Moreover, in order to prevent the generation of meaningless disjunctions, we
exploit a user-defined dissimilarity measure between spatial relationships, which
could be used to prune the search space.

The paper is organized as follows. In the next section, related works and
contribution of the proposed approach are presented. In Section 3, the approach
is presented in detail. In Section 4 the application to a case study is reported.
Finally, conclusions are drawn and future works are presented.

2 Related Works and Contribution

Discovering patterns in spatial networks has attracted great interest in the area
of in geographical information sciences (GIS). In his seminal work, Zhang [17]
introduces a categorization of spatial patterns into grid-like, star-like and irreg-
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ular categories of patterns and outlines the differences based on the parallelism
relationship among the roads. Less attention has been rather paid in knowledge
discovery, although the research in spatial data mining is become mature. A
representative work is reported in [4] where the authors propose a framework
which extracts snippets from Web, recognizes the locations and, finally, discovers
patterns in the form of access points to the recognized locations.

The aforementioned works have common characteristic: spatial objects and
networks are represented as vectors or graphs, which suffer from several limi-
tations when heterogeneous spatial objects and relationships have to be repre-
sented. This motivates our interest in relational approaches to spatial pattern
discovery. Moreover, to cope with the problem of brittleness of subsumption tests
for relational patterns, we extend relational mining algorithms in order to dis-
cover disjunctive patterns, where alternative relationships between two spatial
objects are allowed.

In the literature on frequent pattern mining, we found two noticeable contri-
butions to the problem of discovering disjunctive patterns. In [13], association
rules with inclusive or exclusive logical disjunction are discovered, while in [15]
traditional algorithms are extended to mine association rules with item groups,
where an item group is a disjunction of items created by considering the con-
ceptual distance between items. Both methods work on propositional represen-
tations, which are too restrictive for spatial domains.

This paper makes a contribution to the literature on spatial network mining
by considering disjunctive patterns in relational formalisms, which are more
appropriate to represent spatial networks with heterogeneous spatial objects
and relationships. In particular, we extend a method for spatial association rule
discovery in order to represent:

1. Disjunctions (e.g. (intersects(B,A) OR crosses(B,A))). They are created by
exploiting a user-defined background knowledge in the form of a semantic
graph, where vertices correspond to spatial relationships (e.g. intersects),
while edges denote the semantic relatedness among them and are labelled
with numerical weights which quantify the dissimilarity among the relation-
ships (e.g., intersects

0.9↔ crosses);
2. Disjunctive patterns (e.g., 〈district(A), transport line(B), (intersects(B,A) OR

crosses(B,A)), is a(A, market square), is a(B, road)〉 ). They are extracted from
a graph of patterns which is refined until user-defined input criteria are met.

The proposed approach follows a three-stepped procedure. First, it extracts
the infrequent conjunctive patterns which can be upgraded to the disjunctive
form. For instance, given P1 : 〈district(A), contained in(A, B),marketplace(B)〉
and the similarity between contained in and overlaps, we can upgrade it to
P ′

1 : 〈district(A), (contained in(A, B) OR overlaps(A,B)), marketplace(B)〉. Sec-
ond, background knowledge is accommodated to exploit the information on the
(dis)similarity among the spatial relationships in the process of generation of
disjunctive patterns. Third, disjunctive patterns are produced by iteratively in-
tegrating disjunctions into the patterns by means of a pair-wise joining. For in-
stance, given the patterns P1 : 〈district(A), contained in(A, B), marketplace(B)〉,
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P2 : 〈district(A), overlaps(A,B), marketplace(B)〉 and assumed that contained in
and overlaps are two “similar” atoms according to background knowledge, P1

and P2 are merged to form the pattern:
〈district(A), (contained in(A, B) OR overlaps(A,B)), marketplace(B)〉.

Finally, only the disjunctive patterns whose frequency exceeds the traditional
minimum threshold are considered.

3 Learning Disjunctive Relational Patterns

Before formally stating the data mining problem, we introduce some basic no-
tions. In the relational setting, when handling spatial objects, different roles can
be played by different sorts of data. In a spatial network, objects can be distin-
guished into target objects of analysis (TO) and non-target objects of analysis
(NTO). By introducing this distinction we follow the usual practice in statistics
of distinguishing between units of analysis and units of observation. Generaliza-
tion concerns the units of analysis, while the units of observation are typically
secondary data considered potentially useful to explain a phenomenon.

In this work, the target objects (units of analysis) are data on which patterns
are enumerated and contribute to compute the frequency of a pattern, while the
non-target objects (units of observation) contribute to define the former and can
be involved in a pattern. We denote the set of TO as S and the sets of NTO
by means of the sets Rk (1 ≤ k ≤ M), where M is the number of sorts of
data that are not considered to be TO. NTOs, belonging to a set Rk, can be
organized hierarchically according to a user defined taxonomy. Target objects
and non-target objects are represented in Datalog language [3] as ground atoms
and populate the extensional part DE of a deductive database D. A ground
atom is an n-ary logic predicate symbol applied to n constants.

Some predicate symbols are introduced in order to express both properties
and relationships of TO and NTO. The predicate symbols represent spatial
relationships and can be categorized into four classes: 1) key predicate identifies
the TO in DE (e.g., in the examples above, district(·)); 2) property predicates
are binary predicates which define the values taken by an attribute of a TO or
of an NTO; 3) structural predicates are binary predicates which relate NTO as
well as TO with others NTO (e.g., in the examples above, contained in(·,·));
4) is a predicate is a binary taxonomic predicate which associates NTO with a
symbol contained in the user defined taxonomy.

The intensional part DI of the deductive database D includes the definition
of the semantic graph (background knowledge) that permits us to express the
dissimilarity among spatial relationships in the form of Datalog weighted edges
of a graph. An example of the Datalog weighted edge is the following:

external touch to - (crosses - 0.88)

It states that the dissimilarity between the relationships external touch to(·,·)
and crosses(·,·) is 0.88. More generally, it represents an undirected edge e be-
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tween two vertices vi, vj (e.g., external touch to, crosses) with weight wij (e.g.,
0.88) and it is denoted as e(vi, vj , w). A finite sequence of undirected links
e1, e2, . . . , em which connects two vertices vi, vj is called path and denoted as
ρ(ni, nj). The complete list of such undirected edges represents the background
information on the dissimilarity among relationships and allows to join patterns
by introducing disjunctions (externa touch to(A,B) OR crosses(A,B)).

Discovered patterns are conjunctions of Datalog non-ground atoms and dis-
junctions of non-ground atoms, which can be expressed by means of a set no-
tation. A Datalog non-ground atom is an n-ary predicate symbol applied to n
terms (either constants or variables), at least one of which is a variable. A formal
definition of pattern of our interest is reported in the following:

Definition 1. A disjunctive pattern P is a set of atoms and disjunctions of
atoms p0(t10), (p1(t11, t

2
1)|p2(t12, t

2
2)| . . .), . . . , (pk(t1k, t2k)| . . . |pk+h(t1k+h, t2k+h)) where

p0 is the key predicate, while pi, i = 1, . . . , k + h, is either a structural predicate
or a property predicate or an is a predicate. Symbol “ | ” indicates disjunctions.

Terms tji are either constants, which correspond to values of property predi-
cates, or variables, which identify target objects or non-target objects. Each pi

is a predicate occurring in DE (extensionally defined predicate). Some examples
of disjunctive patterns are the following:
P1 ≡ district(A), (comes from(A, B)|external ends at(A,B)), shape(A, rectangle)

P2 ≡ district(A), (external ends at(A,B)|runs along boundary and goes in(A, B)),

transport net(A, roads)

where the variables A denote target objects, and variables B denote some non-
target objects, while the predicates district(A) identify the key predicate in P1

and P2, shape(A, rectangle) and transport net(A, roads) are property predi-
cates and the others are structural predicates. All variables are implicitly exis-
tentially quantified.

We now can give a formal statement of the problem of discovering relational
frequent patterns with disjunctions:
1. Given: the extensional part DE of a deductive database D, and two thresholds
minSup ∈ [0; 1], nSup ∈ [0; 1] (minSup represents a minimum frequency value
while nSup represents a maximum frequency value, nSup < minSup), Find: the
collection IR of the relational infrequent patterns whose support is included in
[nSup; minSup).
2. Given: the collection IR, the intensional part DI of a deductive database D,
and two thresholds minSup and γ ∈ [0; 1] (γ defines the maximum dissimilarity
value of relationships involved in the disjunctions), Find: relational disjunctive
patterns whose frequency exceeds minSup and whose dissimilarity of relation-
ships involved in the disjunctions does not exceed γ.

3.1 Discovering Infrequent Conjunctive Patterns

The intuition underlying the discovery of pattern with disjunctions is that of ex-
tending infrequent conjunctive patterns with disjunctive forms until the thresh-
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old minSup is exceeded. Each conjunctive pattern P is associated with a sta-
tistical parameter sup(P, D) (support of P on D), which is the percentage of
units of analysis in D covered by P . More precisely, a unit of analysis of a target
object s ∈ S is a subset of ground atoms in DE defined as follows:

D[s] = is a(R(s)) ∪D[s|R(s)] ∪
⋃

ri∈R(s)

D[ri|R(s)], (1)

where R(s) is the set of NTO directly or indirectly related to s, is a(R(s)) is
the set of is a atoms which define the sorts of ri ∈ R(s), D[s|R(s)] contains
properties of s and relations between s and some ri ∈ R(s), D[ri|R(s)] contains
properties of ri and relations between ri and some rj ∈ R(s). By assigning a
pattern P with an existentially quantified conjunctive formula eqc(P ) obtained
by transforming P into a Datalog query, the units of analysis D[s] are covered
by a pattern P if D[s] |= eqc(P ), namely D[s] logically entails eqc(P )).

Conjunctive patterns are mined with SPADA[10] which however enables the
discovery of relational patterns whose support exceeds minSup (frequent pat-
terns). In this work we exploit the capabilities of SPADA to identify infrequent
conjunctive patterns, but this does not exclude the possibility of using other
methods for mining infrequent relational patterns in this initial processing step.
SPADA performs a breadth-first search of the space of patterns, from the most
general to the more specific ones, and prunes portions of the space which contain
only infrequent patterns, which are the conjunctive patterns of our interest. The
pruning strategy guarantees that all infrequent patterns are removed and, at
this aim, uses a generality ordering based on the notion of θ-subsumption [14]:

Definition 2. P1 is more general than P2 under θ-subsumption (P1 �θ P2) if
and only if P1 θ-subsumes P2, i.e. a substitution θ exists, such that P1θ ⊆ P2.

For instance, given P1 ≡ district(A), crosses(A,B), P2 ≡ district(A), crosses(A,B),

is a(B, transport net), P3 ≡ district(A), crosses(A,B), is a(B, transport net), along(A,C)

we observe that P1 θ-subsumes P2 (P1 �θ P2) and P2 θ-subsumes P3 (P2 �θ P3)
with substitutions θ1 = θ2 = ⊘. The generality order is monotonic with respect
to the pattern support, so whenever P1 will be infrequent the patterns more
specific of it (e.g., P2, P3) will be infrequent too.

The search is based on the level-wise method and implements a two-stepped
procedure: i) generation of candidate patterns with k atoms (k -th level) by con-
sidering the frequent patterns with k − 1 atoms ( (k-1 )-th level); ii) evaluation
of the frequency with k atoms. So, the patterns whose support does not exceeds
minSup will be not considered for the next level: the patterns discarded (infre-
quent) at each level are rather considered for the generation of disjunctions. The
collection IR is thus composed of a subset of infrequent patterns, more precisely
those with support greater than or equal to nSup (and less than minSup).

3.2 Upgrading Relational Patterns with Disjunctions

The generation of disjunctive patterns is performed by creating disjunctions
among similar relationships (thus similar atoms in the patterns) in accordance
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to the background semantic graph: two patterns which present similar atoms are
joined to form only one. The implemented algorithm (see Algorithm 1) is com-
posed of two sub-procedures: the first one (lines 2-12) creates a graph GD with
the patterns of IR by exploiting the knowledge defined in DI , while the second
one (lines 13-32) joins two patterns (vertices) on the basis of the information
(weight) associated to their edge. The initial graph GD evolves due to joining of
patterns on the vertices until the setting of minSup and γ is met (Section 3.1).

In particular, for each pair of patterns which have the same length (namely,
at the same level of the level-wise search method) it checks whether they differ
in only one atom and share the remaining atoms up to a redenomination of
variables (line 3). Let α and β be the two atoms differentiating P from Q (α in
P, β in Q), a path ρ which connects α to β (or viceversa) is searched among
the weighted edges according to DI (semantic network): in the case the sum ω
of the weights found in the path is lower than the maximum dissimilarity γ the
vertices P and Q are inserted into GD and linked through an edge with weight
ω (lines 4-9). Note that when there is more than one path between α and β,
then the path with lowest weight is considered. Intuitively, at the end of the
first sub-procedure, GD will contain, as vertices, the patterns which meet the
condition at the line 3, and it will contain, as edges, the weights associated to
the path linking the atoms differentiating the patterns.

Once we have GD, a list LD is populated with the vertices and edges of GD: an
element of LD is a triple 〈P, Q, ω〉 composed of a pair of vertices-patterns (P,Q)
with their relative weight. Elements in LD are ranked in ascending order with
respect to the values of ω so that the pairs of patterns with lower dissimilarity
will be joined for first. This guarantees that disjunctions with very similar atoms
will be preferred to the others (line 13). For each element of LD whose weight ω
is lower than γ the two patterns P, Q are joined to generate a pattern J composed
by the conjunction of the same atoms in common to the two patterns P, Q and of
the disjunction formed by the two different (but similar) atoms (lines 14-15). This
joining procedure permits to have patterns with the same length of the original
ones and which occur when at least one of original patterns occurs. Therefore,
if a pattern J is obtained by joining P and Q, it covers a set of units of analysis
equal to the union of those of P and Q: the support of J is determined as in line 16
and, generally, it is higher than the support of P and Q. In the case the support
of J exceeds minSup then it can be considered statistically interesting and no
further processing is necessary (lines 16-17). Otherwise, J is again considered
and inserted into GD as follows. The edges which linked another pattern R of GD
to P and Q are modified in order to keep the links from R to J: the weight of the
edges between one pattern R and J will be set to the average value of the weights
of all the edges which linked R to P and Q (lines 19-27). The modified graph
GD contains conjunctive patterns (those of IR) and pattern with disjunctions
(those produced by joining). Thus, GD is re-evaluated for further joins and the
algorithm proceeds iteratively (line 29-30) until no additional disjunctions can
be done (namely, when LD is empty or the weights ω are higher than γ). At
each iteration, the patterns P and Q are removed from GD (line 32).
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Algorithm 1 Upgrading Relational Pattern with Disjunctions.
1: input: IR, DI , γ, minSup output: J // J set of disjunctive patterns
2: for all (P, Q) ∈ IR × IR, Q 6= P do
3: if P.length = Q.length and check atoms(P,Q) then
4: (α, β) := atoms diff(P, Q) //α, β atoms differentiating P,Q
5: if ρ(α, β) 6= ⊘ then
6: ω :=

P
e(vi,vj ,wij ) in ρ(α,β)

wij

7: if ω ≤ γ then
8: addNode(P,GD); addNode(Q,GD); addEdge(P,Q,ω,GD)
9: end if

10: end if
11: end if
12: end for
13: LD ← edges of GD // list of edges of GD ordered in ascending mode w.r.t. ω
14: while LD 6= ⊘ and ∀e(P, Q, ω) ∈ GD ω ≤ γ do
15: J ← join(P, Q); J.support := P.support + Q.support− (P ∩Q).support;
16: if J.support ≥ minSup then
17: J := J∪ {J}
18: else
19: for all R such that ∃ e(P,R, ω1) ∈ GD and ∃ e(Q,R, ω2) ∈ GD do
20: addEdge(R,J, (ω1 + ω2)/2, GD)
21: end for
22: for all R such that ∃ e(P,R, ω1) ∈ GD and ∄ e(Q,R, ω2) ∈ GD do
23: addEdge(R,J, ω1,GD)
24: end for
25: for all R such that ∃ e(Q,R, ω2) ∈ GD and ∄ e(P, R, ω1) ∈ GD do
26: addEdge(R,J, ω2,GD)
27: end for
28: LD ← edges of GD
29: update LD
30: end if
31: removeNode(P,GD); removeNode(Q,GD)
32: end while

An explanatory example is illustrated in Figure 1. Consider the background
knowledge DI on the dissimilarity among four spatial relationships and the set
IR containing four infrequent conjunctive patterns as illustrated in Figure 1a
and γ equal to 0.7. The first sub-procedure of the algorithm 1 analyzes P1,
P2, P3, P4 and discovers that they differ in only one atom, while the other
atoms are in common. Then, it creates the graph GD by collocating P1, P2, P3

in three different vertices and linking them through edges whose weights are
taken from the paths ρ in DI . P4 is not considered because the vertex overlaps
has dissimilarity with internal ends at higher than γ (row (1) in Figure 1b).
The second sub-procedure starts by ordering the weights of the edges: the first
disjunction is created by joining P1 and P3 given that the dissimilarity value is
lower than γ and the lowest (row (2) in Figure 1b). Next, the pattern so created
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(a) (b)

Fig. 1. Extending relational pattern with disjunctions: an example (γ=0.7).

and P2 are checked for joining. Both have the same length and differ in only
one atom. Although the first presents a disjunction and the second presents a
“simple” atom, dissimilarity is lower than γ and a new disjunctive pattern is
created (row (3) in Figure 1b).

4 Experiments

This approach has been implemented as the extension of the system SPADA
aimed to discover relational patterns with disjunctions: the system (afterwards
jSPADA) is now able to mine conjunctive patterns and disjunctive patterns as
well. Here we present the application of both systems to mine spatial networks
in a case study of urban accessibility. More precisely, the spatial network is
obtained by analyzing both census and digital maps of Stockport, one of the ten
districts in Greater Manchester and the analysis is aiming at investigating the
accessibility to the Stepping Hill Hospital from the actual residence of people
living far from the hospital. In this case study, transport network, namely the
layers of roads, railways and bus priority lines, correspond to the links of the
spatial network, while districts close to the hospital and districts distant from the
hospital corresponds to the nodes of the network. In accordance with our setting
defined in Section 3, districts close to the hospital are target objects while the
transport network and districts distant from the hospital are non-target objects.

Property predicates define people with own cars and are no car(), one car(),
two cars(), three more cars(). Structural predicates represent binary topological
relationships between districts and roads, railways or bus lines, and correspond
to the twelve feasible relations between a region and a line according to the 9-
intersection model [7]. Here, background knowledge DI has been defined on the
structural predicates and the dissimilarity values have been manually determined
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by applying the Sokal-Michener dissimilarity measure on the matrix representa-
tion of the twelve relations[5]: for instance, the following external ends at

0.22↔
along; along

0.277↔ comes from expresses the similarity among three spatial re-
lationships quantified with 0.22 and 0.2777 respectively. Districts and transport
network can be involved in more than one line-region spatial relationships and
this advocates the usage of disjunctive patterns. DE contains 1147 ground atoms
for 152 target objects.

Experiments were performed1 by tuning the thresholds minSup, nSup, γ
and the results are reported in Figure 2. A comparison between SPADA and
jSPADA has been conducted by varying minSup, while, for jSPADA, the values
of nSup and γ are set to 0.005 and 0.6 respectively. As we can see the histogram
values reported in Figure 2a, jSPADA discovers a number of patterns that is
higher than that of SPADA. Indeed, jSPADA returns a set which includes those
frequent conjunctive (generated by SPADA) and those disjunctive generated by
re-evaluating the infrequent conjunctive ones. Thus, as minSup increases, the
range [nSup; minSup) becomes larger and, generally, more disjunctive patterns
are extracted while the number of conjunctive frequent patterns decreases. It
is worthy that the set of only disjunctive patterns (the complement of the set
of patterns of jSPADA relative to the set of SPADA) is actually much smaller
than the set of only conjunctive patterns (patterns of SPADA). For instance,
when minSup=0.007 the number of disjunctive patterns amounts to 5, while
the number of conjunctive patterns is 898. Thus, the problem of huge amounts
of disjunctive patterns is not so relevant as in the case of conjunctive patterns.
This is a clear advantage of the proposed approach since the classical problem
of manual analysis of patterns is mitigated.

As expected, also the threshold nSup has influence on the patterns discov-
ered by jSPADA. Indeed, from the figures 2c and 2d (minSup = 0.025 and
γ = 0.6) we note that jSPADA is highly sensitive to nSup since the number of
disjunctive patterns is reduced of one order of magnitude (from 20 to 0) while
nSup is increased by factor of two (from 0.01 to 0.02). By comparing the plots
(a), (c) and (d) we note that, by varying minSup, jSPADA has a limited ca-
pacity in unearthing infrequent patterns (but potentially interesting) than when
varying nSup. This confirms the viability of the approach to discover new forms
of interesting patterns. The sensitivity of the algorithm can be evaluated with
respect to the dissimilarity of the disjunctions (Figure 2b). At high values of γ
disjunctions can be created also between relationships whose similarity is small,
so the patterns present disjunctions with several atoms and the final set is larger.
On the contrary, lower values of γ permit to identify disjunctions only between
very similar relationships, so the disjunctions present less atoms and the final
set is smaller: when γ is set to 0.4, no disjunction is created since the minimum
value of similarity between relationships amounted to 0.44.

A comparison between jSPADA and SPADA can also be done from a quali-
tative viewpoint. jSPADA enables the discovery of patterns which enrich the in-
formation extracted by SPADA. For instance, the pattern discovered by SPADA
1 Data and results are accessible at http://www.di.uniba.it/∼loglisci/jSPADA/
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P1 : district(A), comes from(A, B), is a(B, road), comes from(A, C), is a(C, road)

[support : 12%]

is enriched by P2 discovered by jSPADA:
P2 : district(A), [comes from(A, C)|external ends at(A,C)], is a(C, road),

comes from(A,B), is a(B, rail) [support : 16%]

which introduces the disjunctions comes from(A, C)|external ends at(A, C) be-
tween two structural predicates. P2 expresses the information that the road
named as C can be connected to the district named as A through two possible
simultaneous or alternative ways, comes from(A, C) (C starts in A and termi-
nates outside A) and external ends at(A, C) (C starts outside A and terminates
inside A). Remarkably, the support of P2 is higher than that of P1. jSPADA per-
mits also the discovery of completely novel patterns that SPADA neglects. One
of these is the following:

P3 : district(A), [external ends at(A,B)|along(A,B)|comes from(A,B)],

three more cars(A, [0.033; 0.114]) [support : 11.1%]

which introduces a property predicate (i.e., the percentage of households owing
more three cars included in [0.033;0.114]) and expresses in the disjunction three
possible forms of accessibility to the district A by the transport line B.

(a) (b)

(c) (d)

Fig. 2. Number of patterns discovered by tuning minSup, nSup, γ.

5 Conclusion

In this paper we present a relational data mining approach to discover disjunc-
tive frequent patterns in spatial networks when considering a variance of spatial
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relationships existing between two objects. The introduction of disjunctions into
the patterns permits to represent spatial relationships which occur simultane-
ously with or alternatively to others. The application to the problem of urban
accessibility points out some peculiarities of the proposal. As future work, we
intend to extend experiments to evaluate scalability of the approach.
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Abstract. A common task in many domains with a temporal aspect
involves identifying and tracking clusters over time. Often dynamic data
will have a feature-based representation. In some cases, a direct mapping
will exist for both objects and features over time. But in many scenarios,
smaller subsets of objects or features alone will persist across succes-
sive time periods. To address this issue, we propose a dynamic spectral
co-clustering method for simultaneously clustering objects and features
over time, as represented by successive bipartite graphs. We evaluate the
method on a benchmark text corpus and Web 2.0 bookmarking data.

1 Introduction

In many domains, where the data has a temporal aspect, it will be useful to anal-
yse the formation and evolution of patterns in the data over time. For instance,
researchers may be interested in tracking evolving communities of social network
users, such as clusters of frequently interacting authors in the blogosphere, or
circles of users with shared interests on social media sites. In the case of online
news sources, producing large volumes of articles on a daily basis, it will often
be useful to chart the development of individual news stories over time.

For many of these problems it may be of interest to simultaneously identify
clusters of both data objects and features. This task, often referred to as co-
clustering, has been formulated as the problem of partitioning a bipartite graph,
where the two types of nodes correspond to objects and features [1]. However,
to the best of our knowledge, this work has been limited to static applications,
where temporal information is unavailable or has been disregarded.

A popular recent approach to the problem of clustering dynamic data has
been to use an “offline” strategy, where the dynamic data is divided into dis-
crete time steps. Sets of step clusters are identified on the individual time steps
using a suitable clustering algorithm, and these step clusters are associated with
one another over successive time steps [2]. However, clusters may change con-
siderably between time steps. This can be problematic, both for the purpose of
matching clusters between time steps, and for supporting users to follow and
understand how groups are changing over time. To address this problem, both
current and historic information can be incorporated into the objective of the
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Fig. 1. A dynamic co-clustering scenario where 2 clusters appear in 2 time steps. Note
that a subset of both objects (bookmarks) and features (tags) persists across time.

clustering process [3]. Benefits of this approach include increasing the smooth-
ness of transitions between clusterings over time, and improving cluster quality
by incorporating historic information to reduce the effects of noisy data.

A number of additional considerations arise when tracking dynamic data
represented in feature spaces. Notably, a set of objects or features will not always
persist in the data across steps. In general, three different scenarios are possible:

1. Data objects alone persist across time steps. For instance, in bibliographic
networks, papers are only published at a single point in time, whereas authors
will generally be present in the network over an extended period of time.

2. Features alone persist across time. In a news collection, articles will appear
once, whereas terms may continue to appear as topics extend over time.

3. Both objects and features persist across time. For example, in the case of
Web 2.0 tagging portals, both the individual tags and the objects being
tagged (e.g.bookmarks, images) will appear in multiple time steps. A simple
example with just two clusters is shown in Figure 1.

Here we consider the problem of tracking nodes in multiple related dynamic
bipartite graphs. In Section 3 we describe the main contribution of this paper –
a dynamic spectral co-clustering algorithm for simultaneously grouping objects
and features over time, in any of the above scenarios. This algorithm takes into
account both information from the current time step, together with historic
information from the previous step. In our evaluations in Section 4 we show that
the proposed algorithm works both in the case where features alone persist over
time, and when objects and features persist. These evaluations are performed
on a labelled benchmark news corpus and Web 2.0 tagging data.

2 Related Work

2.1 Co-clustering

In certain problems it may be useful to perform co-clustering, where both ob-
jects and features are assigned to groups simultaneously. One approach to the
co-clustering problem is to view it as the task of partitioning a weighted bipar-
tite graph. Dhillon [1] proposed a spectral approach to approximate the optimal

30



normalised cut of a bipartite graph, which was applied for document clustering.
This involved computing a truncated singular value decomposition (SVD) of a
suitably normalised term-document matrix, constructing an embedding of both
terms and documents, and applying k-means to this embedding to produce a
simultaneous k-way partitioning of both documents and terms. Mirzal & Fu-
rukawa [4] provided a further theoretical grounding for spectral co-clustering,
demonstrating that simultaneous row and column clustering is equivalent to
solving the separate row and column clustering problems.

2.2 Dynamic Clustering

The general problem of identifying clusters in dynamic data has been studied by
a number of authors. Early work on the unsupervised analysis of temporal data
focused on the problems of topic tracking and event detection in document col-
lections [5]. More recently, Chakrabarti et al. [3] proposed a general framework
for “evolutionary clustering”, where both current and historic information was
incorporated into the objective of the clustering process. The authors used this to
formulate dynamic variants of common agglomerative and partitional clustering
algorithms. In the latter case, related clusters were tracked over time by match-
ing similar centroids across time steps. Two evolutionary versions of spectral
partitioning for classical (unipartite) graphs were proposed by Chi et al. [6]. The
first version (PCQ) involved applying spectral clustering to produce a partition
that also accurately clusters historic data. The second version (PCM) involved
measuring historic quality based on the chi-square distance between current and
previous partition memberships.

The application of dynamic clustering methods has been particularly preva-
lent in the realm of social network analysis, where the goal is to identify com-
munities of users in dynamic networks. Palla et al. [7] proposed an extension of
the popular CFinder algorithm to identify community-centric evolution events
in dynamic graphs, based on an offline strategy. This extension involved apply-
ing community detection to composite graphs constructed from pairs of con-
secutive time step graphs. Another life-cycle model was proposed in [2], where
the dynamic community finding approach was formulated as a graph colouring
problem. The authors proposed a heuristic solution to this problem, by greed-
ily matching pairs of node sets between time steps. The problem of clustering
data over time has also been considered in the temporal analysis domain. Kal-
nis et al. [8] described a density-based clustering approach where clusters persist
over time, despite continuous changes in cluster memberships. This corresponds
closely to the “assembly line” dynamic clustering scenario described in [2].

3 Methods

3.1 Problem Definition

We represent a dynamic feature-based dataset as a set of l bipartite graphs
{G1, . . . , Gl}. Each step graph Gt consists of two sets of nodes, representing the
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nt data objects, and mt features present in the data at time t. Edges exist only
between nodes of different types, corresponding to non-zero feature values. We
can conveniently represent each step graph using a feature-object matrix At of
size mt × nt.

In the offline formulation of the dynamic co-clustering problem, the overall
goal is to identify a set of dynamic clusters of objects and features, which appear
in the data across one or more time steps. We refer to step clusters that are
identified on individual step graphs, which represent specific observations of
dynamic clusters at a given point in time. The formulation therefore has two
key requirements: a suitable clustering algorithm to cluster individual time step
graphs (ideally in a way that incorporates historic information), and an approach
to track these clusters across time steps. While our primary focus here is on the
former aspect, in Section 3.3 we also briefly discuss the latter aspect.

3.2 Dynamic Spectral Co-clustering

We now introduce a dynamic co-clustering algorithm that considers both historic
information from the previous time step, and the internal quality of the clustering
in the current time step. The algorithm consists of three phases: bipartite spectral
embedding, cluster initialisation, and a cluster assignment phase.

Spectral embedding. Following normalised cut optimisation via spectral co-
clustering described in [1], for a given time step feature-object matrix At, we
construct the degree-normalised matrix Ât = D1

− 1
2 AtD2

− 1
2 , where D1 and D2

are diagonal column and row degree matrices respectively. We then apply SVD
to Ât, computing the leading left and right singular vectors corresponding to
the largest singular values. Following the choice made by many authors in the
spectral clustering literature, we use kt dimensions corresponding to the expected
number of clusters. Although the issue of selecting the number of clusters is
not discussed in this paper, one potential approach is to choose kt based on the
eigengap method [9]. The truncated SVD yields matrices Ukt and Vkt . A unified
embedding of size (mt + nt)× kt is constructed by normalising and stacking the
truncated factors as follows:

Zt =
[
D1

−1/2Ukt

D2
−1/2Vkt

]
(1)

Prior to clustering, the rows of Zt are subsequently re-normalised to have unit
length, as proposed for spectral partitioning in [9]. This process provides us with
a kt-dimensional embedding of all nodes of both types in Gt.

Cluster initialisation. At time t = 1, we have no historic information. There-
fore to seed the clustering process, we use a variant of orthogonal initialisation
as proposed by Ng et al. [9] for spectral graph partitioning. This operates using a
“farthest-first” strategy as follows. The first cluster centroid is chosen to be the
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mean vector of the rows in Zt. We then repeatedly select the next centroid to be
the row in Zt that is closest to being 90◦ from those that have been previously
selected. This process continues until kt centroids have been chosen.

For each time step t > 1, we initialise using clusters from the previous time
step. A simple approach is to map the clusters generated on the embedding for
time t− 1 to Zt. However, as noted previously, not all features and objects will
persist between time steps. To produce an initial clustering at time t, we identify
the intersection of the sets of nodes present in the graphs Gt−1 and Gt. The
clusters containing these are mapped to the embedding Zt, and we compute
the resulting centroids. If less than kt centroids are produced, the remaining
centroids are chosen from the rows of Zt using orthogonal selection as above.
We can then predict memberships for each unassigned row zi of Zt, using a
simple nearest centroid classifier to maximise the similarity:

max
C∈Ct

z
T

i µc (2)

where µc is the centroid of cluster Cc. This classification procedure yields a
predicted clustering for rows in Zt (i.e. a co-clustering of all objects and features
present at time t), which we denote Pt.

Cluster assignment. To recover a clustering from Zt, we apply a constrained
version of k-means clustering to the rows of the embedding, which takes into ac-
count both the internal quality of the current partition, and agreement with the
predicted partition Pt. We distinguish the latter from the membership preserva-
tion objective described in [6] – here we use predicted memberships for missing
objects and features missing from the previous step.

As a measure of current cluster quality, we use vector-centroid similarities
as in Eqn. 2. Historical quality is calculated based on the quantity pred(Pt, Ct),
which denotes the degree to which the predicted cluster assignments in Pt agree
with those in the current clustering Ct. To quantify this agreement, we use a
variant of pairwise prediction strength [10]:

pred(Pt, Ct) =
∑

C∈Ct

1
|C| (|C| − 1)

∑
(zi,zj)∈C

co(zi, zj) (3)

where co(zi, zj) = 1 if both rows were predicted to be coassigned in Pt, or
c(zi, zj) = 0 otherwise.

To combine both sources of information, the clustering objective then be-
comes a weighted combination of two objectives:

J(Ct) = (1− α) ·
(

k∑
c=1

∑
zi∈Cc

z
T

i µc

)
+ α · (pred(Pt, Ct)) (4)

This type of aggregation approach has been widely used for combining sources of
information, such as in dynamic clustering [3] and semi-supervised learning [11].
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1. Build spectral embedding

– Construct the normalised feature-object matrix Ât = D1
− 1

2 AD2
− 1

2 .
– Compute Zt from the truncated SVD of Ât according to Eqn. 1.
– Normalise the rows of Zt to unit length.

2. Initialisation and prediction
– If t = 1, apply orthogonal initialisation to select a set of kt representative

centroids from the representations of the objects in the embedded space.
– For t > 1, recompute the kt−1 centroids based on last clustering but in-

cluding only the embedding of the relevant set of objects/features in the
current space.

– If not all rows of the embedding have been assigned, apply nearest centroid
classification to compute the predicted clustering Pt.

3. Compute clustering
– Apply constrained k-means to rows in Zt, initialised by centroids from Pt.

Fig. 2. Dynamic spectral co-clustering process, as applied for each time step t.

The parameter α ∈ [0, 1] controls the balance between the influence of historical
information and the information present in the current spectral embedding. A
higher value of α allows information from the previous time step to have a greater
influence, yielding a smoother transition between clusterings at successive time
steps. Naturally at time t = 1, the right-hand term in Eqn. 4 will be zero.

Eqn. 4 can be viewed as the standard spherical k-means objective [12], aug-
mented by a constraint reward term. We can find a local solution for this problem
by using an approach analogous to the semi-supervised PCKMeans algorithm
proposed by Basu et al. [11] for clustering with pairwise constraints. Specifically,
we apply an iterative k-means-like assignment process, re-assigning each row
vector zi from Zt to maximise:

max
C∈Ct

(1− α) · zT

i µc + α · pred(zi, C) (5)

where the quantity pred(zi, C) represents the degree to which the predicted
assignment for the row zi in Pt agrees with the assignment of zi to cluster C.
This is given by the proportion of rows in C that were co-assigned with zi in Pt:

pred(zi, C) =
1

|C| (|C| − 1)

∑
(zi,zj)∈C

co(zi, zj) (6)

Once the algorithm has converged to a local solution, Ct provides us with a k-way
partitioning of all nodes in the graph Gt (i.e. features and objects). An overview
of the complete co-clustering process is shown in Figure 2.

3.3 Tracking Clusters Over Time

In the previous section we proposed an approach for co-clustering individual time
step graphs. The second aspect of the offline approach to dynamic clustering
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involves identifying dynamic clusters composed from clusters associated across
time steps. We suggest that previous frameworks for tracking evolving dynamic
communities [2, 13] can be readily adapted to the dynamic bipartite case. In brief,
we construct a set of dynamic cluster timelines, each consisting of a set of clusters
identified at different time steps and ordered by time. At each step in the dynamic
co-clustering process, we match the predicted clusters (corresponding to clusters
from the previous time step) with the actual output of the co-clustering process
outlined in Figure 2. Matches are made based on the step cluster memberships
for subsets of objects and/or features persisting between pairs of consecutive
steps. This matching process will result in a set of dynamic clusters persisting
across multiple steps.

4 Evaluation

4.1 Benchmark Evaluation

To evaluate the performance of the algorithm proposed in Section 3.2, we re-
quired an annotated dataset with temporal information. For this purpose we
consider the bipartite document clustering problem, and use a subset of the
widely-used Reuters RCV1 corpus [14]. The RCV1-5topic dataset1 consists of
10,116 news articles covering a seven month period. Each article is annotated
with a single ground truth topical label: health, religion, science, sport, weather.
These topics are present across the entire time period of the corpus. We consid-
ered a number of different time step durations to split the seven month period
– one month, a fortnight, and one week – yielding 7, 14, and 28 step graphs
respectively. Naturally for this type of data, a subset of features (terms) will
persist across time, while objects (documents) appear in only one time step.

Our evaluations focused on the performance of the dynamic spectral co-
clustering algorithm on each time step graph in the RCV1-5topic dataset, using a
range of values α ∈ [0.1, 0.5] for the balance parameter. As a baseline competitor,
we used multi-partition spectral co-clustering as proposed by Dhillon [1]. To
provide a fair comparison, we use orthogonal initialisation for both algorithms,
and set the number of clusters kt at time t to the number of ground truth topics.

Temporal smoothness. One of the primary motivations for dynamic co-
clustering is to increase smoothness in the transitions between time step clus-
terings. To quantify the degree to which the proposed algorithm can enforce
temporal smoothness, we measure the agreement between successive clusterings
in terms of their normalised mutual information (NMI) [15]. Note that NMI
values were calculated only over the terms common to each pair of consecutive
time steps – documents are not considered as they do not persist.

Figure 3 shows a comparison of agreement values for the three different time
window sizes. Dynamic co-clustering leads to a higher level of agreement than

1 Datasets for this paper are available at http://mlg.ucd.ie/datasets/dynak.html
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standard spectral co-clustering for all three time window sizes. The effect be-
comes significantly more pronounced as α increases. This is to be expected, as
increasing the parameter leads to a higher weighting for the historic information
in Eqn. 4. For α ≥ 0.5, the resulting co-clusterings are often almost identical to
the predicted co-clustering Pt, with the constrained k-means process converging
to a solution after 2-5 iterations.

Clustering accuracy. To quantify algorithm accuracy, we calculated the NMI
between clusterings and the relevant annotated document label information for
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Fig. 3. Comparison of agreement (in terms of NMI) between successive feature clus-
terings, generated by spectral co-clustering and dynamic co-clustering (α ∈ [0.1, 0.5]),
on the RCV1-5topic dataset for monthly, fortnightly, and weekly time steps.
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each time step. Figure 4 illustrates a comparison of the accuracy achieved by
traditional spectral co-clustering and dynamic co-clustering on the RCV1-5topic
dataset for the three different time step sizes. We observed that, for monthly
and fortnightly time steps, the accuracy achieved by dynamic co-clustering was
not significantly higher. However, for the weekly case, there was a noticeable
increase in accuracy. In the case of α = 0.5, dynamic co-clustering lead to higher
accuracy on 21 out of 28 of the weekly graphs.

These results could appear surprising given the increases in temporal smooth-
ness demonstrated Figure 3. However, on closer inspection, it is apparent that
there is a strong concept drift effect in the data, as the composition of topics
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Fig. 4. Comparison of accuracy (in terms of NMI) for document clusterings generated
by spectral co-clustering and dynamic co-clustering (α ∈ [0.1, 0.5]), on the RCV1-5topic
dataset for monthly, fortnightly, and weekly time steps.
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changes over seven months. Therefore, for longer time periods, there is a greater
change in the clusters identified in successive time periods. In such cases we ex-
pect historic information to be less useful. For the shorter weekly time windows,
where there is less scope for drift between steps, we expect the use of historic
information to improve accuracy. These results highlight the importance of se-
lecting an appropriate time step size for offline dynamic clustering.

4.2 Evaluation on Web 2.0 Data

For the second phase of our evaluation, we applied the proposed co-clustering al-
gorithm to a Web 2.0 data exploration problem. Unlike the RCV1 data, subsets
of both objects (bookmarks) and features (tags) persist over time. We use a sub-
set of the most recent data from a collection harvested by Görlitz et al. [16] from
the Del.icio.us web bookmarking portal. The subset covers the 2000 top tags
and 5000 top bookmarks across an eleven month period from January-November
2006. We divided this period into 44 weekly time steps, and for each time step
we constructed a bipartite graph – the nodes represent tags and bookmarks,
and the edges between them denote the number of times each bookmark was
assigned a given tag during the time step. On average, each graph contained
approximately 3750 bookmarks and 1760 tags. For each time step, we applied
dynamic co-clustering for kt = 20 to identify high-level topical clusters.

Figure 5 illustrates the agreement between both tag and bookmark clus-
terings identified by dynamic co-clustering for a balance parameter range α ∈
[0.1, 0.5]. As with the RCV1-topic data, an increase in the value of α leads to clus-
ters that are considerably more similar to those produced in the previous step,
yielding smoother transitions between both feature and object clusters across
time. In the extreme case of α = 0.5, there is effectively no change between the
predicted memberships and the final output of the co-clustering algorithm.

A number of authors (e.g. [17]) have suggested analysing the stability or
“loyalty” of object member-cluster memberships across time. In the bipartite
case, we can quantify this for both objects and features – we suggest the latter can
be used to generate meaningful labels for dynamic clusters. For the tagged data,
we score the fraction of time steps at which a tag is assigned to a given dynamic
cluster. Over a sufficiently large number of steps, for each dynamic cluster we can
produce a robust ranking of tags based on their respective membership stability
scores. Examining the range of α parameters, we found the trade-off afforded
by α = 0.1 lead to the most interpretable label sets. In Table 1 we show the
resulting descriptive labels selected for the dynamic clusters that exhibited the
highest average tag membership stability, together with a suggested topic based
on the tags. These descriptions highlight a range of general areas of interest
covering sites frequently bookmarked by users during 2006.

5 Conclusion

In this work, we have described a spectral co-clustering algorithm for simul-
taneously clustering both objects and features in dynamic feature-based data,
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Fig. 5. Agreement between successive object and feature clusterings, identified by dy-
namic co-clustering (α ∈ [0.1, 0.5]), on the Del.icio.us dataset across 44 weeks.

Topic Top 10 Tags

IT shortcuts, tweaks, opensource, security, troubleshooting, system,
livecd, keyboard, sysadmin, ssh

Education academic, school, mathematics, education, spanish, grammar,
elearning, learning, math, slang

Music & Video podcasts, mp3blog, youtube, television, movie, bittorrent, divx,
torrent, p2p, npr

News & Media newspapers, culture, opinion, society, iraq, news, journalism, envi-
ronment, activism, political

Web Browsing explorer, thunderbird, browser, opera, firefox, extensions, mozilla,
greasemonkey, computing, plugin

Table 1. Top 10 tags for 5 most stable clusters (in terms of tag memberships over
time) identified on the Del.icio.us dataset by dynamic co-clustering (α = 0.1).

represented as a sequence of bipartite graphs. The co-clustering algorithm in-
corporates both current and historic information into the clustering process. A
key aspect of the approach is that it is applicable in domains where objects or
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features alone persist across time steps. In applications on both dynamic text
and bookmark tagging data, the proposed approach was successful in identifying
coherent clusters, while also ensuring a consistent transition between clusterings
in successive time steps.
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Stream-based Community Discovery via

Relational Hypergraph Factorization on Evolving

Networks

Christian Bockermann and Felix Jungermann

Technical University of Dortmund, Arti�cial Intelligence Group

Abstract. The discovery of communities or interrelations in social net-
works has become an important area of research. The increasing amount
of information available in these networks and its decreasing life-time
poses tight constraints on the information processing � storage of the
data is often prohibited due to its sheer volume.
In this paper we adapt a �exible approach for community discovery of-
fering the integration of new information into the model. The continuous
integration is combined with a time-based weighting of the data allowing
for disposing obsolete information from the model building process.
We demonstrate the usefulness of our approach by applying it on the
popular Twitter network. The proposed solution can be directly fed with
streaming data from Twitter, providing an up-to-date community model.

1 Introduction

Social networks like Twitter or Facebook have recently gained a lot of interest
in data analysis. A social network basically consists of various types of entities
� such as users, keywords or resources � which are in some way related to one
another. A central question is often the discovery of groups of individuals within
such networks - the �nding of communities. Thus, we are seeking for a clustering
of the set of entities into subsets where the individuals within each subset are
most similar to each other and are most dissimilar to the entities of all other
subsets. The similarity of entities is provided by their relations to one another.

The relations between di�erent entities are implied by the communication
taking place within the network. Users exchange messages, which contain ref-
erences to other users, are tagged with keywords or link to external resources
by means of URLs. Figure 1 shows a message from the Twitter platform, which
implies relations between the user yarapavan, the URL http://j.mp/fpga-mr

and the tag #ML.
A natural perception of a social network is that of a connected graph, which

models each entity as a node and contains (weighted) edges between related
entities. Such a graph can be easily described by its adjacency matrix: with d
being the number of entities in our social network, we will end up with a (sparse)
matrix A of size d2, where Ai,j = w if entity i is related to j with weight w and
0 otherwise. However this representation is not well-suited for n-ary relations.
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Fig. 1. Example tweets of the Twitter platform

A well-established representation of multi-dimensional relations is given by
tensors [1, 2, 5, 13, 9, 6, 15]. A tensor is a multi-way array and can be seen as a gen-
eralization of a matrix. Tensors have been successfully used in multi-dimensional
analysis and recently gained attention in social network mining [1, 2, 5]. In the
case of social networks, tensors can be used to describe n-ary relations by using
one tensor for each type of relations. Ternary relations of type (user,tag,url) can
then be described by a mode-3 tensor X with

X i,j,k =
{

w if user i, tag j and url k are related
0 otherwise.

More complex n-ary relations will be re�ected in tensors of mode-n.

Tensor based Community Discovery

Community discovery in such tensor representations is mapped to a decomposi-
tion of the tensors into a product of matrices U (i) ∈ Rmi×k which approximates
the tensor

X ≈ [z]
∏

i

×diU
(i).

Each of the matrices U (i) in turn re�ects a mapping of entities to clusters
{1, . . . , k}. The [z] factor is a super-diagonal tensor which serves as a �glue
element� � see Section 3 for details. A variety of di�erent decomposition tech-
niques such as Tucker3 or Parafac (CP) has been previously proposed [3, 10,
7]. Approximation is commonly measured by some divergence function. In [5]
the authors proposed a clustering framework based on tensor decompositions
which has been generalized for Bregman divergences. In [4] Bader et al. used CP
tensor decomposition to detect and track informative discussions from the En-
ron email dataset by working on the ternary relation (term,author,time). These
approaches have been applied to decompose single tensors. In [12] the authors
introduced MetaFac, which is a factorization of a set of tensors with shared
factors (U (q) matrices). This allows for the discovery of one global clustering
based on multiple tensor descriptions of the data. The time complexity for these
tensor decompositions is generally given by the number of non-zero elements of
the tensors (provided that a sparse representation is used).

Stream-based Community Discovery The majority of the tensor decompo-
sition methods so far is based on a static data set. To incorporate streaming data,
the stream is broken down into blocks and the decompositions are re-computed
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for each of the new blocks [12]. A common way to handle time is to introduce a
trade-o� factor of the old data and the data contained in the new blocks.

In [14] Sun et al. presented dynamic tensor analysis. They handle n-ary rela-
tions by tensor decomposition using stream-based approximations of correlation
matrices. They also presented a stream-based approach which is not really com-
parable to ours. They are processing a tensor containing data by unfolding the
tensors to every single mode and after that they are handling every column of
the resulting matrices in a stream to update their model. In reality, we can-
not assume such an original tensor to be given. In contrast to [14], we consider
multiple relations which have to be updated at each iteration instead of just one.

Contributions

The critical bottle-neck within the tensor decomposition methods often is their
runtime. As of [12], the runtime for a decomposition of a set of tensors can be
bound by O(N), where N is the number of entries in all tensors. However, this
number can be rather large � we extracted about 590k entries (relations) from
200k messages of the Twitter platform.

In this work, we present an adaption of the MetaFac framework proposed
in [12]. Our contributions are as follows:

1. We integrate a sampling strategy into the MetaFac framework. E�ectively
we limit the maximum size of the tensors � and therefore N � and use a
least-recently-used approach to replace old entities if the limit of an entity
type exceeds.

2. We introduce a time-based weighting for relations contained within the ten-
sors. These weights will decrease over time, re�ecting the decreasing impor-
tance of links within the social networks.

3. We present an adaption of the MetaFac factorization which allows for a
continuous integration of new relations into the factorization model. Instead
of running the optimization in a per-block mode, we provide a way to simul-
taneously optimize the model while new data arrives.

4. Finally, we provide an evaluation of our proposed adaptions on real-world
data.

The rest of this paper is structured as follows: Section 2 formalizes the prob-
lem and presents theMetaFac approach on which this work is based. Following
that, we give an overview of tensor decomposition in Section 3 and provide the
basics for the multilinear algebra terminology required. In Section 4 we intro-
duce our stream-based adaption of the MetaFac algorithm. We evaluated our
streaming approach on real world data (Section 5) and present our �ndings in
Section 6.

2 Multi-Relational Graphs

As denoted above, a social network generally consists of a set of related entities.
In general, we are given sets V1, . . . , Vk of entities of di�erent types, such as
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users, keywords or urls. Let Vi be the i-th type of entities, e.g. V1 corresponds
to users, V2 refers to keywords and so on. A relation then is a tuple of entities,
e.g. a user-keyword relation (u1, k1) is an element of V1 × V2. We also refer to
R := V1 × V2 as the relation type R of the relation (u1, k1).

The entities are given as strings, and we de�ne a mapping ϕi for each entity
type Vi, which maps entities to integers ϕi : Vi → {0, . . . , |Vi|−1}. The mapping
ϕi can be some arbitrary bijective function. For some w ∈ Vi we refer to ϕi(w) as
the index of w. We denote the string of an entity given by its index j by ϕ−1(j).
This allows us to identify each entity by its index and enables us to describe a
set of relations between entities by a tensor.

A tensor X is a generalization of a matrix and can be seen as a higher-order
matrix. A mode-k tensor X ∈ RI1×...×Ik is a schema with k dimensions where
X i1,...,ik

∈ R, ij ∈ Ij denotes the entry at position (i1, . . . , ik). For k = 2 this
directly corresponds to a simple matrix whereas k = 3 is a cube.

With the mappings ϕi of entities and the tensor schema, a set of relations

X ⊆ Vi1 × . . .× Vil(i) can be de�ned as a mode-k tensor X ∈ R|Vi1 |···|Vil(i) | with

X ν1,...,νl(i) =
{

1 if (ϕ−1
1 (ν1), . . . , ϕ−1

l(i)(νl(i))) ∈ X

0 otherwise
(1)

where ϕ−1
i (νi) denotes the mapping ϕi that corresponds to the i-th relation type,

and Vi1 × . . .× Vil(i) are the indexes of the entity types used in the relation i.

2.1 MetaGraph

Following the above approach for k = 2, we would be considering only binary
relations, which correspond to edges in the graph representation of the social
network. Thus the adjacency matrix for such a graph would be resembled within
a collection of mode-2 tensors.

MetaGraph introduced by [12] is a relational hypergraph representing multi-
dimensional data in a network of entities. A MetaGraph is de�ned as a graph
G = (V,E), where each vertex corresponds to a set of entities of the same type
and each edge is de�ned as a hyper-edge connecting two or more vertices. By the
use of hyper-edges, the MetaGraph captures multi-dimensional relations of the
social network and therefore provides a framework to model n-ary relations.

Given the notion of relation types de�ned above, each relation type Ri =
Vi1 × . . .×Vil(i) corresponds to a hyper-edge in the MetaGraph G. Each relation
type Ri = (vi1 , . . . , vil

) observed within the social network is re�ected in a hyper-
edge of the MetaGraph. Given a �xed set of relation types R1, . . . , Rn, we can
model the occurrence of relations of type Ri by de�ning a Tensor X (i) for each
Ri as described in (1).

This approach results in a description of the social network by means of dif-
ferent relational aspects R1, . . . , Rn. Each type Ri of relations for which a tensor
is de�ned, re�ects a subset of all the relations of the network. Capturing the com-
plete set of relations among all entities would obviously result in |P(V )| = |V |2
di�erent tensors.
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2.2 Community Discovery Problem

With the use of tensors we have an approximated description of our social net-
works by means of a set of relation types R1, . . . , Rn. Thus we can describe our
network graph G by means of the data tensors which are de�ned according to

the observed relations R1, . . . , Rn in G, i.e. G 7→
{

X (1), . . . ,X (n)
}
. Based on

this description we seek for a further partitioning of the tensor representation
into clusters of entities.

The solution proposed in [12] is a factorization of the tensors X (i) into prod-

ucts of matrices U (q) which share a global factor [z] and some of the U (q) ma-

trices. Let X (i) be the tensor describing Vi1 × . . .× Vil(i) , then we can factorize
this as

X (i) ≈ [z]
l(i)∏
j=1

×jU
(ij). (2)

Within this factorization, the [z] factor is a super-diagonal tensor containing

non-zero values only at positions (i, i, . . . , i). The U (q) are R|Vq|×k matrices,
where |Vq| is the number of entities of the q-th entity type and k is the number
of communities we are looking for. For tensors which relate to relation types
with overlapping entity types (e.g. (user,keyword,tag) and (user,keyword,url))

the corresponding factorizations share the related U (q) matrices (e.g. Uuser and
Ukeyword). The ×j is the mode-j product of a tensor with a matrix.

With an appropriate normalization as used in [12], the U (q) matrices only
contain values of [0, 1] which can be interpreted as probability values. Based on

this, the value of U
(q)
l,m can be seen as the probability of entity ϕ−1

q (l) belonging
to cluster m ∈ {1, . . . , k} and we can simply map an entity to its cluster C(l) by

C(l) = arg max
m

U
(q)
l,m. (3)

Thus, the community discovery is mapped onto the simultaneous factoriza-
tion of a set of tensors. The objective is to �nd a factorized representation,
which resembles the original data tensors {X (i)} as closely as possible. Given
some distance measure D : RI1×...×Il ×RI1×...×Il → R this leads to the following
optimization problem:

arg min
[z],{U(q)}

n∑
i=1

D(X (i), [z]
l(i)∏
j=1

×jU
(ij)) (4)

3 MetaFac - Metagraph Factorization

As mentioned before, the Metagraph is a description of a multi-relational graph
G by means of a set of tensors {X (i)}. The objective of the MetaFac algo-

rithm is to derive tensor decompositions of the X (i) with shared factors [z], U (q)
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which closely resemble the X (i). To measure the approximation, [12] proposed
the Kullback Leibler divergence DKL, thus implying the following optimization
problem:

arg min
[z],{U(q)}

n∑
i=1

DKL(X (i), [z]
∏

i1,...,il(i)

×jU
(ij)) (5)

To solve for (5) the authors derived an approximation scheme by de�ning

µ(i) = vec(X (i) � ([z]
l(i)∏
j=1

×jU
(ij))) (6)

S(i) = fold(µ(i) ∗ (z ∗UMi ∗ · · · ∗U1i)T ) (7)

where � is the elementwise division of tensors, and ∗ is the Khatri-Rao product
of matrices. These values are then be used to update z and the {U (q)} iteratively
using

z =
1
n

n∑
i=1

acc(S(i),Mi + 1) (8)

U q =
∑

l:el∼vq

acc(S(i), q,Me + 1) (9)

where acc is the accumulation-function of tensors and Mi + 1 is the last mode
of tensor S(i). This update is carried out iteratively until the the sum in eq. (4)
converges.

The batched version of theMetaFac approximation can be derived by using
the KL-divergence resulting in an appropriate approximation scheme, proposed
by the following update function:

z = (1− α)
n∑

i=1

acc(S(i),Mi + 1) + αzt−1 (10)

U (q) = (1− α)
∑

l:el∼vq

acc(S(j), q,Mi + 1) + αU
(q)
t−1 (11)

4 Stream-based Community Discovery with Tensors

In this section we present our adaptions of the MetaFac framework by intro-
ducing a sampling-based tensor representation of graphs and using time-stamped
relations to induce a decrease of impact of relations to re�ect the decreasing im-
portance of Twitter messages.

Given a social network we are provided with a sequence M of messages
M := 〈m0,m1, . . .〉 where each message mi implies a set of relations R(mi).
Let τ(mi) ≥ 0 be the arrival time of mi. This results in an overall sequence of

46



relations S := 〈R(m0),R(m1), . . .〉 which are continuously added to the evolving
social network graph G. Hence we are faced with a sequence 〈Gt0 , Gt1 , . . .〉 of
graphs where each Gti contains the relations of all messages up to time ti.

Let t, t′ be points in time with t < t′. In the following we will by G[t,t′] denote
the graph implied by only the messages of time-span [t, t′], hence Gt = G[0,t].
Accordingly the graphs are represented by the corresponding tensor as G[t,t′] 7→{

X (1), . . . ,X (n)
}

[t,t′]
.

4.1 The MFstream Algorithm

The MetaFac approach uses a sliding window of some �xed window size ws to
manage streams. Given a sequence of time points tj for j ∈ N with tj = tj−1+ws,

it factorizes {X (i)}[tj−1,tj ] based on a trade-o� factor α as denoted in equation
(10) and (11).

Our MFstream algorithm interleaves the optimization of MetaFac by
adding new relations during optimization and uses a time-based weighting func-
tion to take into account the relations' decreasing importance. Additionally, the
optimization is carried out over only a partial set of relations as older relations
tend to become obsolete for adjusting the model. We will present the time-based
weighting and the sampling strategy in the following and present the complete
algorithm in 4.4.

4.2 Time-based Relation Weighting

So far we considered the property of two or more entities to be related as
binary property, i.e. if entities i, j and k are related, then X i,j,k = w, with
w ∈ {0, 1}. With the extraction of relations from time-stamped messages � as
provided within the Twitter platform � we are interested in incorporating the
age of these relations to re�ect the decreasing up-to-dateness of the information.

Hence we associate each relation r ∈ Ri with a timestamp τ(r) of the time
at which this relation has been created (i.e. the time of the message from which
it has been extracted). With S being a set of relations extracted from messages
this leaves us with the tensor representation of relation type Ri = Vi1×. . .×Vil(i)

as

X (i)
i1,...,il(i)

=
{

τ(r) if r = (ϕ−1
1 (ν1), . . . , ϕ−1

l(i)(νl(i))) ∈ S

0 otherwise
(12)

In addition to that, we introduce a global clock, denoted by τmax, which
represents the largest (i.e. the most recent) timestamp of all relations observed
so far, i.e. τmax := max { τ(r) | r ∈ X }. Storing the timestamp τ(r) for each
entry r in the tensors allows us to de�ne a weighting function for the relations
based on the global clock value. A simple example for a parametrized weighting
function is given as

ωα,β(r) :=
α

α + 1
β (τmax − τ(r))

. (13)
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4.3 Sampling

The runtime of each iteration of the approximation scheme is basically mani-
fested by the maximum number N of non-zero entries in the tensors. To reduce
the overall optimization time, we restrict the size of the tensors, i.e. number of
entities of each type, by introducing constants Cq ∈ N and providing new entity
mappings ϕq by

ϕq : Vq → V q with V q = {1, . . . , Cq}.
This has two implications: Clearly, these ϕq will not be bijective anymore if

|Vq| > Cq. Moreover, the size of the U (q) matrices will also be limited to Cq × k.
We deal with these imposed restrictions by de�ning dynamic entity mappings

ϕq, which maps a new entity e (i.e. an entity that has not been mapped before)
to the next free integer of {1, . . . , Cq}. If no such element exists, we choose
f ∈ {1, . . . , Cq} as the element that has longest been inactive, i.e. not been
mapped to by ϕq. The relations a�ected by f are then removed from all tensors

and the current cluster model, i.e. U
(q)
f,i = 1

k ∀ i = 1, . . . , k.

E�ectively this introduces a �current window� {X (i)} of relations, that a�ect
the adaption of the clustering in the next iteration. In contrast to the original
MetaFac approach this also frees us from having to know the number of entities
and a mapping of the entities beforehand.

4.4 Continuous Integration

With the prerequisites of section 4.2 and 4.3 we now present our stream adap-
tion MFstream as Algorithm 1. MFstream is a purely dynamic approach of
MetaFac which adds new relations to the data tensors {X (q)} and �ts the

model [z], {U (q)} after a speci�ed number of T messages. This di�erentiates our
approach from MetaFac as the optimization is performed by running a single
iteration of the optimization loop � with respect to the time-based weighting
� after adding the relations of T messages to the tensors. The time complex-
ity per iteration of the MFstream algorithm is the same as for the MetaFac

algorithms (see Section 3). Due to the �xed tensor dimensions, the maximum
number of non-zero elements N is constant, which implies O(1) runtime.

5 Evaluation

For the evaluation of our approach we extracted relations of the Twitter website.
Twitter is a blogging platform giving users the opportunity to inform other users
by very small snippets of text containing a maximum of 140 characters. In spite
of such limitations users are not only posting messages � called tweets � but also
enriching their tweets by tags, urls or mentions, which allows users to address
other users. This brings up the entity types {user, tweet, tag, url }.

To discover clusters on the above mentioned entities present on the Twitter

platform, we constructed a metagraph for Twitter. The entity types themselves
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Algorithm 1 The MFstream algorithm.
1: Input: MetaGraph G = (V, E), Stream M = 〈mi〉, capacities Cq, number of clusters k, constant

T ∈ N
2: procedure MFstream

3: Initialize z, {U(q)}, c := 0
4: while M 6= ∅ do

5: m := mc, c := c + 1 . Pick the next message from the stream

6: for all (rj1 , . . . , rjl(j) ) ∈ R(m) do

7: for all p = 1, . . . , l(j) do

8: if ϕp(rjp ) = nil then . Replacement needed?

9: if |ϕp| = Cq + 1 then

10: f∗ := arg minf∈ϕp
τ(f)

11: U
(p)
f∗,s

:= 1
k ∀ s = 1, . . . , k

12: else

13: f∗ := min
f∈{1,...,Cp}

ϕ−1
p (f) = nil . Pick next unmapped f∗

14: end if

15: ϕp(rjp ) := f∗, τ(f∗) := τ(m)

16: end if

17: end for

18: end for

19: νi := ϕp(rji
) for i = 1, . . . , l(j)

20: X (p)
ν1,...,νl(j)

:= τ(m) . Update corresponding tensor

21: if c ≡ 0 mod T then . Single opt.-iteration every T steps

22: for all i ∈ {1, . . . , n} do

23: compute {S(i)} by eq. (7) and (6)
24: update z by eq. (8)
25: end for

26: for all j ∈ {1, . . . , q} do

27: update {U(j)} by eq. (9)
28: end for

29: end if

30: end while

31: end procedure

imply as much as P(V ) = 24 possible relation types, some of which will not
arise or are redundant. E.g. since each tweet is written by a user, there is no
relation (tweet,tag) which does not also refer to a user. Hence, our MetaGraph is
based on the relation types {R1, . . . , R8} given in Fig. 2. We extracted 1000 seed

� R1: a user writing a tweet.
� R2: a user writing a tweet containing a spe-

cial tag.
� R3: a user writing a tweet containing a spe-

cial url.
� R4: a user mentioning another user in a

written tweet.
� R5: a user writes a tweet containing a tag

and an url.

� R6: a user writing a tweet containing an
url and mentioning another user.

� R7: a user writes a tweet containing a tag

and a mentioned user.
� R8: a user mentioning another user in a

tweet containing a tag and an url.

Fig. 2. Relation types for the Twitter metagraph

users and their direct friends and followers. Followers are following a user which
means that messages of the user are directly visible for the followers at their
twitter website. Friends are all the users a particular user is following. We used
an English stopword �lter to extract users which are writing in English language
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and processed all friends and followers of the seed users, revealing about 478.000
users. For these, we extracted all the messages written between the 19th and 23rd
of February 2010. Out of these 2.274.000 tweets we used the tweets written at the
19th of February for our experiments, leaving about 389.000 tweets from 41.000
users.

5.1 Evaluating the Model

For a comparison of the clusterings produced by MFstream and theMetaFac

approaches we employ the �within cluster� point scatter [8]. This is given as

W (C) :=
K∑

k=1

Nk

∑
C(i)=k

‖ xi − xk ‖2 (14)

where K is the number of clusters, xi is a member of a cluster C(i) and xk is
the centroid of a cluster k. It can be seen as a sum of dissimilarities between
elements in the particular clusters.

We created clusterings (always using k = 10) on a stream of 200k messages
with MFstream and restricted the tensor dimensions to Cuser = Ctweet =
5000 and Ctag = Curl = 1000. We employed several weighting functions such
as ω1,1, ω10,1000 and ω100,1000 as well as a binary weighting which equals the
unweighted model (i.e. w ∈ {0, 1}).

To be able to compare the clusterings of MFstream and MetaFac, we
processed messages until the �rst entity type Vi reached its limit and stored the
resulting clustering on disk. Then we reset the ϕ mappings and started anew, re-
vealing a new clustering every time an entity type i reached Ci, revealing a total
of 93 clusterings. We applied MetaFac on the messages that have been used to
create these 93 clusterings and computed their similarities using W (C). Figure
5 shows that MFstream delivers results comparable to MetaFac for di�er-
ent weighting functions. Figure 5 shows that using timestamped values instead
of binary values for calculation of the MFstream delivers better results. The
decrease of T , which implies a larger number of optimization steps, intuitively
increases the quality of MFstream as is attested by Figures 4 and 6.

In addition, we made experiments to show the e�ect of the update frequency
T on the runtime. Figure 7 shows the relative runtime of MFstream where
T = 1 corresponds to the baseline at 1.0. Raising T results in shorter runtime,
since the model is updated less frequently, which is the major time factor. The
upper curve shows the runtime for updating after 5 relations (T = 5), the middle
one shows T = 10, and the latter refers to T = 50.

Varying sizes of entity types by the Cq results in clusterings of di�erent
numbers of entities, which cannot be directly compared by W (C). Hence, we
normalized W (C) by the variance V of each clustering. Larger models of course
incorporate more information, which results in more stable clusterings as can be
seen in Figure 8.
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Weighting W (C) (mean) std. deviation

MetaFac 5.685 · 107 1.32 · 107

binary 7.511 · 107 2.00 · 107

ω1,1 6.142 · 107 1.57 · 107

ω1,1000 6.002 · 107 1.38 · 107

ω10,1000 6.272 · 107 1.43 · 107

ω100,1000 6.724 · 107 1.55 · 107

Fig. 3. Mean W (C) of di�erent weights
(T = 20), comparing MFstream and
MetaFac

T W (C) (mean) std. deviation

5 6.043 · 107 1.35 · 107

10 6.133 · 107 1.36 · 107

50 6.058 · 107 1.40 · 107

100 6.465 · 107 1.49 · 107

250 10.882 · 107 3.13 · 107

500 43.419 · 107 11.47 · 107

Fig. 4. Mean of W (C) with di�erent up-
date steppings T (weight used: ω1,1000)

Fig. 5. W (C) for MFstream compared
to the MetaFac clusterings.

Fig. 6. Relative W (C) of MFstream us-
ing di�erent update step sizes T

Fig. 7. Rel. runtime of MFstream using
di�erent numbers of relations for update.

Fig. 8. W (C)/V of MFstream using dif-
ferent sizes of models.

6 Conclusion and Future Work

In this work we presented MFstream, a �exible algorithm for clustering multi-
relational data from evolving networks, derived from the MetaFac framework
by [12]. The main improvement of our approach is the reduction of the approx-
imation scheme on to a small relevant window of relations. The proposed time-
based weighting of relations contributes to this reduction by removing obsolete
information that is not relevant to the model adaption anymore. MFstream is
able to handle relations containing new, unseen entities by o�ering a replacement
strategy for the set of entities considered at optimization time. This makes it
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especially suitable to continuously integrate new data from a stream. We eval-
uated MFstream on real-world data crawled from the Twitter platform and
showed its comparability to MetaFac.

The use of backend storage for o�-loading obsolete data that can be re-
imported into the optimization window at a later stage might be an interesting
advancement. Also, concurrent criteria runtime and quality o�er a starting point
for multi-objective optimization. Additionally, recent works [11] motivate further
improvements to handle a dynamic number k of clusters within MFstream.
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Abstract. Disease candidate gene prioritization addresses the associa-
tion of novel genes with disease susceptibility or progression. Network-
based approaches explore the connectivity properties of biological net-
works to compute an association score between candidate and disease-
related genes. Although several methods have been proposed to date,
a number of concerns arise: (i) most networks used rely exclusively on
curated physical interactions, resulting in poor coverage of the Human
genome and leading to sparsity issues; (ii) most methods fail to incorpo-
rate interaction confidence weights; (iii) in some cases, relevance scores
are computed as local measures based on the direct interactions with the
disease-related genes, ignoring potentially relevant indirect interactions.
In this study, we seek a robust network-based strategy by evaluating the
performance of selected prioritization strategies using genes known to be
involved in 29 different diseases.

Keywords: protein-protein interaction, network, random walk, disease
candidate genes, prioritization

1 Introduction

Biomarkers play a crucial role in modern medical practice as a means of im-
proving accuracy in diagnosis, prognosis and treatment. In particular, research
has been actively devising associations of novel genes with disease susceptibility
or progression, relying on high-throughput technologies and the proliferation of
accessible resources of biological data to enable large-scale genome-wide studies.

Most computational methods proposed for disease gene prioritization aim to
identify putative candidates based on their similarity with genes known to be
involved in the occurrence of a particular phenotype, according to: intrinsic prop-
erties, functional annotations, coherent transcriptional responses via expression
data analysis, orthologous relations with genes from model organisms or even
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co-occurrence in the literature [22]. Alternative strategies adopt a systemic ap-
proach and explore the topology of biological networks, including protein-protein
interactions, regulatory data or metabolic pathways. These approaches rely on
the assumption that genes co-occurring in a particular network substructure or
interacting tend to participate together in related biological processes to identify
novel genes based on their linkage with the known disease genes [22].

Integrative network-based analysis has been addressed [8,11,15,16,20,23,26],
combining knowledge from distinct resources in association networks to unravel
novel disease genes. However, most of these approaches rely solely on physical in-
teractions [8,23], potentially inferred via orthologous relations with model organ-
isms [26], often resulting in insufficient coverage of the Human genome. Others
include additional interactions predicted from coexpression, pathway, functional
or literature data, but still devise sparse networks [11,15]. Although the risk for
false positive interactions may rise, the integration of knowledge from heteroge-
neous sources generates denser networks which tend to be less biased toward a
particular evidence, more robust to noise and thus able to perform better in the
prioritization task [16].

Network-based prioritization methods further differ in how they define the
ranking of the candidates from the known disease-related genes. Local measures
are usually computed based on the direct links or shortest paths between the
candidates and the disease-related genes [15, 16], while global strategies diffuse
or smooth a disease-related signal through the network. In this work, we evalu-
ate whether the latter should be preferred over the former, as the inclusion of
indirect associations is able to compensate for missing linkage, ultimately miti-
gating sparsity and “small world” effect issues [20], and global similarities have
recently been shown to outperform local measures [15].

Random walks or diffusion kernels arise as natural candidates for the dif-
fusion approach and their application to prioritization has been proven effec-
tive [6, 8, 15, 23]. Not only they compute fast using iterative methods, even for
large networks [6], they are also able to straightforwardly establish a ranking
of the candidates based on the global connectivity of the network. Neverthe-
less, some of the proposed methods [8, 15] ignore or fail to incorporate weights
expressing the confidence on the evidence of every particular association [16].
Furthermore, their scores are based on the steady-state probability obtained af-
ter a large number of iterations or upon convergence. In this study, we assess the
claim that limited diffusion is usually sufficient for ranking purposes [9, 10] and
on our intuition which leads us to expect the prior knowledge to be somehow
lost or of very little importance to the ranking after diffusing to a large extent.

Throughout this paper, we address the aforementioned topics by analyz-
ing the performance of different prioritization strategies in three case studies:
(i) Integrative heterogeneous protein association network vs integrative protein-
protein physical interaction network (PPPIN); (ii) Global ranking measure vs
local ranking measure; (iii) Confidence weights, degree of diffusion and parame-
ter variation.
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2 Methods

A protein-protein association network can be described as a weighted undirected
graph, a special case of a weighted directed graph, defined as G = (V,E), where
V is the set of vertices and E is the set of edges. Each vertex in V and edge
in E correspond to a gene and an association between two genes, respectively.
Let A and D denote the adjacency and diagonal matrices of G, respectively.
Auv is the weight w(u, v) of the edge (u, v) between source u and target v.
Also, Duu =

∑
(u,v)∈E Auv,∀u ∈ V , that is, the sum of the weights of the edges

for which u is the source. Prioritizing disease candidates thus formulates as
obtaining a ranking on V given a set S ∈ V of seed genes. For the local scoring
scheme Endeavour’s measure was used [2]. As global network-based strategies,
the PageRank with priors and Heat Diffusion random walks were applied: an
initial signal expressing the relevance of the genes in the context of the disease
in the form of a preference vector, p(0), is diffused over the network by performing
a limited number of iterations, N .

2.1 Endeavour’s Measure: Intersection of Interactors

Endeavour computes a local network-based measure, whereby the score of each
gene is computed as the overlap between the sets of genes interacting with the
seed genes and those interacting with the candidate gene itself [2]:

Sv =
∑

(u,v)∈E

intSeeds(u) intSeeds(u) =
{

1 , if ∃z ∈ S : (u, z) ∈ E
0 , otherwise

2.2 Heat Diffusion and PageRank with Priors

Heat Diffusion is a discrete approximation of the heat kernel [28] first introduced
in [9], in which the rate of diffusion is controlled by a non-negative parameter,
the heat diffusion coefficient t. The iterative equation is given by

p(i+1)
v =

(
1− t

N

)
· p(i)

v +
t

N

∑
(u,v)∈E

p(i)
u ·

Auv

Duu
.

PageRank with priors is an extension of the original PageRank algorithm to
consider the original probability distribution of the scores [25]. A parameter β,
called “back probability” expresses the probability of jumping to the initial node
at each iteration. The iterative equation is

p(i+1)
v = β · p(0)

v + (1− β) ·
∑

(u,v)∈E

p(i)
u

Auv

Duu
.
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3 Results

Evaluation sudies were performed using Human data from the STRING database
[12] and a PPPIN from Entrez Gene [1] as representatives of protein-protein
heterogeneous association and physical interaction networks, respectively. 620
genes known to be related with 29 diseases were used as prior knowledge to
prioritize candidates in a leave-one-out cross-validation scheme.

3.1 Data and Preprocessing

Networks The STRING database [12, 18] integrates physical interactions and
predicted associations based on knowledge obtained from heterogeneous sources
of transcriptional, functional, metabolic, literature and orthology data. For a fair
comparison with Endeavour, we downloaded and parsed version 7.1 of STRING
[18], including evidences from MINT [7], HPRD [19], BIND [4], DIP [27], Bi-
oGRID [5], KEGG [13] and Reactome [24] databases. Associations from STRING
v8.2 [12] were also retrieved to assess to which extent the additional knowledge
integrated from IntAct [14], PID [21] and GO [3] protein complexes would im-
prove the prioritization performance relative to the previous release. A PPPIN
was downloaded from the NCBI Entrez Gene FTP repository [1]. 130797 Human
interactions were selected from 448534 entries, for which both interactant genes
were tagged with tax ID 9606. From these, 4611, 51275 and 74911 were originally
from BIND [4], BioGRID [5] and HPRD [19], respectively. Genes’ identifiers
followed Entrez Gene nomenclature. Preprocessing of these networks involved
filtering redundant edges and devising an explicit representation of a directed
graph. In the case of the STRING releases, original weights were used to express
the confidence of every association, while in the PPPIN all edges were attributed
weight 1. STRING v7.1 contained 16050 genes and 698534 unique associations.
STRING v8.2 covered 17448 Human genes with 1256016 non-redundant associa-
tions. Finally, the PPPIN had 47873 physical interactions between 10175 genes.

Seed sets 620 disease genes were selected from the OMIM [17] database span-
ning 29 disease-specific sets, with an average of 21 genes per set. As genes were
identified according to Ensembl nomenclature, the seeds could be directly used
with STRING. For the PPPIN, however, we performed a conversion between En-
sembl and Entrez Gene identifiers. A mapping was parsed from a file downloaded
from the NCBI Entrez Gene FTP repository [1] and used to generate the corre-
sponding seed sets using Entrez Gene names. Additionally, we filtered the genes
absent from at least one of the networks or for which the conversion between
Ensembl and Entrez did not succeed. In total, 94 seed genes were lost (14 with
no conversion, 80 absent from the PPPIN). A single occurrence of a gene with
several Entrez aliases happened. In this case, only the alias present in the PPPIN
was kept. For validation purposes, seed sets containing randomly selected genes
were generated. The number of seeds in each set was randomly chosen in the
range [5, 100] and the genes were randomly selected from the Human STRING
v8.2 network. 546 genes were retrieved.
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3.2 Evaluation Measures and Experimental Setting

Evaluation measures Ideally, in a leave-one-out cross-validation scheme, we
would expect the prioritization strategy to rank the left-out gene known to be
related with the disease at the top. Under this assumption, we assess the perfor-
mance of the scoring methods overall and per disease based on four evaluation
measures: the number of left-out genes ranked in the top 10 and 20 positions,
the Area under the ROC curve (AUC) score, and the mean average precision.

For a given combination of diffusion parameter α and number of iterations
N , n rankings are generated (one per left-out gene). The AUC score is given by

SAUCα,N =
n−∑n

k=1
r
(N)
k

m
(N)
k

n
,

where r(N)
k is the ranking position of the kth left-out gene in the kth ranked list

and m
(N)
k is the number of ranked genes in the kth list.

Mean average precision (MAP) is an evaluation measure that combines preci-
sion and recall. Essentially, MAP averages the precisions computed by truncating
the list after each of the relevant entities is found. Only one relevant entity must
be found, the left-out gene. Thus, precision at rank r is either 0, before it has
been found, or 1

r . Moreover, in our setting the ranked lists contain equal number
of genes, allowing us to simplify our MAP score for n lists with the same size to:

SMAPα,N =

∑n
k=1

1

r
(N)
k

n

Experimental setting In each validation run, one different gene was deleted
from the set of seed genes and added to 99 randomly selected candidate genes.
A ranking method was then applied to compute a score for every gene in the
network. Finally, the ranking of the 100 candidate genes was defined according
to the retrieved scores. In the case of the Heat Diffusion, the scores of the seed
genes were initialized to 1. For PageRank, an initial seed score of 1/|S| was used.
Performance was assessed by computing AUC and MAP scores, and counting the
number of left-out genes ranked in the top 10 and top 20 positions, both overall
and per disease. We sought the best performance of each method using several
combinations of parameters. Heat diffusion coefficients t and back probabilities β
of 0.1, 0.3, 0.5, 0.7 and 0.9 with 2, 5, 10, 15 and 20 iterations using STRING and
2, 5, 10, 20, 100 iterations using the PPPIN were tried. In the case studies, results
are shown only for the parameter settings which achieved the best performance
in each case. We further ranked the randomly generated seed sets using the leave-
one-out cross-validation in STRING v8.2 to assess whether the Heat Diffusion
method was able to take advantage of the information contained in the seed sets
to improve the identification of the left-out seeds. Overall, AUC and MAP scores
of 0.501 and 0.05 were achieved and only 57 and 92 genes were ranked in the top
10 and 20 positions. Similar results were obtained per seed set (data not shown),
in accordance with what would have been expected for random seed sets.
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3.3 Case Studies

Heat Diffusion and PageRank with priors achieved similar results in both net-
works (Table 1). For this reason, we abstain ourselves of comparing the results
of both random walks, considering the results equivalent when applied to the
same network. Throughout this section, we will always refer to one of them as
a representative of a global measure. A brief description of the prioritization
performances obtained for each case study follows.

Method Network Parameters AUC MAP TOP 10 TOP 20 #BRM #BRN

HeatDiffusion STRING8 t = 0.3, N = 10 0.962 0.711 484 502 26% 68%

PageRank STRING8 β = 0.7, N = 2 0.961 0.693 485 502 20% 69%

HeatDiffusion PPPIN t = 0.5, N = 2 0.862 0.352 301 373 40% 11%

PageRank PPPIN β = 0.5, N = 2 0.861 0.349 304 384 38% 10%

Table 1. Results of Heat Diffusion and PageRank using both STRING v8.2 and the
PPPIN. ’#BRM’ (better ranked by method in each network) shows the percentage of
genes with a higher rank in a one-to-one comparison of the ranks per gene for both
methods in each network. ’#BRN’ (better ranked by network for each method) shows
the percentage of genes with a higher rank in a one-to-one comparison of the ranks per
gene for both networks using the same method. Total number of genes: 526.

Global measure vs Local measure A network-based global ranking was
obtained using the Heat Diffusion method with t = 0.3, N = 10, while Endeavour
[2] was used to score the genes using its local measure. Both rankings were
based on STRING v7.1, the version included in Endeavour. Overall, the random
walk global measure outperformed the local interaction overlap in all evaluation
measures (see Table 2), that is, the higher number of left-out genes was ranked
on the top positions, also achieving better ranks in general, using the latter.

Method Network AUC MAP TOP 10 TOP 20

HeatDiffusion (t = 0.3, N = 10) STRING v7.1 0.942 0.643 536 569

Endeavour STRING v7.1 0.806 0.326 393 464

Table 2. Overall results of Heat Diffusion and Endeavour using STRING v7.1. Total
number of genes: 620.

Regarding the AUC scores per disease (see Table 3), the Heat Diffusion
method outperformed Endeavour in all diseases except Ehlers-Danlos syndrome
(0.944 opposed to 0.948, respectively). This was also the only disease for which
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the number of genes ranked in the top 20 positions was higher using the local
measure (Endeavour was able to rank one more gene in the top 20). However,
the MAP score was better for the Heat Diffusion method and, in fact, 9 of the 10
seed genes ranked in the top 10 positions by both methods scored higher using
the global measure.

For the remaining diseases, Heat Diffusion was always able to rank the same
or a higher number of genes in both the top 10 and the top 20 positions. Regard-
ing the MAP scores, Heat Diffusion outperformed Endeavour in every disease
and was able to rank all genes of both amyotrophic lateral sclerosis and Usher
syndrome in the first position.

Heat Diffusion Endeavour
STRING v7.1 STRING v7.1

Disease #Genes AUC MAP Top10 Top20 AUC MAP Top10 Top20

Alzheimer’s disease 8 0.934 0.586 7 7 0.930 0.376 6 7

amyotrophic lateral sclerosis 4 0.990 1.000 4 4 0.975 0.550 4 4

anemia 44 0.928 0.499 36 40 0.718 0.187 21 30

breast cancer 24 0.930 0.608 21 22 0.782 0.214 13 19

cardiomyopathy 22 0.973 0.812 21 21 0.862 0.579 18 18

cataract 20 0.890 0.693 15 16 0.883 0.363 13 17

Charcot-Marie-Tooth disease 14 0.889 0.752 12 12 0.738 0.361 8 8

colorectal cancer 21 0.961 0.697 19 20 0.918 0.389 17 20

deafness 42 0.941 0.642 37 40 0.732 0.186 17 25

diabetes 26 0.967 0.731 22 26 0.820 0.232 17 21

dystonia 5 0.986 0.867 5 5 0.938 0.381 4 5

Ehlers-Danlos syndrome 10 0.944 0.650 9 9 0.948 0.296 9 10

emolytic anemia 13 0.965 0.683 12 12 0.737 0.269 8 8

epilepsy 15 0.989 0.933 15 15 0.749 0.612 10 10

ichthyosis 9 0.881 0.598 8 8 0.778 0.226 6 6

leukemia 112 0.922 0.428 88 100 0.807 0.203 68 86

lymphoma 31 0.920 0.420 24 25 0.796 0.275 19 22

mental retardation 24 0.918 0.629 21 21 0.624 0.110 7 11

muscular dystrophy 24 0.981 0.780 24 24 0.869 0.390 19 21

myopathy 41 0.961 0.594 37 39 0.885 0.535 34 34

neuropathy 18 0.965 0.671 14 17 0.648 0.205 8 9

obesity 13 0.931 0.796 12 12 0.918 0.559 12 12

Parkinson’s disease 9 0.903 0.728 7 7 0.661 0.158 4 4

retinitis pigmentosa 30 0.957 0.882 27 28 0.845 0.470 22 23

spastic paraplegia 7 0.930 0.860 6 6 0.927 0.586 5 6

spinocerebellar ataxia 7 0.959 0.863 6 6 0.816 0.250 3 6

Usher syndrome 8 0.990 1.000 8 8 0.988 0.917 8 8

xeroderma pigmentosum 10 0.987 0.850 10 10 0.785 0.704 7 7

Zellweger syndrome 9 0.989 0.944 9 9 0.823 0.513 6 7

Table 3. Results of the Heat Diffusion (t = 0.3, 10 iterations) and Endeavour methods
using STRING v7.1, per disease. Total number of genes: 620.
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Protein-Protein Associations vs Protein-Protein Physical Interactions
Heat Diffusion achieved better performance using STRING v8.2, with AUC score
0.962, opposed to 0.862 using the PPPIN (see Table 1). Furthermore, STRING
enabled to rank more than 90% of the genes in the top 10 positions, while using
the PPPIN less than 60% were in top 10. In a one-to-one comparison, Heat
Diffusion ranked 68% of the genes better using STRING, while only 11% of the
ranks were better using the PPPIN. Table 4 compares the results obtained for
the Heat Diffusion method using STRING v8.2 with PageRank with priors in a
PPPIN, one of the best performing strategies in [8], per disease.

Heat Diffusion PageRank
STRING v8.2 PPPIN

Disease #Genes AUC MAP Top10 Top20 AUC MAP Top10 Top20

Alzheimer’s disease 8 0.929 0.877 7 7 0.668 0.456 5 5

amyotrophic lateral sclerosis 4 0.990 1.000 4 4 0.530 0.028 0 1

anemia 37 0.967 0.599 35 36 0.679 0.268 15 19

breast cancer 22 0.952 0.618 20 20 0.877 0.427 17 18

cardiomyopathy 19 0.986 0.904 19 19 0.789 0.383 12 13

cataract 16 0.980 0.781 16 16 0.751 0.485 10 11

Charcot-Marie-Tooth disease 10 0.934 0.735 9 9 0.665 0.251 3 3

colorectal cancer 29 0.969 0.785 19 19 0.912 0.382 15 19

deafness 28 0.950 0.623 23 27 0.547 0.210 7 8

diabetes 25 0.966 0.743 23 24 0.838 0.422 17 20

dystonia 5 0.986 0.800 5 5 0.700 0.316 2 2

Ehlers-Danlos syndrome 8 0.990 1.000 8 8 0.850 0.613 6 7

emolytic anemia 12 0.978 0.772 12 12 0.793 0.149 4 6

epilepsy 13 0.989 0.962 13 13 0.803 0.454 8 8

ichthyosis 7 0.954 0.768 6 6 0.651 0.367 3 3

leukemia 98 0.948 0.520 86 93 0.811 0.209 50 67

lymphoma 26 0.930 0.476 21 22 0.850 0.270 15 18

mental retardation 19 0.926 0.727 16 17 0.739 0.303 8 12

muscular dystrophy 20 0.983 0.790 20 20 0.893 0.524 15 15

myopathy 35 0.969 0.702 33 35 0.731 0.272 20 24

neuropathy 17 0.951 0.699 15 15 0.636 0.201 5 8

obesity 12 0.988 0.917 12 12 0.892 0.621 10 10

Parkinson’s disease 8 0.935 0.878 7 7 0.754 0.465 5 5

retinitis pigmentosa 23 0.981 0.883 22 23 0.736 0.310 11 12

spastic paraplegia 5 0.990 1.000 5 5 0.490 0.083 1 1

spinocerebellar ataxia 7 0.957 0.768 6 6 0.726 0.095 3 4

Usher syndrome 4 0.990 1.000 4 4 0.880 0.631 3 3

xeroderma pigmentosum 10 0.988 0.900 10 10 0.980 0.811 10 10

Zellweger syndrome 8 0.990 1.000 8 8 0.871 0.814 7 7

Table 4. Heat Diffusion using STRING v8.2 (t = 0.3, N = 10) vs PageRank with
priors using the PPPIN (β = 0.5, N = 2), per disease. Total number of genes: 526.
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Regarding the disease-specific scores (see Table 4), the lowest AUC (and
MAP) values for the combination Heat Diffusion and STRING v8.2 were of
0.926 (0.727) for mental retardation, and 0.930 (0.476) for lymphoma, which are
still good results. For five diseases, namely amyotrophic lateral sclerosis, Ehlers-
Danlos syndrome, spastic paraplegia, Usher syndrome and Zellweger syndrome,
the heterogeneous association network approach was actually able to rank all the
seed genes in the first position of the ranking. On the other hand, the PageRank
diffusion in the PPPIN achieved AUC scores above 0.9 only for two diseases:
colorectal cancer with 0.912 and xeroderma pigmentosum with 0.98. The lowest
AUC and MAP scores were obtained for amyotrophic lateral sclerosis (0.53 and
0.028) and spastic paraplegia (0.49 and 0.083). The PPPIN strategy could not
rank any of the seed genes for amyotrophic lateral sclerosis in the top 10 positions
and only one was identified in the first 20. Also, only one gene out of the 5 seeds
for spastic paraplegia was ranked in the top 10/20. In this case, the performance
for both diseases is comparable to the one obtained using the random seed sets
(data now shown).

Confidence weights, number of iterations and diffusion rate We assessed
the contribution of STRING’s weights expressing the degree of confidence in the
associations between genes to the performance of the prioritization method by
diffusing the initial preference vector using the filtered disease-specific seed sets
on the network after setting all associations’ weights to 1. Although the resulting
AUC and MAP scores (0.957 and 0.662) were not substantially different from
the ones obtained using the confidence weights (0.962 ans 0.711), they actually
reflected in less 9 genes ranked in the top 10 (data not shown). Overall, the
number of genes in the top 20 was the same, with slight variations per disease.
From the five diseases achieving maximum performance in the differentially as-
sociation weighted setting, only for Ehlers-Danlos syndrome, spastic paraplegia
and Zellweger syndrome these results could be maintained.

In both random walk approaches, the best results were achieved using a
limited number of iterations. STRING v8.2 provided consistent and stable per-
formance when varying the number of diffusion steps. On the PPPIN, the best
ranking was always obtained using two iterations. It would then stabilize for
larger numbers of steps, although measuring considerably lower in the evalua-
tion, since it was never able to rank more than 289 or 346 genes - out of 526 -
in the top 10 and top 20, respectively.

Regarding the parameter controlling the rate of diffusion, the Heat Diffusion
method delivered quite similar performance for the set of heat coefficients tried:
in STRING v8.2, resulting in AUC scores ranging from 0.960 to 0.962 for each
diffusion coefficient, considering equal number of iterations; in the PPPIN, AUC
scores ranging between 0.859 and 0.862 with 2 iterations, N = 2, and between
0.766 and 0.771 using 5, 10, 20 and 100 iterations.These results indicate its ro-
bustness to variations in this parameter. For PageRank with priors, the impact
of the back probability value was not neglegible. For the lowest back probabili-
ties (0.01 and 0.05) the scores were unstable leading to considerable performance

61



variations, even using STRING v8.2. For β = {0.1, 0.3, 0.5, 0.7, 0.9}, the PageR-
ank AUC scores in STRING v8.2 varied between 0.936 and 0.961 considering the
results obtained using the same number of iterations. In the PPPIN, PageRank
obtained AUC scores between 0.859 and 0.861 using 2 iterations and ranging
between 0.758 and 0.775 using 5, 10, 20 and 100 iterations.

4 Conclusions

Prioritization results confirmed our hypothesis that networks integrating gene
associations retrieved or predicted using data from heterogeneous sources should
be in general more informative and potentially able to perform better in the
identification of genes associated with a given disease when compared to networks
containing only physical interactions. Advantages of the former are supported by
three key observations: (1) associations derived from the combination of several
types of evidence should be more reliable and accurate; (2) heterogeneous data
integration enables a better coverage of the genome and larger network density,
confering robustness to noise; (3) confidence weights can be devised in order to
differentiate associations and mitigate the impact of false positive associations,
particularly when based on a limited number of sources.

Nevertheless, our analysis shows that heterogeneous association networks do
not present sufficient guarantee for maximum performance by themselves. In fact,
the network-based score measuring the degree of relatedness of each candidate
gene with a given disease based on a set of known disease-related genes proved
to play a major role. Essentially, based on the results we could conclude that in
comparison to neighborhood-limited scores a network-based measure able to cap-
ture global connectivity properties by considering indirect associations between
genes is not only (1) more robust, as it compensates for the sparsity related to
direct associations and tackles the “small world” effect issue; but also (2) more
informative, deriving a score based on a systemic view of the interactome. This
claim has also been previously hinted at in [15,16].

Propagation schemes tested in the computation of global network-based scores
diffused an initial preference vector expressing the distribution of the known
disease-related genes through the network using random walks. These methods
compute fast using iterative procedures, even for large networks. Furthermore,
we could verify that in the context of prioritization in association or physical
interaction networks the maximum performance can be achieved using only a
limited number of iterations. Heat Diffusion and PageRank with priors delivered
high quality results and achieved similar performance under appropriate param-
eter settings, supporting the claim of equivalence [8, 25] for other approaches of
the same kind, namely HITS with priors and K-Step Markov. The importance of
confidence weights was inconclusive, as the difference in performance exhibited
by our experiments was residual. We believe, however, that appropriate associ-
ation confidence weights may improve accuracy of network-based prioritization
results.
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Abstract. Different approaches based on content or tag information
have been proposed to address the problem of tag recommendation for a
web page. In this paper, we analyze two approaches in a graph of web
pages. Each node is a web page and edges represent hyperlinks. The first
approach uses the content while the second one uses tag information in
the graph. The second approach makes two assumptions about the tag
set of two interacting nodes. The Tag Similarity Assumption claims that
two interacting nodes discuss about rather similar topics; therefore, the
chance of having more similar tag set is higher. The Tag Collaboration
Assumption says that two interacting nodes complement each others top-
ics. We apply algorithms such as Self Organizing Map (SOM), Rein-
forcement Learning (RL) and K-means clustering to compare methods
on several datasets. We conclude that tag-based tag predictors outper-
form their content-based peers by more than ten percent with respect to
the cosine similarity between predicted and actual tag sets.

Key words: Social Tag Prediction, Tag Similarity Assumption, Tag
Collaboration Assumption

1 Introduction

Social tagging systems have become increasingly popular in recent years. Various
domain applications such as search engines, recommendation systems, spam de-
tection and many others have improved their performance by considering these
types of information.

Although using user’s meta data has been shown useful for different pur-
poses, these new types of describing resources have their own problems. The
uncontrolled vocabulary nature of these data has inherent ambiguity and may
make it hard to get a coherent vision of different users.

One possible way to solve the problems is to help users choose better infor-
mative tags. The system could suggest some “good tags” to users and users may
or may not use those tags. In this paper, we proposed two different approaches
for the task of social tag prediction in a graph of web pages. For each approach
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there are different implementations. The first approach uses only the content
of the web pages for the task of tag prediction. The second approach considers
two assumptions about the tag set of two interacting web pages in a graph.
The first assumption says that two interacting web pages have similar tag sets
(Tag Similarity Assumption) while the second one assumes that two interact-
ing web pages have “collaborative” tag sets (Tag Collaboration Assumption),
collaborative meaning in this case that the tag sets somehow complement each
other.

The rest of the paper is organized as follows: Section 2 briefly reviews moti-
vations and related works. Section 3 discusses our approach for social tag pre-
diction. In Section 4, first, we tune the parameters of our methods and then, we
present experimental results on five web page graphs. We present our conclusions
in Section 5.

2 Related Works

Various works have explored social annotations for different purposes. A lot of
methods designed to improve web search results by considering data from social
bookmarking systems ([1, 2]). Social annotation could be seen as a new way of
organizing information and categorizing resources ([3, 4]). Users of social tagging
systems could be connected to each other based on their areas of interests. The
term Folksonomy, a combination of folk and taxonomy, was first proposed by
[5]. A general introduction of folksonomy could be found in [6]. Ranking and
recommender systems for folksonomies are proposed in [7, 8]. While the above
mentioned approaches might look similar to our work but they are actually
orthogonal, since the authors do not directly address the problem of predicting
tags for resources.

The approaches in [9, 10] predicts tags based on the content and tag co-
occurance respectively, while our methods consider also the neighborhood con-
text of each web page for the tag prediction task. [11] proposes neighborhood-
based tag prediction by using content similarity. They apply a straightforward
scoring model to select the candidate tags, however, we use machine learning
methods for tag prediction. [12] predicts tags from the set of 100 most frequent
tags found in del.icio.us by training the binary classifier for each tag. We do not
restrict ourselves to a predefined set of tags which are predicted.

Another important difference between our method and [11, 12] is that our
method predicts the set of tags without considering any number of known tags
for a given web page, whereas the methods in [11] and [12] are more “Social Tag
Expansion” methods; they start with some known tags for a web page and then
try to expand that set. In other words, we do not assume any knowledge about
the document’s own tags, in contrast to [11] and [12].

We introduce a new assumption “Tag Collaboration”, which to our knowl-
edge is not discussed in any previous work. We also define the “Topic Locality”
characteristic of a web page graph, which is shown to affect the optimal parame-
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ter settings and the performance of the approach. These novelties sets aside our
methods from the related works.

3 Proposed Methods

The graph of web pages is represented by G(P,E) in which P is a set of web
pages and E is a set of interactions between web pages. Each epq ∈ E shows a
hyperlink between two web pages p ∈ P and q ∈ P . Let T be the set of all the
tags that occur in one dataset. Each classified web page p ∈ P is annotated with
a |T |-dimensional vector TSp that indicates the tag set of this web page: TSp(ti)
is 1 if ti ∈ T is assigned to the web page p, and 0 otherwise. TSp can also be
seen as the set of all tags ti for which TSp(ti) = 1. Similarly, the |T |-dimensional
vector NBp describes how often each tag occurs in the neighborhood (all the
web pages that are reachable from p with a path of length at most 1) of web
page p. NBp(ti) = n means that among all the web pages that interact with p,
n are annotated with tag ti.

In this section, we discuss different approaches for solving the problem of
social tag prediction in a graph of web pages. We analyze two main approaches
for this purpose. The first approach uses the content while the second one uses
tag information in the graph.

3.1 Content-Based Tag Predictor

In this approach, we use only the content of a web page for predicting its tags. We
use the standard bag-of-words approach: after stemming and stop word removal,
a vector is constructed in which each component is the frequency with which a
particular word occurs on the page.

Most similar: Our first implementation for this approach is a standard nearest
neighbor approach, which we refer to as “Most similar”. In this implementation,
first, we compare the content of the unannotated web page with the content of
all the annotated web pages in the graph, using cosine similarity (Formula 1).
After finding the most similar annotated web page, we select the top tags of the
annotated web page and assign them to the unannotated one.

Cosine similarity (p, q) =
p.q

|p| ∗ |q| (1)

K-means: In this approach, we first cluster the web pages in the graph based on
their content. Then, we find the most frequently occurring tags in each cluster.
The popular (most frequent) tags of each cluster will be assigned to all the
unannotated web pages in that cluster.

We use K-means [13] for clustering the graph of web pages. We start cluster-
ing the network with k random centers and iteratively assign the web pages to
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these k clusters based on the content similarity between web pages and the clus-
ter centers. In each iteration, cluster centers move towards more balanced points
in the cluster. As similarity metrics we use both Jaccard similarity (Formula 2)
and Cosine similarity (Formula 1) of the tag sets.

Jaccard similarity (p, q) =
|p ∩ q|
|p ∪ q| (2)

3.2 Tag-Based Tag Predictors

Contrary to the previous approach, here, we use only tag information available
in the graph for the task of tag prediction. We consider two assumptions behind
the web page interactions. In the first assumption, two interacting web pages
discuss about same topics and as a result their tag set will be similar (Tag
Similarity assumption). Second assumption claims that interacting web pages
complement the topics of each other and they do not necessarily have the same
set of tags (Tag Collaboration assumption). We propose “Majority Rule Tag
Predictor” as one of the possible implementations for tag similarity assumption.
Two methods based on Reinforcement Learning (RL) and Self Organizing Map
(SOM) are proposed for implementing tag collaboration assumption. We describe
each proposed implementation in detail in the following:

Majority Rule Tag Predictor: This method simply implements tag similarity
assumption by finding the most common tag(s) among the neighbors of the
unannotated web page. Typically, a fixed number of tags is predicted, for instance
the five most frequently occurring tags in the neighborhood are predicted for the
unannotated web page.

The hypothesis behind tag similarity based approaches is that web pages
with similar tags are always topologically close in the graph which all web pages
in actual graphs not necessarily corroborate this hypothesis.

Reinforcement Based Tag Predictor: In this method, we try to quan-
tify how strongly two tags ti and tj collaborate, in the following way. Let
TagColV al(ti, tj) denote the strength of collaboration between ti and tj .

We consider each annotated web page p ∈ P in turn. If tag tj occurs in the
neighborhood of web page p (i.e., NBp(tj) > 0) then we increase the collabora-
tion value between tag tj and all the tags in TSp:

∀ti ∈ TSp : TagColV al(ti, tj)+=
NBp(tj) ∗R

support(tj)

If tag tj does not occur in the neighborhood of p (NBp(tj) = 0), we decrease
the collaboration value between tag tj and all the tags belonging to TSp:

∀ti ∈ TSp : TagColV al(ti, tj)−=
P

support(tj)
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support(tj) is the total number of times that tag tj appears on a side of
an edge epq in the graph. R and P are “Reward” and “Punish” coefficients
determined by the user.

Next, we determine the candidate tags for an unannotated web page p and
rank them based on how well they collaborate with the neighborhood of web
page p. As an example of a candidate tag strategy, consider Majority Rule: this
method nominates all tags that appear in the direct neighborhood of the unan-
notated web page (and among these, will select the most frequently occurring
ones). Here, we consider a number of extensions to this candidate tag strategy:

– First Tag Level Strategy (First-TL): This strategy selects the tags that ap-
pear in the direct neighborhood of the web page as candidate tags. This
strategy nominates tags similar to the Majority Rule method.

– Second, Third, Fourth Tag Level Strategy (Second-TL, Third-TL, Fourth-
TL): Define the n-neighborhood of a web page p as all the web pages that are
reachable from p with a path of length at most n (thus, the 2-neighborhood
includes all neighbors of neighbors of p, etc.). In Second-TL, Third-TL,
Fourth-TL, all the tags occurring in the 2-, 3- or 4-neighborhood of p, re-
spectively, are considered as candidate tags.

– All Tag Strategy (All-TL): All the tags are taken into account in this strategy.

After selecting candidate tags, we rank them based on how well they collab-
orate with the neighborhood of unannotated web page p. Formula (3) assigns a
collaboration score to each candidate tag tc:

Score(tc) =
∑
∀tj∈T

NBp(tj) ∗ TagColV al(tj , tc) (3)

High score candidate tag(s) collaborate(s) better with the neighborhood of p and
are predicted as its tags.

We call the above method the “Reinforcement based tag predictor”, as it is
based on reinforcing collaboration values between tags as they are observed.

SOM Based Tag Predictor: Our second method makes use of a Self Orga-
nizing Map (SOM) for the task of tag prediction in a graph of web pages. We
map the web page graph to a SOM as follows:

– Input Layer: The number of input neurons equals the number of tags in
the web page graph. So, if inputNeurons is the set of all neurons in the
input layer then |inputNeurons| = |T |. The values we put in the input
layer are extracted from the neighborhood tag vector of the web page: if
inputNeuron(i) is the i’th neuron in the input layer then inputNeuron(i) =
NBp(ti).

– Output Layer: The number of output neurons equals to the number of
tags in the web page graph (|outputNeurons| = |T |). The values we put
in the output layer are extracted from the tag vector of the web page: if
outputNeuron(i) is the i’th neuron in the output layer then outputNeuron(i) =
TSp(ti).
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– Network Initialization: Weights of the neurons can be initialized to small
random values; in our implementation we initialized all the weights to zero.

– Adaption: Weights of winner neurons and neurons close to them in the
SOM lattice should be adjusted towards the input vector. The magnitude
of the change decreases with time and with the distance from the winner
neuron. Here, we take some new parameters into consideration which are
LearningRate(LR), DecreasingLearningRate(DecLR) and TerminateCriteria(TC)
parameters. LR is the change rate of the weights toward the input vector
and DecLR determines the change rate of LR in different iterations. TC
is the criteria in which the learning phase of SOM will terminate. Here, we
think of TC as the minimum amount of change required in one iteration:
when there is less change, the training procedure stops. We use Formula (4)
for updating weights of output neurons.

Wij,New = Wi,j,Current + LR ∗ (NBp(j)−Wi,j,Current) (4)

– Testing: For each web page p in the graph that we did not use in the training
phase, we find the Euclidean distance between NBp and the weight vectors.
We select the output neurons which have the shortest Euclidean distance to
NBp and predict them as the tag set of web page p. The number of predicted
tags is fixed and determined by the user.

4 Empirical Results

4.1 Dataset

We were interested in graphs of web pages in which a) nodes are reasonably inter-
connected to each other at least as form of a tree; and b) nodes are tagged in a
tagging system such as Delicious. Seemingly, there is no current data set available
providing such information for web pages. Starting with ECML PKDD 09 Data
Set 3 as the base, the first issue was to update the weighted tag assignments on
web pages; we used URL’s in the original data set to fetch their weighted tag
assignments from Delicious 4. The next consideration was the fact that there are
many web pages in the data set that are sparsely tagged at Delicious; thus, we
constrained the data set to the web pages annotated in Delicious with a minimum
tag assignment weight. To build the desired graphs, starting from a web page
in the data set, we included those neighboring URLs of the web page (and
the links to them) that were tagged at Delicious. The same procedure was then
applied to those neighboring URLs, and so on, up to a maximum crawling depth.
Table 1 shows brief statistical information of datasets we used for evaluating our
methods. Detailed information on data construction and preprocessing phase is
available at http://www.liacs.nl/~bnobakht/social-tag-prediction/.

3 http://www.kde.cs.uni-kassel.de/ws/dc09/dataset/#files
4 http://delicious.com/help/feeds
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Number of web page graph 27

Average page count of each web page graph 140.40

Average link count of each web page graph 311.03

Average number of tags for each page 6.92

Table 1. Statistical information of datasets.

4.2 Parameter Tuning

The methods we want to evaluate have some parameters for which good values
need to be found. In order to tune the method’s parameters, we select five
different graphs and tune the parameters on those graphs and then use the
tuned values for the other graphs.

While Majority Rule assigns only tags from the direct neighborhood to a
web page, we are interested to find out whether using candidate tags from a
wider neighborhood (including neighbors of neighbors) would be advantageous.
We tested this by extending the Majority Rule so that it can consider not only
direct neighbors, but also neighbors in the 2- or 3-neighborhood (as defined in
Section 3.2). Figure (1) shows the effect of considering a wider neighborhood in
Majority Rule in different datasets. There is no improvement over the base MR
method by considering the second and third neighborhood level.

Fig. 1. Tuning “Neighborhood Tag Level” in the Majority Rule Tag Predictor method.
There is no improvement over the base MR method by considering the second and third
neighborhood level.

Figure 2 tunes the “Candidate Tag Strategy” parameter of RL method. The
best value for this parameter is “First Level”.

“Number of clusters (k)” is the parameter which should be tuned in the K-
means algorithm. Before we tune this parameter, we introduce a topic locality
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Fig. 2. Tuning “Candidate Tag Strategy” in the RL method. “First Level” tag strategy
produces the best result.

feature in a graph of web pages. We define topicLocality(G) as the number of
distinct cluster tags divided by the number of clusters in the graph G (Formula
5).

TopicLocality(G) =
Number of distinct cluster tags

Number of clusters
(5)

For instance, if all the web pages in the graph talk about the same topic
then independent of different values for k, applying the K-means tag predictor
will always lead to the same result. In this case we have small topic locality.
But, if different parts of the graph discuss different topics, then we expect that
by increasing the number of clusters, we increase the topic locality and this
results in better tag prediction. Figure 3 shows the value of topicLocality in
three different graphs. We cluster each graph into four clusters. In graph G1, all
four clusters are about topic “Music”, so the value of topicLocality is 1

4 in this
graph. Two clusters of graph G2 are about “Music”, while the topics of the other
two clusters are “Sport” and “Food”. There are 3 distinct topics and 4 clusters,
therefore the topicLocality of graph G2 equals 3

4 . In G3, all four clusters are
about distinct topics, so the topicLocality of G3 equals 4

4 . So, choosing the right
value for k in K-means algorithm is completely dependent to the topic locality
of that specific graph.

Figure 4-(a) shows the result of applying K-means tag predictor with different
values of k to graph G(142, 292) with high topic locality. In a case of k ≤ 5, there
are k big “topic divergent” clusters, so the average cosine similarity is small
(around 2%). As we increase the number of clusters the average cosine similarity
value improves which means topic locality value of this graph is high. The best
setting for K-means tag predictor is 60 ≤ K ≤ 64.

Figure 4-(b) shows the effect of choosing different values for k in graph
G(362, 934) with low topic locality. In this graph, the topic of the most of the
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Fig. 3. TopicLocality character of different graphs.

web pages are similar to each other and changing the value of k does not effect
the average cosine similarity a lot.

4.3 Comparison of Different Methods

In this section, we compare content-based tag predictors (i.e., Most Similar and
K-means) with tag-based tag predictors (i.e., Majority Rule, RL and SOM) on
several datasets. We use average cosine similarity as the evaluation criterion.
We predict 5 tags for each unannotated web page in all methods and then we
compare the cosine similarity of different methods.

In the proposed implementations, we use the parameter values tuned in the
previous section. Majority Rule (MR) selects the five most frequently occurring
tags in the neighborhood of the web page in the network. As we discussed in
the previous section, choosing the right value for k in K-means algorithm is
completely dependent to the topic locality nature of that specific graph. In this
section, we use fixed value for k(= N

5 ) for clustering all the graph. N equals the
number of web pages in the graph.

Figure 5 compares content-based tag predictors with tag-based tag predic-
tors. Tag-based tag predictors outperform their content-based peers by more
than 10 percent with respect to cosine similarity metric.

By assuming number of known tags for a given web page (“Social Tag Expan-
sion” methods [11, 12]) or limit our methods predicting just small set of frequent
tags (like [12]), we could expect a gain in precision; however this could drastically
restrict the generality of our framework.

After analyzing each graph individually, we believe that there is no fixed
approach (or parameters) which works best in all different types of web-page
graphs. For example, considering “Topic locality” as a one out of many graph
characteristics, in the graph with low Topic Locality (G1 in Figure 3) it might
be better to use methods working based on the Tag Similarity assumption, while
in high Topic Locality graphs (G3 in Figure 3), it is recommended to use Tag
Collaboration based methods.
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(a) Graph G(142, 292) with high “Topic Locality” characteristics.

(b) Graph G(362, 934) with low “Topic Locality” characteristics.

Fig. 4. Tuning “Number of Clusters” in the K-means algorithm.

5 Conclusion

To our knowledge, this is the first study that considers graph of annotated web
pages for the task of tag prediction. We proposed two different approaches for
the task of social tag prediction in a graph of web pages. For each approach, we
recommend different implementations. The first approach uses only the content
of the web pages for the task of tag prediction. For this approach we propose
“Most Similar” and “K-means” methods. Contrary to the first approach, the
second approach uses only tag information available in the graph for the task of
tag prediction. It considers two assumptions about the tag set of two interacting
web pages in a graph. The first assumption says that two interacting web pages
have similar tag sets (Tag Similarity Assumption) while the second one assumes

74



Fig. 5. Compare content-based tag predictors (i.e.,Most Similar and K-means) with
tag-based tag predictors (i.e., Majority Rule, RL and SOM) on the different datasets.
Tag-based tag predictors outperform their content-based peers more than ten percent
with respect to cosine similarity.

that two interacting web pages have collaborative tag sets (Tag Collaboration
Assumption). We proposed “Majority Rule” method as one of the possible im-
plementations for that similarity assumption. This method simply predicts most
frequently occurring tags in the neighborhood of unannotated web page. We
used two machine learning methods Self Organizing Map (SOM) and Reinforce-
ment Based Tag Predictor for implementing tag collaboration assumption. Both
methods first learn the collaboration value between each pair of tags and then
at prediction time, they rank candidate tags based on how well they collaborate
with the neighborhood of unannotated web page.

We compared content-based tag predictors with tag-based tag predictors and
we found out that Tag-based tag predictors outperform their content-based peers
by more than 10 percent with respect to cosine similarity metric. Among the
tag-based tag predictors, Majority Rule method predicts the best tags for unan-
notated web pages which means Tag Similarity Assumption dominates Tag Col-
laboration Assumption in the graph of web pages. So, in general, web pages in
the our dataset tend to discuss more about similar topics rather than comple-
mentary topics.

We also analyzed each graph individually and we concluded that graph char-
acteristics have direct impact on choosing the right method for social tag pre-
diction. We observed that in low Topic Locality graphs, results of Tag Similarity
methods outperform the results Tag Collaboration methods while in graphs with
high topic locality, it is better to apply Tag Collaboration methods.
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How much linguistics do we need in order to
understand online opinions?

Carlos Rodríguez

Research Center, Barcelona-Media, Spain

Abstract

The vast amount of online opinionated text has driven the interest of an active
research community that exploits this user-generated content to gather market
information and create business intelligence applications. State-of-the-art Nat-
ural Language Processing techniques can provide a level of text interpretation
that might be adequate for certain tasks, but there is room for improvement
over the current methods which are based on pre-existing knowledge, such as
prior polarity lexicons and domain ontologies. The crucial question is how much
resource-intensive linguistic processing is needed to understand what people are
talking about, and how do they feel about it. A principled combination of sym-
bolic and stochastic approaches that is guided by bootstrapping existing and
extensive Web 2.0 resources seems to be a good compromise when full text in-
terpretation is not available or practical.
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Abstract. The classification of a text according to its sentiment is a
task of raising relevance in many applications, including applications re-
lated to monitoring and tracking of the blogosphere. The blogosphere
provides a rich source of information about products, personalities, tech-
nologies, etc. The identification of the sentiment expressed in articles is
an important asset to a proper analysis of this user-generated data. In
this paper we focus on the task of automatic determination of the po-
larity of blogs articles, i. e., the sentiment analysis of blogs. In order to
identify whether a piece of text expresses a positive or negative opin-
ion, an approach based on word spotting was used. Empirical results on
different domains show that our approach performs well if compared to
costly and domain-specific approaches. In addition to that, if we consider
an aggregation of a set of documents and not the polarity of each indi-
vidual document, we can achieve an accuracy distribution around 90%
for specific topics of a certain domain.

Keywords: opinion mining, sentiment analysis, blogosphere

1 Introduction

In order to achieve a better analysis and organization of the large amount of
online documents available nowadays, it is very useful to classify texts according
to the sentiment that they express [1]. The sentiment analysis of texts can be
applied to various tasks such as text summarization, management of online fo-
rums, and monitoring of the acceptance of a given product or brand through the
tracking of discussions on weblogs [2]. The blogosphere provides a rich source of
information about products, personalities, technologies, etc. The identification
of the sentiment expressed in blogs is an important asset to a proper analysis of
this user-generated data.

Not only big companies benefit from sentiment analysis, but also politicians,
journalists, advertisers, and market researchers. The research in this field encom-
passes diverse domains such as movies (e. g., [1],[3]), cars, books, travel (e. g., [4]),
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2 Automatic Sentiment Monitoring of Specific Topics in the Blogosphere

and many other products and services (e. g., [5]). The large amount of available
information sources and different domains make an automatic approach for the
sentiment analysis of the blogosphere indispensable. In this paper, we focus on
the problem of classifying a text according to its polarity, which can be one out of
positive, negative, or neutral, in a non-domain-specific and scalable way. Some
known methods were implemented based on word spotting for the realization
of this task and performed an evaluation of them using datasets from different
domains.

The remainder of this article is structured as follows. In Section 2, we present
related work in the field of sentiment analysis. We describe the methods imple-
mented for the classification of text according to its polarity in Section 3. Next,
in Section 4 we perform an evaluation of the methods. In Section 5 we consider
how sentiment analysis can be used to monitor the blogosphere considering an
aggregation of articles in topics. Then we present our findings and our ideas for
future work in Section 6.

2 Related Work

Words and expressions that compose a text possess an evaluative character that
varies not only in degree, but also in polarity [6]. A positive polarity means a
positive evaluation and a negative polarity means a negative evaluation. In the
sentiment analysis field, a large amount of work focuses on the classification
of text according to its polarity. Identifying whether a text is either positive,
negative, or neutral usually is done with word spotting techniques or machine
learning. Word spotting techniques rely on sentiment bearing words and ex-
pressions that are either present in an affective lexicon or have their sentiment
captured by an automatic approach.

Turney and Littman [6] proposed a method to automatically predict the po-
larity score of a word or phrase by its statistic association with a set of negative
and positive paradigm words. This strategy is called Semantic Orientation from
Association (SO-A) . The SO-A of a word/phrase is calculated by the differ-
ence between its power of association with the set of positive and its power of
association with the negative set. They used two different measures to calcu-
late the association: pointwise mutual information (PMI) and latent semantic
analysis (LSA). With a different idea, Pang et al. [1] applied machine learn-
ing techniques to perform sentiment analysis in movie reviews. They employed
Näıve Bayes, maximum entropy classification, and support vector machines, and
although not as good as for topic categorization, the results were satisfactory.
Gamon [5] also successfully used machine learning for the classification of con-
sumer reviews, and besides predicting whether a review was positive or negative,
it established a ranking (from 1 to 4) on it. The author manage to improve his
SVM approach by also taking into account the effects of valence shifters over
words and expressions.

Nigam and Hurst [7] presented a system to automatically detect polar ex-
pressions about a given topic through the integration of a shallow NLP polar
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language extraction system and a machine learning based topic classifier. The
results of their experiments show that if considered separately, the polarity clas-
sifier performs better than when applied together with the topic classifier. In the
field of weblogs, Durant and Smith [8] applied a Näıve Bayes classifier together
with a forward feature selection technique to identify the political sentiment of
weblog posts. Their classifier performed well (even outperforming SVM), but
their focus was a little bit different. They aimed to predict the left or right polit-
ical alignment of posts. A very similar work to the one of Durant and Smith [8],
but with the same task as ours (identifying positive and negative sentiment in
blogs), is the one presented by Melville et al. [2]. They introduced a framework
which uses background lexical information together with supervised learning as
an approach to sentiment classification. Their results show that the approach
is a good alternative to reducing the burden of labeling many examples in the
target domain. However, like many other machine learning approaches, their
experiments rely on well-balanced and structured datasets, many times from a
unique domain or topic. Besides that, the previously mentioned studies take into
account the polarity of individual documents, not of an aggregation of a set of
documents, an approach that is considered in this paper.

3 Sentiment Classification

The sentiment analysis of a text can be performed based on the sentiment bearing
terms (words or expressions) that comprise such text, e. g., using word spotting
techniques. Through the counting of terms it is possible to classify the text ac-
cording to its polarity. Counting positive and negative terms is a very simple
technique proposed in [4] and [9] and may well be used to classify entire docu-
ments. Different from the approaches based on machine learning, term counting
does not require training and it is suitable even when training data is not avail-
able. If the majority of the sentiment bearing terms of a text is positive, the
text is considered positive. Otherwise, if the majority of these terms is nega-
tive, the text is classified as negative. If there is some kind of balance between
positive and negative terms, the text is considered neutral. Term counting relies
on words and expressions that are either present in an affective lexicon or have
their polarity captured by an automatic approach. We implemented these two
types of term counting approaches and called them lexicon based approach and
semantic orientation from association approach.

3.1 Lexicon Based Approach

First of all, we perform sentence segmentation and part-of-speech tagging (POS
tagging) over the text we want to classify using the JTextPro text processing
toolkit [10]. Then, for each of the terms considered sentiment relevant in the
text, we consult an affective lexicon that contains polarity information about
these terms. We have chosen SentiWordNet [11] as our affective lexicon since
it is a lexical resource freely available for educational and research purposes.
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We use here SentiWordNet 1.0 (the latest version available at the time of our
experiments). Through the combination of the results produced by eight ternary
classifiers, SentiWordNet associates for each of the synsets of WordNet (version
2.0) three scores related to polarity properties (positive, negative, and objective)
that each ranges from -1 to 1. For this approach, identifying the polarity score
of a text consists then in calculating the average polarity score of the terms that
comprise it. We considered here two variant methods depending on which terms
should be used in the calculation. In the first, only adjectives and adverbs of
the sentences are taken into account (we call it LB AdjAdv). The second one is
a modification of LB AdjAdv (we call it LB AdjAdvMod), in which the effect
of contextual valence shifters on the polarities of the adjectives and adverbs
are considered. The concept of contextual valence shifters was introduced in [3].
They consist of negations, intensifiers and diminishers and they flip, increase,
or decrease the polarity score of a sentiment term. When either an adjective or
an adverb is found, we look for contextual valence shifters that occur near it
and, if found, the weights of the valence shifters are multiplied with the original
score of the adjective/adverb. Table 1 shows an example of the impact of valence
shifters on the word cool, which originally has the positive polarity score of 0.5
according to SentiWordNet.

Table 1. Example of the effect of valence shifters over the word cool.

Valence Shifter Score

None 0.5
Negation (e. g., not) -0.5
Intensifier(e. g., very) 1.0

Diminisher(e. g., slightly) 0.25

3.2 Semantic Orientation from Association Approach

Like in the above mentioned approach, we first segment the text and then apply
POS-tagging on it using the JTextPro text processing toolkit [10]. Second, we
use patterns of POS tags defined in [4] for extracting phrases from the processed
text (Table 2). The JJ tags are adjectives, the NN tags are nouns, the RB tags
are adverbs, and the VB tags are verbs 1. For each phrase, we then calculate the
SO-A of it using as the measure of association the Pointwise Mutual Information
(SO-PMI). Based on [6], in order to calculate the PMI of each phrase, we issue
queries to a search engine (in our case, Yahoo!2) and count the number of hits
the set of paradigm words gets alone and the number of hits it gets with the
phrase. Let Pwords be the set of paradigm positive words and Nwords the set
1 For a complete reference on the POS tags, see [12]
2 Using the Yahoo! API available at http://developer.yahoo.com/
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of paradigm negative words. The SO-PMI of a phrase, i. e., its polarity score, is
defined as

SO − PMI(phrase) = log2

hits(phrase, Pwords)hits(Nwords)
hits(phrase,Nwords)hits(Pwords)

Table 2. Patterns of POS tags for extracting two-Word Phrases [4].

First Word Second Word Third Word (not extracted)

1. JJ NN or NNS anything
2. RB, RBR, or RBS JJ not NN nor NNS
3. JJ JJ not NN nor NNS
4. NN or NNS JJ not NN nor NNS
5. RB, RBR or RBS VB, VBD, VBN, or VBG anything

The polarity of the entire text is then calculated by the average of the SO-
PMI scores of all the phrases that comprise it. We call this method SO PMI.

4 Evaluation

In this section, we present experiments and analyses of the application of the
implemented methods. We perform two sets of experiments. The first compares
all the methods implemented and choose the best of them. The comparison of
all methods is only performed with one data set because of time limitations to
execute the SO PMI method. The API used to issue queries to the Yahoo! search
engine has a limit of 5000 queries a day, and to calculate the SO-PMI of all the
phrases in all the data sets, would take a quite long time (around forty days).

4.1 Data sets

Our motivating application is to perform the sentiment analysis of blog posts.
Blogs are much more diverse and complex in structure than reviews. However,
since there is a great amount of sentiment annotated data sets regarding reviews
and they have been used extensively in previous sentiment analysis works, we
decided also to use these data sets in our empirical evaluation. We have used the
following publicly available data sets.

Amazon Reviews The data set for the first set of experiments is comprised
of 1000 Amazon camera and photo product reviews and it was first presented in
[13]. Each review consists of a rating that ranges from 1 to 5 stars. Reviews with
rating values greater than 3 were labeled as positive, those with rating values of
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less than 3 were labeled negative, and the rest discarded because their polarity
was considered ambiguous. We make this assumption about the ratings based on
previous works that have already used this dataset (e. g., [13] and [14]), although
it is well known that users rate items with different personal scales and this issue
should be considered when estimating the relevance of items for a certain user
[15]. In the end we have 500 positives and 500 negatives reviews for this dataset.

Convote This data set was introduced in [16] and consists of automatically
transcribed political debates classified according to whether an utterance is in
support of a motion, or in opposition to it. There were in total 701 utterance,
426 in support and 275 in opposition.

Movie Reviews Provided by [1], this data consists of 1000 positive and 1000
negative reviews from the Internet Movie Database. Positive labels were assigned
to reviews that had a rating above 3.5 stars and negative labels were assigned
to the rest. We use version 2.0 of this dataset in our experiments.

Service reviews This data set contains reviews of six different domains and
was provided by Whitehead and Yaeger [17]. The domains, as well the amount
of positive and negative reviews of each domain are summarized in Table 3

Table 3. Domains of the Whitehead and Yaeger [17] data set

Domain Positive reviews Negative reviews Total

Camp 402 402 804
Doctor 739 739 1478
Drug 401 401 802
Lawyer 110 110 220
Radio 502 502 1004
Tv 235 235 470

4.2 Results

We carried out two sets of experiments, one with the Amazon reviews data
set and the other with the remaining data sets. In the first set of experiments,
we used the accuracy of the classification in order to determine which approach
works best on the data set. We present in Table 4 the results of these experiments
based on the accuracy of classifying the reviews correctly (as either positive or
negative), i. e., the total number of reviews correctly classified against the total
number of reviews.
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Table 4. Comparing accuracy of different approaches to sentiment classification with
the Amazon reviews data set.

Method Accuracy

LB AdjAdv 61%
LB AdjAdvMod 63%
SO PMI 51%

It can be seen in Table 1 that the accuracy for the LB AdjAdvMod is the
highest. Although there is no huge difference between LB AdjAdv and LB Adj-
AdvMod, the addition of contextual valence shifters improves the accuracy of
classification, as already shown in [3]. The surprise here was the poor perfor-
mance of the method using SO PMI. Using SO-PMI, Turney and Littman [6]
obtained in their experiments an accuracy around 80% to automatically predict
the polarity score of words. In our experiments, the accuracy of this method
is as good as a random classifier (that would achieve 50% of accuracy). This
is probably due to the fact that the scores computed with SO-PMI are not al-
ways trustworthy. One possible problem is that the number of hits returned by
a search engine is not known to be 100% reliable and hence the calculation of
the SO-PMI of the phrases would not be 100% reliable too.

Since the LB AdjAdvMod method was the best in the first set of experiments,
we choose it to be used as the classifier for the second set of experiments. We
performed the classification on the rest of the non-blog data sets and the results
concerning accuracy are shown in Table 5.

Table 5. Accuracy of LB AdjAdvMod approach in different data sets.

Data Set Accuracy

Convote 55%
Movie Reviews 60%

Camp 66%
Doctor 72%
Drug 61%

Lawyer 74%
Radio 61%

Tv 63%

The results demonstrate that for all data sets, the classifier performs better
than a random classifier (with a baseline of 50%). The algorithm achieves an
accuracy of 74% with the Doctor data set which is satisfactory compared to the
methods that exist so far. However, for the Convote and Movie Reviews data
sets the results are still very close to the random classifier. The poor results for
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the Convote data set may be related to the fact that it consists of transcribed
spoken political debates and not originally written text. This could influence the
performance of the classifier since it was created aiming at written language, not
spoken. On the other hand, for the Movie Reviews data set, maybe the problem
was the fact that sometimes a review contains negative words describing the plot
of the movie, but this does not mean that the review is negative [3].

5 Sentiment Monitoring of Topics

The accuracy of sentiment analysis is still not satisfactory when compared with
other automatic classifiers. Natural language is highly complex, the state of the
art not reliable, and some critics doubt it will ever work since this task is difficult
even for humans. However, it is possible to use sentiment analysis to monitor
the distribution of polarity over a set of documents of a specific topic instead of
individual documents. Our hypothesis is to consider the distribution of polarity
over an aggregation of documents in order to achieve much more reliable results
with today’s mediocre classifier accuracies. In order to analyze this idea, we
performed a new set of experiments with the LB AdjAdvMod method using a
data set comprised of blog articles from different topics of a given domain.

5.1 Android blogs data set

To test our best approach in the domain of blogs, we have annotated a set
of blog articles with sentiment scores. The original blog data collection used
here was presented in Schirru et al. [18] and comprises blog articles categorized
into topics. Per topic we read each article and annotated it manually as either
positive, negative, or neutral. Table 6 shows the topics that comprise the final
labeled set.

Table 6. Topics of the Android blogs data set.

Topic Number of Articles

cupcake 118
dev-phone-block 77
htc-magic 68
uk-app-market 54
amazon-deal 48
robot-control 48
windows-mobile 24
gartner-study 17
iverse-comics 14
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5.2 Evaluation

We classified the articles in the Android blogs data set using the LB AdjAdvMod
method and compared the resulting classification with the manually created
ground truth (GT). The distribution of polarity over the set of articles of each
specific topic was used then as an initial evaluation. Considering an interval
from -0.1 to 0.1 for the neutral class, we aggregated the articles according to their
polarities in three classes: negative, neutral, and positive. The difference between
the total number of articles in each GT class and the total number of articles
in our classifier’s class is calculated. Then, we calculate the penalty cost to
equalize the LB AdjAdvMod distribution with the GT distribution. Considering
that the cost to transfer one article from neutral to any of the other classes
(or vice-versa) is 0.5, and from positive to negative (or vice-versa) is 1, the
accuracy distribution of our classifier will be the total penalty cost divided by
the total number of articles of the topic. As a baseline, we take the classification
of a random classifier (RC) that distributes evenly the articles among the three
polarity classes. For this classifier, the worst case is when all the articles in the
GT belong to the positive class (or the negative class). However, even in the
worst case, the accuracy distribution of the RC will never be lower than 0.5.
In Table 7, we have the distributions for the topic dev-phone-block. This topic

Table 7. Distribution of the dev-phone-block articles into polarity classes according to
three classifiers

Classifier Negative Neutral Positive

GT 56 20 1
LB AdjAdvMod 42 26 9
RC 25.67 25.67 25.67

concerns the announcement of the android market blocking some new merchant
applications which caused the frustration of many developers. As we can see by
the distributions of the LB AdjAdvMod and the GT, the classifier captures well
the tendency of the overall sentiment towards the topic (mostly negative in this
case). Calculating the accuracy distribution for the LB AdjAdvMod method, we
get 85.71% against 64.29% for the RC, showing that our method performs better
than chance.

Table 8 shows the values for the accuracy distribution for the classification
of the LB AdjAdvMod method and the RC considering the GT of the Android
blogs data set. For most of the topics our classification performs well, however,
for a few of them it is as good as RC. Reading the articles from topics like
uk-app-market and amazon-deal we can observe that there is no tendency to a
more positive or more negative sentiment towards the topic. These articles are
more objective and don’t have good indications of sentiment.
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Table 8. Accuracy distribution per topic of the LB AdjAdvMod method and the RC
for the Android blogs data set.

Topic LB AdjAdvMod Random Classifier

cupcake 87.71% 66.81%
dev-phone-block 85.71% 64.29%
htc-magic 92.65% 83.33%
uk-app-market 70.37% 70.37%
amazon-deal 85.42% 86.46%
robot-control 80.21% 71.88%
windows-mobile 85.42% 81.25%
gartner-study 97.06% 74.51%
iverse-comics 89.29% 82.14%

6 Conclusion and Future Work

We have implemented methods for sentiment analysis using word spotting ap-
proaches. Empirical results on different domains show that although our best
approach performs well if compared to costly and domain-specific approaches, it
is still not satisfactory. However, if we consider the distribution of polarity over
an agreggation of documents we have much more reliable results than consider-
ing the classification of each document separately. We analyzed this distribution
in a set of articles of different topics of a certain domain and we noticed that
our method can provide good indications for the sentiment monitoring of the
blogosphere. We believe this method is also useful in domains where the num-
ber of positive and negative samples is not normally balanced (e. g., the movies
domain).

Increasing the list of contextual valence shifters and using an affective lex-
icon with higher coverage are possible ways of improving our method. In our
experiments, we used as neutral threshold the value 0.1 (i. e., the article with a
score between -0.1 and 0.1 belongs to the neutral class). It would be interesting
to perform tests to find out what value for the neutral threshold would result
in better accuracy. Another good direction for future work is to take into ac-
count only terms near the keywords related to an article’s topic to calculate the
polarity of the article.
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Abstract. Sentiment detection has gained relevance in the last years
due to the vast amount of publicly available opinion in the form of Web
forums or blogs. Yet, it still suffers from the ambiguity of language,
lowering the efficacy and accuracy of sentiment detection systems. Thus,
it is important to also invoke context information to refine the initial
values of sentiment terms. Moreover, domain-independence is desirable
to avoid using a topic determination beforehand. This work investigates
strategies for extracting non-generic features to be integrated into a so-
called contextualized sentiment lexicon, capable of getting the context
correctly and assigning sentiment terms the proper sentiment value. The
proposed approach will be applied in an online-media aggregation and
visualization portal, covering a vast number of news media sources.

1 Introduction

Sentiment detection handles affect expressed in written text, more exactly it
tries to classify documents into positively, negatively or neutrally opinionated.
The classification can either be coarse-grained (i.e. positive, negative, neutral)
or fine-grained (i.e. strong-positive, weak-positive, etc.). The research area ex-
perienced a leap in relevance with the upcoming availability of online opinions
in reviews, forums or blogs. Applications range from the political area (track-
ing a political campaign online) over the economic area (acceptance studies for
new products or services) to the purely scientific application, helping to under-
stand human language. Thus, sentiment detection can play a major role in Web
mining systems. It also adds value to Social Web applications. Trend analyses
on fast moving platforms such as www.twitter.com become possible; websites
hosting images or videos (such as www.flickr.com or www.youtube.com) can be
exploited to measure the affect of the community towards celebrities or popular
technical devices.

Many approaches rely on so-called sentiment lexicons, containing terms as-
sumed to express sentiment. Sentiment lexicons suffer from term ambiguity - one
and the same term can have different meanings under different circumstances.
Table 1 shows three sentence, where one and the same sentiment term can be
used in positive and negative context. The intuitively negative term “repair” can
be used positively, when a person is satisfied with his/her repaired car. “Unpre-
dictable” applied to the movie genre refers to an exciting movie; on the other
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hand, if the breaks of a car are unpredictable, this is normally something un-
desirable. Finally, the term “peace” will be express a positive fact in the most
cases. Yet, it can also refer to a negative state, such as in the sentence “This
peace is a lie”.

Positive Negative

The repair of my car was satisfying. I had many complaints after my
camera’s repair.

This movie’s plot is unpredictable. The breaks of this car are
unpredictable.

The long peace brought wealth and safety
to the people.

This peace is a lie.

Table 1. Examples for sentiment terms occurring in positive and negative contexts.

This work examines possible refinement strategies of the already existing
context-sensitive sentiment detection system described in [7]. It takes into ac-
count the context of a sentiment term, and, based on the context, refines the
sentiment value of the term. Näıve Bayes as a simple, fast and yet powerful
technique serves as the method to train the model. To overcome the effects of
domain-specificity the approach also merges features of the trained models and
creates a domain-independent model. In the presented paper refinement strate-
gies for creating a domain-independent lexicon are discussed, together with a
preliminary evaluation of the planned strategies.

Temporal Sentiment Analysis Applied to Online Media

The proposed system will be used for temporal sentiment detection in the so-
called “Media Watch on Climate Change”. This portal aggregates climate change
related issues and provides efficient visualization means, such as a semantic map
for related keywords with strong media coverage and an ontology map for rela-
tions among significant phrases.

The sentiment map in the upper left corner of Figure 1 allows for tracing
the sentiment towards relevant topics. For example, the phrases “oil spill” and
“gulf oil” receive clearly negative media attention, whereas the term “Hayward”
received positive attention until May 10, which turns into negative afterwards.
Such a tool, i.e. accurate sentiment detection combined with efficient visual-
ization techniques, strongly supports research on relevant topics and offers a
specialized view on the online world.

During the U.S. elections 2008 another portal website using a former ver-
sion of the proposed appraoch traced media attention towards the presidential
candidates. Figure 2 shows the main window of the portal, with the presidential
candidates in the upper part, a list of used media sources in the middle and the
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Fig. 1. The Media Watch on Climate Change, www.ecoresearch.net/climate/; see the
sentiment map

sentiment map at the bottom. Such tools can complement or even replace tradi-
tional opinion surveys, and are a permanent source of feedback during a political
campaign. Adapted to different application fields they can support enterpises to
trace their reputation (e.g. in connection with the current oil spill in the Gulf of
Mexico) or to measure the acceptance of a previously launched new product in
the online community.

The paper is structured as follows: Section 2 summarizes existing work, Sec-
tion 3 outlines the already existing approach and the refinement strategies. The
evaluation follows in Section 4. Section 5 concludes the paper and contains an
outlook on further work regarding the discussed refinement strategies.

2 Related Work

Sentiment detection as a research area dates back to the 1990s with the work
of Wiebe [20] and Hatzivassiloglou and McKeown [9]. In [20] Wiebe started to
identify subjective sentences, whereas Hatzivassiloglou and McKeown exploited
syntactical relations to identify sentimental adjectives [9]. Turney and Littman
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apply two different association measurements to identify new sentimental terms
in [17]. In [13] Pang and Lee present a fine-grained approach to detect the ex-
act sentiment (i.e. the star rating) of reviews using Support Vector Machines.
Subrahmanian and Reforgiato base sentiment detection on a syntactical level by
using adjective-verb-adjective combinations [16].

Fig. 2. The US Election 2008 Web Monitor, www.ecoresearch.net/election2008/; see
the sentiment map

Some works also use context information to refine sentiment indicators. Ac-
cording to Nasukawa and Yi [12] sentiment detection is a three step process,
where the identification of sentiment expressions is followed by the determina-
tion of their polarity and strength. The last step of the procedure identifies the
subject the sentiment terms are related to. They model such relationships for
verbs, which either directly transfer their own sentiment or another term’s sen-
timent to the subject. With this model they are capable of treating expressions
such as ti prevents trouble [12]. The verb prevents passes the opposite senti-
ment of the term trouble to the target ti. Sentence particles different from verbs
directly transfer their sentiment to the subject. Kim and Hove [10] specify sub-
jects with a Named-Entity-Recognition and assign them the overall sentiment
value of the sentence. A list of 44 verbs and 34 adjectives expanded by WordNet
[6] synonyms and antonyms serves as sentiment lexicon. To handle complex sen-
tence structures such as “the California Supreme Court disagreed that the state’s
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new term-limit law was unconstitutional” [10] they developed a strategy, where
several negative sentiment terms in one and the same sentence eliminate each
other. Polanyi and Zaenen present a number of “contextual valence shifters” in
their eponymous work [14]. Agarwal et al. propose syntactical capturing of con-
text in [1]. Wilson et al. evaluate a large number of textual features, including
context, in [21] on different machine learning algorithms; they use a two-stage
process, firstly filtering neutral expressions from polar ones and afterwards dis-
ambiguating the sentiment of the polar expressions. In [22] they present a similar
procedure with an expanded set of machine learners.

Turney and Littman [17] use Pointwise Mutual Information (PMI) and La-
tent Semantic Analysis (LSA) to identify sentiment terms in a large Web corpus.
Terms with sufficient co-occurrence frequency with one of 14 paradigm terms (i.e.
a gold standard list of seven positive and negative terms) are assigned the same
sentiment value as the respective paradigm term. Evaluated on the General In-
quirer [15] PMI shows results comparable with the algorithm of Hatzivassiloglou
and McKeown [9]. Using three different extraction corpora and the sentiment
lexicon of [9] Turney and Littman show that PMI does not outperform Hatzivas-
siloglou’s and McKeown’s algorithm but is more scalable [19]. LSA also provided
better results, but was not as scalable as PMI too. In [18] Turney uses the same
techniques to identify new sentiment terms from a paradigm list of only two
terms (excellent and poor). This procedure performed well on the review cor-
pus. Beineke et al. re-interpret the previously discussed mutual association as a
Näıve Bayes approach [2]; they also expand this perspective (which is an unsu-
pervised approach) and create a supervised approach using labeled data.

Lau et al. [11] prove the importance of context by applying three differ-
ent language models, whereof one is an inferential language model sensible for
context. According to their evaluation the inferential language model outper-
forms the other two models, emphasizing the importance of context. Bikel and
Sorensen apply a simple feature selection together with a perceptron classi-
fier to reviews from Amazon.com [3]. They use all tokens with an occurrence
frequency higher than four and achieve an accuracy of 89% in their experi-
ments. Denecke [4] applies a machine learning approach to multi-lingual senti-
ment detection using movie reviews from six different languages. Google Trans-
lator (www.google.com/language tools) translates foreign-language documents
into English. The feature selection procedure extracts a total of 77 features out
of four superclasses [4]: (1) the frequency of word classes (i.e. the number of
verbs, nouns, etc.), (2) polarity scores for the 20 most frequent words and the
averages scores for all verbs, nouns and adjectives are calculated using Senti-
WordNet [5]; other features are (3) the frequency of positive and negative words
according to the General Inquirer and (4) textual features such as the number
of question marks. Using all features the Simple Logistic classifier of the WEKA
tool[8] reaches exorbitantly good results when applied to native English docu-
ments. When applied to non-native, translated documents the results are still
higher than the baseline demonstrating the efficacy of using a lexical resource
such as SentiWordNet.
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Our contextualization method is different from the presented context-aware
approaches. For example, we do not use linguistic relations such as synonymy
as Esuli and Sebastiani in [5]. Furthermore, we also do not transfer sentiment
from sentiment terms to subjects as done in [12], nor do we filter polar from
neutral expressions as or use predefined syntactical features [21, 22]. Instead, the
proposed method considers the term’s context based on discriminators identified
in the text and adjusts its sentiment value accordingly.

3 Methodology

The work is based on [7] and can be roughly divided into three steps (also see
Figure 3). The first step comprises the enrichment of an initial sentiment lexicon
with contextual information. The initial lexicon is a lexicon based on sentimental
terms from the General Inquirer [15]. We applied “reverse lemmatization” on
these terms, which adds inflected forms to the initial terms. The second step
is the application of the created contextualized sentiment lexicon on unknown
documents, using the Näıve Bayes technique to recalculate the original sentiment
values in the sentiment lexicon. The last step comprises the identification of
context features applicable across the domains of the training corpora. This
step results in the creation of a generic contextualized lexicon. We compare
the improvement achieved with this approach using a lexical algorithm as our
baseline. This algorithm sums up the sentiment values of all sentiment terms
occurring in a document:

Sent(doc) =
n∑

i=1

Sent(ti)

Sent(ti) =


1, if ti is a positive term
−1, if ti is a negative term
0, if the term is neutral

In case of a negation trigger preceding a sentiment term its value is multiplied
by −1. In the following, we describe each of these steps in more detail:

Generation of the contextualized lexicon The system identifies ambiguous
terms in the initial sentiment lexicon by analyzing their usage in a labeled
training set. The training set consists of documents with positive and neg-
ative labels. A sentiment term with equally high frequency in both parts is
considered to be an ambiguous term. All ambiguous terms identified with
that process undergo a so-called “contextualization”. This means, that the
system identifies terms frequently co-occurring with the ambiguous term in
positive/negative reviews (i.e. context terms). The contextualization creates
a contextualized lexicon. This lexicon stores the probability that a certain
ambiguous term in combination with certain context terms is normally used
in positive/negative reviews.
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Fig. 3. Creation and application of a contextualized sentiment lexicon.

Application on unknown documents Each time a sentiment term occurs in
a new document, the contextualized sentiment lexicon is consulted and de-
cides, if the term is ambiguous. For non-ambiguous terms the lexicon returns
the original sentiment value of the term. In case of an ambiguous term the
system analyzes the context of the document. It uses the ten strongest con-
text sentiment terms and calculates the probability of the ambiguous term
being positive/negative given these ten context terms.
The system calculates an ambiguous term’s sentiment given context c using
the Näıve Bayes formula (ci is a single context term):

p(Sent+|c) =
p(Sent+) ·∏n

i=1 p(ci|Sent+)∏n
i=1 p(ci)

The resulting value is the final sentiment value of the ambiguous term.
Finally, the sentiment values of all sentiment terms (ambiguous and non-
ambiguous) are summed up. The sum is the overall sentiment of the docu-
ment.
Figure 4 shows an example of the context-sensitive sentiment detection. The
system analyzes the document and finds the sentiment term “repair”, which
turns out to be ambiguous. So, it also analyzes the context, i.e. all other terms
of the document. It identifies the three context terms “friendly”, “quickly”,
and “reliable” as indicators for a positive meaning of “repair”. Thus, the
system assigns it a positive sentiment value and classifies the whole document
as being positive. Note that the example is very simple - in reality a document
usually contains more sentiment terms, both ambiguous and non-ambiguous.
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Repair

Unknown Document

Indicators for positive 

context

Fig. 4. Context invocation for the ambiguous term repair in an unknown document.

Identifying Generic Features Generic features are context terms which can
be used across domains. Having obtained the contextualized lexicons from
several training corpora the system distinguishes between three types of
context term categories:
– Helpful: Using a helpful sentiment term improves the efficacy of senti-

ment detection.
– Neutral: These terms do not change the efficacy.
– Harmful: Harmful terms reduce the efficacy.

The categorization into helpful, neutral and harmful is accomplished as fol-
lows: if a review has been classified incorrectly by our baseline (i.e. the lexical
algorithm explained at the beginning of this section), but correctly by the
Näıve Bayes approach, the context terms of all ambiguous terms in this doc-
ument are considered as helpful terms. If it has been correctly classified by
the baseline but is incorrectly classified by Näıve Bayes all context terms
are considered as harmful. Neutral context terms are those occurring in doc-
uments where Näıve Bayes and the baseline deliver the same classification.
Using such a procedure means that a term helpful in document A can be
neutral or even harmful in document B. A special exclusion strategy de-
cides which of the harmful terms should be discared, and thus also their
occurrences as helpful or neutral terms.
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Fig. 5. Filtering harmful terms

4 Evaluation

We evaluated the contextualization refinements on the same corpora as in [7],
which are a set of 2 500 products reviews from Amazon1 and 1 800 holiday reviews
from TripAdvisor2 (which we call the “Amazon” and the “TripAdvisor” corpus
later on). We accomplished a 10-fold cross-validation on both evaluation sets.
A simple lexical approach serves as the baseline for the evaluation, summing
up sentiment values of the sentiment terms occurring in the document to be
classified. The sentiment values come from the initial lexicon described in Section
3.

We tested the following strategies for the exclusion of harmful terms:

– Call: no harmful terms are excluded.
– C \H: even terms with a single harmful occurrence are excluded.
– C = {c|F (c|¬h)

F (c|h) > 5}: if a term has been helpful/neutral, but also has a
harmful occurrence, its frequency in helpful/neutral cases must be five times
higher than in harmful cases.

– C = {c|F (c|¬h)
F (c|h) > 10}: if a term has been helpful/neutral, but also has a

harmful occurrence, its frequency in helpful/neutral cases must be ten times
higher than in harmful cases.

1 amazon.com
2 tripadvisor.com
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– H: only terms with harmful occurrences are used.

In Table 2 we give the results (i.e. the F-measures) for all tested exclusion
strategies. For each corpus we distinguish between positive and negative and list
the F-measure for each type (indicated by ⊕ and 	). The evaluation shows that
excluding harmful terms requires great care. Removing all terms with harmful
occurrences (C \ H) gives worse results than leaving them untouched (Call).
Setting the ratio of non-harmful terms to harmful terms to high (i.e. > 10) gives
the same results as keeping all harmful terms. Using only terms having harmful
occurrences lowers the evaluation results strongly. Yet, the results are not low
enough to judge them as completely useless. Finally, using a weaker ratio (i.e.
> 5) delivers the best results.

Call C \H C = {c|F (c|¬h)
F (c|h)

> 5} C = {c|F (c|¬h
F (c|h } > 10 H

Amazon
⊕ 0.68 0.68 0.69 0.68 0.58
	 0.74 0.73 0.75 0.74 0.72

TripAdvisor
⊕ 0.84 0.84 0.84 0.84 0.81
	 0.78 0.78 0.79 0.78 0.78

Table 2. F-Measures achieved with different exclusion strategies

5 Conclusion & Further Work

The evaluation showed that particular aggregation strategies improve the overall
result for sentiment detection using contextualized lexicons. Their sole impact is
not too large, but they should be regarded as an integral component of a battery
of refinement strategies for generically contextualized sentiment detection.

Future work comprises the investigation on further, more potential aggre-
gation strategies. Moreover, an investigation of the semantic and syntactical
sentence structure will be accomplished. The idea is that certain sentence types
might mislead sentiment detection. For example, sentences which are too short
or too long, or are in another way distorted might be counterproductive for
sentiment detection. If used anyways those sentences worsen classification re-
sults. Sentiment detection would benefit from a-priori filtering of these. Machine-
learning methods can accomplish this task.
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Abstract. This work present a novel evaluation framework for topic ex-
traction over user generated contents. The motivation of this work is the
development of systems that monitor the evolution of opinionated top-
ics around a certain entity (a person, company or product) in the Web.
Currently, due to the effort that would be required to develop a gold
standard, topic extraction systems are evaluated qualitatively over cases
of study or by means of intrinsic evaluation metrics that can not be ap-
plied across heterogeneous systems. We propose evaluation metrics based
on available document metadata (link structure and time stamps) which
do not require manual annotation of the test corpus. Our preliminary
experiments show that these metrics are sensitive to the number of iter-
ations in LDA-based topic extraction algorithms, which is an indication
of the consistency of the metrics.
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1 Introduction

The growing interest on monitoring opinions in the Web 2.0 is well known. On-
line Reputation Management consists of monitoring the opinion of Web users on
people, companies or products, and it is already a fundamental tool in corpo-
rate communication. A particularly relevant problem is to detect new topics or
opinion trends which deserve the attention of communication experts, such as a
burst of tweets or blog entries about a controversial issue about a company, or
a defect of a product. A system that assists a communication expert should be
able to detect (particularly new) topics, tag them in an interpretable way, cluster
documents related to each topic and analyze the evolution of topics over time.
What makes this a distinctive problem is the fact that documents are naturally
multi-topic: relevance of a document for a topic may be even sub-sentential. This
problem is sometimes referred to as Temporal Text Mining [1,2].

Models and systems to solve these tasks are recently starting to appear in
scholar publications. But a major bottleneck so far is the absence of a benchmark-
ing test suite to evaluate and compare systems. Creating such a gold standard
is, in fact, a complex task: defining the set of topics in a document stream is a
subtle task, because topics tend to co-occur in documents and the appropriate
level of granularity in topic and sub-topic distinctions is something fuzzy to fix.
For similar reasons it is also difficult, once the set of topics is established, to
decide which documents talk about each of the topics and how central is each
document to each of the topics that the document discusses. In the absence of a
gold standard, extrinsic precision-recall based metrics can not be applied.

For this reason, current systems are evaluated informally via use cases, or
otherwise using intrinsic evaluation measures which are specific to the model
being tested.

There are, however, basic restrictions on how a good system should behave.
For instance, documents which share outlinks to the same web pages should tend
to be more related than documents which do not share outlinks. This type of
information has not been yet used by current topic detection systems, because
they relate together only a small subset of the documents. This information,
however, might be used as a (limited) evaluation or validation mechanism to
optimize system parameters. In this paper we address the task of defining an
evaluation methodology based on this idea, and check its suitability on an LDA-
based approach to topic detection over time.

2 State of the art

We will start with an overview of models to solve the task, and then we will
summarize the evaluation methodologies used so far and discuss their limitations.

2.1 Topic detection models

The most basic approaches for topic monitoring focus on word frequency. The as-
sumption is that frequent words indicate, in general, salient topics in a document
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collection. Some available web services are Blogpulse Trends3, Mood Views4

and Blogscope5. Brooks and Montanez showed that frequent words (extracted
according to tf.idf), produce tags that generate document clusters with more
cohesion than user tags in blogs [3].

Gruhl included the temporal dimension in his model by extracting topic
terms with frequency peaks over time [4]. Chi considered also the distribution of
terms across blogs [5]. He assumed that topics gain prominence in blog subsets.
His model consists of computing the singular values of the time-blog frequency
matrix . Mei et al. combine topological information with the temporal dimension
[6]. Their model employs the EM algorithm to identify the topic distributions
along time and location that maximize the likelihood of word occurrences. An
interesting feature of this model is that it assumes that several topics can appear
in the same document.

Many novel proposals are currently based on the LDA (Latent Dirichlet Al-
location) model [7]. As well as Mei’s approach, LDA is a probabilistic model that
estimates the distribution θd of topics for each document d and the distribution
of words for each topic. The particularity of LDA is that the distribution pa-
rameters are generated by a Dirichlet distribution with certain hyperparameters
that are stated a priori.

One example of these models is TOT (Topic Over Time) [8]. The most char-
acteristic aspect of this work is that the temporal variable is added to the LDA
model, assuming that topics follow a Beta distribution along time. One drawback
in this work is that all the document collection must be processed for inferring
temporal distribution when new documents appear in the input stream. The
model Dynamic Topic Model [9] tries to solve it by estimating topic distribu-
tions for each time slot independently. After this, the model employs temporal
series techniques in order to analyze topic evolution. Another model that tackle
this issue is On-line LDA [10]. This model states that the knowledge produced
over a time slot represents the a priori knowledge for the next time slot. This
idea allows to process new documents without reprocessing the whole collection.
However, an addition mechanism to detect new topics along the time becomes
necessary. Another interesting model based on LDA is denominated Multiscale
Topic Tomography [11]. In this approach the topic distribution includes different
granularity levels.

2.2 Evaluation approaches

The main bottleneck in this area of research is the absence of a common evalu-
ation methodology to compare approaches. Let us summarize the approaches to
evaluation in the research described above.

In terms of its efficiency and suitability to assist experts in the online repu-
tation management task, some approaches are best suited than others. For in-
stance, the models ON-line LDA and Dynamic Topic Model are able to process
3 www.blogpulse.com/trends
4 ilps.science.uva.nl/MoodViews
5 www.blogscope.net
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new documents without re-processing the collection. Multiscale Topic Tomog-
raphy, on the other hand, allows a topic visualization at different granularity
levels. However, it is still necessary to define an evaluation framework to com-
pare approaches in terms of accuracy.

Some approaches are simply evaluated over case studies. This is the case of
Mei’s approach [6] and the Dynamic topic model [9]. Ghuhl’s model [4], on the
other hand, is evaluated against human annotated topic terms; an evaluation
method than can not, for instance, be applied to LDA-based models.

The model Topic over Time [8] is evaluated with intrinsic clustering metrics
according to the KL-divergence between topics; but this methodology is only
appropriate to compare similar systems. For instance, in their evaluation the
authors obtained evidence about the advantages of including the temporal vari-
able in the model. It is not possible, however, to evaluate heterogeneous systems
with intrinsic clustering metrics. For instance, systems based on KL-divergence
would be rewarded by this evaluation method. Something similar happens with
the evaluation of the Multiscale Topic Tomography [11], where the perplexity
of the model is compared against the perplexity obtained with other models.
In this case, LDA-based models could not be compared with models based on
traditional clustering algorithms. Other proposed evaluation metrics focus on
extrinsic tasks using topic descriptors, such as multi-document summarization
[2].

With these limitations in mind, our goal is to define and apply an auto-
matic evaluation framework enabling comparison between heterogeneous, arbi-
trary systems, and which is not dependent on cost-intensive manual annotation
of data.

3 Evaluation methodology

3.1 System prerequisites

We start from a few prerequisites for topic detection systems in opinion mining:

– Aggregation: The system must detect a finite number of topics. Documents
will be associated to zero, one or more topics in a discrete or continuous way.
The key point is that related documents should share at least one topic.

– Temporality In order to analyze the evolution of the reputation of a given
entity, the system must reflect differences in topic distribution across time.
This implies to show the intensity of topics across time slots.

– Interpretability Identified topics should be tagged in a way that is inter-
pretable for the user.

– Accessibility For each topic, the corresponding documents must be ranked
according to its relevance in the context of the topic.

In this work, we focus on the two first functionalities: “aggregation” and
“Temporality”. The interesting aspect of these two features is that it is possible
to generate automatically a benchmark for evaluation purposes.
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3.2 System Output variables

The aggregation functionality requires to infer to what extent each document is
related to each topic. This output can be formalized as P (θ|d), which represents
the distribution θ of topics in each document d. For instance, a traditional dis-
crete clustering algorithm would return P (θi|d) = 1 if the document d belongs
to the cluster associated with the topic θi.

Analogously, the temporality function requires an output variable P (θ|t) rep-
resenting the distribution of topics in each time slot t. From the perspective of
evaluation, a key aspect is that all functionalities must be mutually consistent.
In particular, the intensity of topics (temporality) has to correspond with the
number of associated documents in the time slot (Aggregation). Therefore, tem-
porality can be inferred from the output P (θ|d). Assuming that the intensity of
topics is proportional to the number of related topic in the time slot, we can
state that:

P (θ|t) =
∑
d∈t

P (θ|d)

3.3 Evaluation measures

Our evaluation methodology is based on two assumptions on the desired behavior
of systems:

– Documents with outlinks that point to the same page and documents pro-
duced by the same author will tend to be more topically-related than the
average.

– It is easier to find highly related documents in the same time slot (say, blog
posts in the same week), than separated by long time periods (such as several
months).

As most current systems do not rely on this kind of information, it is possible
to use it at least for parameter optimization cycles. Some of the systems do
employ temporal information, and therefore the second restriction is not totally
system-independent. In such cases, however, the improvement obtained by the
use of temporal information can still be measured in terms of the first restriction.

The first step to evaluate systems according to these two assumptions consists
of defining when the system considers that two documents are related (as for their
topics). This is not straightforward, given that systems generate a distribution
of weighted topics for each document. We will assume that one topic is enough
to consider that two documents are related, but only if both documents focus on
this topic. According to this, we define the Connectedness of a document pair
as:

Connectedness(d1, d2) = Maxi(Min(P (θi, d1), P (θi, d2)))

Our evaluation metrics will compare the connectedness of document pairs
in two sets according to the assumptions introduced above. We will call these
sets RDP (Related Document Pairs) and NRDP (Non-Related Document Pairs).
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RDP consists of document pairs with, for instance, one or more common out-
links, while NRDP consists of documents, conversely, without common outlinks.
According to our assumptions, document pairs in RDP should have a higher
connectedness, in average, than document pairs in NRDP.

In order to avoid dependencies on scale properties of the distribution P (θ|d)
associated to each system, we will formulate evaluation metrics in a non-parametric
way, estimating, for each system s:

metric value(s) = P (Connectedness(dr, dr
′) > Connectedness(dn, dn

′))

where < dr, dr >∈ RDP,< dn, dn
′ >∈ NRDP .

In other words, the quality of the system is measured as the probability that
two documents from the RDP set have a higher topic overlap (according to the
system) than two documents from NRDP. Different criteria to form RDP and
NRDP lead to different evaluation metrics; we now discuss some examples.

Outlink Aggregation In order to obtain the set of related document pairs
(RDP), we assume that two documents are more likely to be related if they
share an outlink to the same web page, if this outlink does not appear in other
documents (this restriction eliminates frequent outlinks which are not related to
the document content, such as links to Facebook).

Author Aggregation As for documents related by a common author, we will
simply consider pairs of documents with the same author for RDP and pairs
from different authors for NRDP.

Temporality As for temporality, we will assume that is easier to find documents
sharing a topic when both documents belong to the same time slot. In particular,
we will build RDP with the 100 most related document pairs (according to the
system output) which are created in the same week. NRDP is formed by the 100
most related document pairs which are created with a difference of at least three
months.

4 Test Case: Iterations in an LDA-based system

To test our evaluation methodology, we have implemented the LDA approach,
starting with the algorithm described in [8] and eliminating the temporal variable
component – which will be tested in future work –. LDA is a generative process
where each document d is associated with a multinomial distribution of topics,
and uses Dirichlet distributions as hyperparameters. The model assumes that
each document token is associated to a single topic, and therefore the topic
distribution in a document would be given by the individual token assignments.
The article by Wang and McCallum describes the approach in detail as well as
the derivation of the Gibbs sampling.

The algorithm implemented consists of the following steps:
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1. Random initialization of each token to some of the k topics.
2. For each token in document d, the topic is updated drawing on the proba-

bility P (z) for each topic z. The probabilities are:

P (z) = (md,z + α)
˙nz,w + β∑

v
V (nz,w + β)

where md,z represents the number of tokens in the document d associated to
topic z; nz,w represents the number of occurrences of the word w from the
corresponding token in topic z, and V is the vocabulary. α and β are two
hyperparameters that reflect, respectively, the topic dispersion per word and
per document.

3. md,z and nz,w are updated and then we go back to step 2, for as many
iterations as desired.

Implementations known to us use fixed hyperparameters for any word in the
vocabulary and for every document. In future work, however, and counting with
an automatic evaluation mechanism, we could test whether α should have some
relation with the document length.

5 Hypothesis validation

In order to validate our assumptions, we have performed a small experiment
which involves manual validation of document pairs.

From our testbed, we have generated 64 random tuples, each consisting of
two document pairs: in one pair, both documents share at least one outlink that
does not appear in any other document (see Section 3.3); in the other pair, they
do not share any outlink. According to our hypothesis, document pairs which
share outlinks should be more topically related in average than pairs that do not
share outlinks.

For each tuple, we have manually annotated which is the most topically
related document pair (sometimes this is not obvious and the tuple is then
annotated as undecidable). For 50 tuples (78%), the document pair that share
the outlink was more topically related than the other. In 12 cases (19%) it was
undecidable, and only in 2 cases (3%) the linked document pair was less topically
related than the other.

An analogous process was conducted for the co-authorship criterion, com-
paring tweet pairs written by the same author with pairs written by different
authors. The results over 97 tuples are similar to the previous ones: co-authored
tweets are more related in 80% of the cases, while non co-authored tweets are
more related only in one occasion (1%).

These results suggest that our assumptions are reasonable for our testbed.
This is, of course, just a preliminary result that must be validated with larger
manual annotations over different testbeds. Note also that the experimental
procedure must be refined, because “undecidable” cases (which are 20% of the
assessed samples) might become decidable with a more precise, testbed-specific
definition of relatedness.
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6 Experiment and Evaluation Results

The goal of our experiment is to test the behavior of our evaluation metrics.
As a dataset we use 5,000 tweets and 500 posts from blogs in Spanish contain-
ing the term BBVA (an Spanish bank operating in several countries). We have
generated a vocabulary excluding stop words. In general, for all the approaches
compared, topics detected by the LDA system consist of (i) information about
”Liga BBVA”, the Spanish Premier Football League, which is sponsored by
the bank; (ii) economic information on the bank; (iii) information in languages
other than Spanish (such as Catalan); and (iv) topics with unfrequent terms. In
general, the granularity of the topics is relatively low. Note that, unlike other
related experiments, we are focusing on a single entity, while other approaches
cover several totally independent topics.

Table 1 displays the results of Aggregation (by outlinks) and temporality for
LDA over 500 blog posts, fixing certain values of the hyperparameters and for
different number of iterations. Note that aggregation goes from 0.41 up to 0.9,
reaching a ceiling after 100 iterations. This number might be different when more
documents are processed, or for different values of the hyperparameters. In any
case, the results show a strong correlation between the number of iterations
of the algorithm and the evaluation results; assuming that a higher number of
iterations leads to better LDA results, our metric behaves consistently.

Table 1 also shows the Temporality obtained for different number of itera-
tions. This metric also increases with the number of iterations, although this
behavior is not so stable here. A possible reason is that the assumption that
documents which are closer in time should be more related on average is not so
valid as for the case of aggregation. Another possible reason is that this measure
is estimated on the 100 most related document pairs only, while aggregation is
computed on a larger set of samples.

Iterations Agregation (by outlinks) Temporality

1 0.41 0.42
5 0.60 0.35
10 0.76 0.6
20 0.86 0.57
50 0.89 0.60
100 0.90 0.61
200 0.90 0.61
500 0.90 0.65
1000 0.91 0.71
2000 0.90 0.72

Table 1. Evaluation results for 500 blog posts, 10 topics, α = 1, β = 0.1 and different
number of iterations
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Table 2 shows the results on 5,000 tweets, this time measuring aggregation
by author. Again, the metric values seem to stabilize around 100 iterations, and
they show a clear correlation with the number of iterations.

Iterations Agregation (by author)

1 0.47
5 0.55
10 0.61
20 0.72
50 0.76
100 0.78
200 0.79
500 0.8

Table 2. Evaluation results for 5000 tweets, 10 topics, α = 1 and β = 0.1

Another variable that can be analyzed with our evaluation methodology is
the effect of different values for the hyperparameter α. Table 3 shows that α does
not have a strong effect on the results. In fact, the maximum seems to be around
α = 1. This implies that, in general, documents tend to be centered around one
single topic. This is perhaps due to the low granularity of the topics produced
in our experiment.

alpha value Agregation (by outlinks) temporality

0.1 0.89 0.64
1 0.9 0.66
5 0.9 0.67
10 0.89 0.66
20 0.88 0.74
50 0.84 0.62

Table 3. Evaluation results for 500 blog posts, 2000 iterations, 10 topics, β = 0.1 and
different α values

Finally, we have studied the effect of the number of topics on the results of
the evaluation. Is it possible that LDA, in this context, reaches a more adequate
topic granularity by increasing their number? Table 4 shows the results obtained
for 500 blog entries, 2000 iterations and α = 1. Note that, although there is
some positive effect when increasing the number of topics, it is not as clear as
in previous experiments.
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Number of topics Agregation (by outlinks) temporality

5 0.85 0.67
10 0.9 0.73
15 0.92 0.74
20 0.92 0.68
40 0.93 0.71
50 0.93 0.7

Table 4. Evaluation results for 500 blog posts, 2000 iterations, α = 1, β = 0.1 and a
variable number of topics

7 Conclusions

In this work we have proposed an early version of an automatic evaluation
methodology which permits the optimization of topic extraction models for on-
line reputation management using external information not employed by the
system. In a preliminar experiment using blog entries and tweets for a bank, we
have been able to observe quantitative effects such as a little influence of the
α hyperparameter on the final results, the number of iterations which lead to
stable results for LDA, or the effect produced by the number of topics.

Our evaluation methodology has still unresolved issues: we do not know yet to
which extent the selection of the RDP and NRDP sets bias the results (they are,
after all, just a small sample of the full test set, with very precise characteristics).
We also need to revise the ”temporality” measure to obtain more stable results
in our experimental framework.

In any case, the methodology provides a way of testing hypothesis not yet
evaluated quantitatively in other studies, such as the effect of including a tempo-
ral variable in the model, the possibility of processing time slots independently,
the effects of structuring topics hierarchically, etc.
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