
Photo of the Oriental Pearl Tower by Tom Thai (flickr user eviltomthai)

9th International Semantic Web Conference
ISWC 2010

November 7-11, 2010
Shanghai, China

Proceedings of the ISWC 2010 Posters & Demonstrations Track:

ISWC 2010 Posters & Demos
Collected Abstracts

November 7-11, 2010

Editors

Axel Polleres
Huajun Chen

Preface

On behalf of the program committee for ISWC2010 Posters & Demonstrations
Track, it is our great pleasure to present these proceedings, which form a col-
lection of abstracts describing the presented posters and demos presented at the
conference. The posters and demonstrations track of ISWC 2010 continues the
established tradition of providing an interaction and connection opportunity for
researchers and practitioners to present and demonstrate their new and innova-
tive work-in-progress. The track gives conference attendees a way to learn about
novel on-going research projects that might not yet be complete, but whose pre-
liminary results are already interesting. The track also provides presenters with
an excellent opportunity to obtain feedback from their peers in an informal set-
ting from knowledgeable sources. New in this year, we also encouraged authors
of accepted full research or in-use papers to present a practical demonstration
or poster with additional results.
In total, there were initially 90 submissions, of which we accept 28 regular demos,
6 demos accompanying full papers, as well as 19 posters.
Apart from the authors of all these contributions, we would like to thank all the
members of the program committee as well as the additional reviewers who have
spent lots of their valuable time within a very tight schedule in reviewing the
submissions and organizing this session. We thank all of these dedicated people
for their valuable discussions and feedback, and we wholeheartedly appreciate
their voluntary and enthusiastic cooperation. We are convinced to have arrived at
an inspiring mix of posters and demos which tackle the Semantic Web idea from
various angles and are looking foward to an exciting session at the conference.
Lastly, we want to thank our fellow organizers of ISWC, foremost the gen-
eral chair, Ian Horrocks, as well as particularly Peter Patel-Schneider and Birte
Glimm for their help with easychair and in compiling these proceedings.

November 2010 Axel Polleres & Huajun Chen

Posters & Demonstrations Track – Organization

Program Chairs

Axel Polleres DERI, National University of Ireland, Galway
Huajun Chen CCNT, Advanced Computing and System Laboratory, China

Program Committee

Faisal Alkhateeb
Renzo Angles
Sören Auer
Diego Berrueta
Eva Blomqvist
Fernando Bobillo
Paolo Bouquet
Irene Celino
Kei Cheung
Oscar Corcho
Gianluca Correndo
Philippe Cudre-Mauroux
Mathieu d’Aquin
Danica Damljanović
Emanuele Della Valle
Klaas Dellschaft
Gianluca Demartini
Birte Glimm
Karthik Gomadam
Andreas Harth
Olaf Hartig
Michael Hausenblas
Aidan Hogan
Katja Hose
Giovambattista Ianni
Luigi Iannone

Michael Kohlhase
Thomas Krennwallner
Reto Krummenacher
Holger Lewen
Areti Manataki
Elena Montiel-Ponsoda
Knud Möller
Yuan Ni
Martin O’Connor
Ignazio Palmisano
Jeff Z. Pan
Alexandre Passant
Carlos Pedrinaci
Valentina Presutti
Jorge Pérez
Yves Raimond
Jinhai Rao
Marta Sabou
Simon Schenk
Wolf Siberski
Patrick Sinclair
Mari Carmen Suárez-Figueroa
Maria Esther Vidal
Yimin Wang
Gregory Williams
Guo Tong Xie

V

Additional Reviewers

Sofia Angeletou
Marcelo Arenas
Paul Buitelaar
Lorenz Bühmann
Richard Cyganiak
Laura Dragan
Timofey Ermilov
Benjamin Heitmann
Sebastian Hellmann
Marcel Karnstedt
Jacek Kopecky

Danh Le Phuoc
Dong Liu
Nuno Lopes
Uta Lösch
Marco Marano
Alessandra Martello
Philipp Obermeier
Antje Schultz
Jürgen Umbrich
Andreas Wagner

Table of Contents

Part I. Posters

Parallelization Techniques for Semantic Web Reasoning Applications 1
Alexey Cheptsov, Matthias Assel

Visual Reasoning about Ontologies . 5
John Howse, Gem Stapleton, Ian Oliver

Semantic-based Complex Event Processing in the AAL Domain 9
Yongchun Xu, Peter Wolf, Nenad Stojanovic, Hans-Jörg Happel

Efficient processing of large RDF streams using memory management
algorithms . 13

Vaibhav Khadilkar, Murat Kantarcioglu, Latifur Khan, Bhavani Thu-
raisingham

Text Based Similarity Metrics and Delta for Semantic Web Graphs 17
Krishnamurthy Koduvayur Viswanathan, Tim Finin

Towards Stable Semantic Ontology Measurement . 21
Yinglong Ma, Haijiang Wu

T2LD: Interpreting and Representing Tables as Linked Data 25
Varish Mulwad, Tim Finin, Zareen Syed, Anupam Joshi

LDspider: An open-source crawling framework for the Web of Linked Data 29
Robert Isele, Jürgen Umbrich, Christian Bizer, Andreas Harth

Semantic Web Technologies for a Smart Energy Grid: Requirements
and Challenges . 33

Andreas Wagner, Sebastian Speiser, Andreas Harth

A Graph-based Approach to Indexing Semantic Web Data 37
Xin He, Mark Baker

xhRank: Ranking Entities on the Semantic Web . 41
Xin He, Mark Baker

Extending SMW+ with a Linked Data Integration Framework 45
Christian Becker, Christian Bizer, Michael Erdmann, Mark Greaves

Learning Co-reference Relations for FOAF Instances 49
Jennifer Sleeman, Tim Finin

Silk - Generating RDF Links while publishing or consuming Linked Data 53
Anja Jentzsch, Robert Isele, Christian Bizer

VII

Hybrid Graph based Keyword Query Interpretation on RDF 57
Kaifeng Xu, Junquan Chen, Haofen Wang, Yong Yu

A Semantic Web Repository for Managing and Querying Aligned
Knowledge . 61

James McGlothlin, Latifur Khan

Ontology Mapping Neural Network: An Approach to Learning and
Inferring Correspondences among Ontologies . 65

yefei peng, Paul Munro, Ming Mao

Lily-LOM: An Efficient System for Matching Large Ontologies with
Non-Partitioned Method . 69

Peng Wang

Toward Seoul Road Sign Management on LarKC Platform 73
Tony Lee, Stanley Park, Zhisheng Huang, Emanuele Della Valle

Part II. Demonstrations

MoKi: a Wiki-Based Conceptual Modeling Tool . 77
Chiara Ghidini, Marco Rospocher, Luciano Serafini

Publishing Bibliographic Data on the Semantic Web using BibBase 81
Reynold S. Xin, Oktie Hassanzadeh, Christian Fritz, Shirin Sohrabi,
Yang Yang, Minghua Zhao, Renee J. Miller

Visualizing Populated Ontologies with OntoTrix . 85
Benjamin Bach, Gennady Legostaev, Emmanuel Pietriga

BRAMBLE: A Web-based Framework for Interactive RDF-Graph
Visualisation . 89

Nikolas Schmitt, Mathias Niepert, Heiner Stuckenschmidt

A web-based Evaluation Service for Ontology Matching 93
Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Cassia
Trojahn

SemWebVid - Making Video a First Class Semantic Web Citizen and a
First Class Web Bourgeois . 97

Thomas Steiner

RExplorator - supporting reusable explorations of Semantic Web
Linked Data. 101

Marcelo Cohen, Daniel Schwabe

Generating RDF for Application Testing . 105
Daniel Blum, Sara Cohen

VIII

Semantic-based Mobile Mashup Platform . 109
Huajun Chen, Zhipeng Peng, Jinghai Rao, Ying Liu, Lei Wang, Jian
Chen

A SILK Graphical UI for Defeasible Reasoning, with a Biology Causal
Process Example . 113

Benjamin Grosof, Mark Burstein, Mike Dean

Semantics for music researchers: How country is my country? 117
Kevin Page, Ben Fields, Bart Nagel, Gianni O’Neill, David De Roure,
Tim Crawford

R. - Transforming Relational Databases into Semantic Web Data 121
Konstantinos N. Vavliakis, Theofanis K. Grollios, Pericles A. Mitkas

WSML2Reasoner - A Comprehensive Reasoning Framework for the
Semantic Web . 125

Reto Krummenacher, Daniel Winkler, Adrian Marte

Linked data from your pocket: The Android RDFContentProvider 129
Jérôme David, Jérôme Euzenat

Demo: Enriching Text with RDF/OWL Encoded Senses 133
Delia Rusu, Tadej Stajner, Lorand Dali, Blaz Fortuna, Dunja Mladenic

4sr - Scalable Decentralized RDFS Backward Chained Reasoning 137
Manuel Salvadores, Gianluca Correndo, Steve Harris, Nicholas Gib-
bins, Nigel Shadbolt

Rightfield: Embedding Ontology Term Selection into Spreadsheets for
the Annotation of Biological Data . 141

Katy Wolstencroft, Matthew Horridge, Stuart Owen, Wolfgang Mueller,
Finn Bacall, Jacky Snoep, Olga Krebs, Carole Goble

A Graphical Evaluation Tool for Semantic Web Service Matchmaking . . . 145
Ulrich Lampe, Melanie Siebenhaar, Stefan Schulte, Ralf Steinmetz

RDF On the Go: RDF Storage and Query Processor for Mobile Devices . . 149
Danh Le Phuoc, Josiane Xavier Parreira, Vinny Reynolds, Manfred
Hauswirth

Using the Annotation Ontology in Semantic Digital Libraries 153
Leyla Jael Garćıa Castro, Olga X. Giraldo, Alexander Garcia

Towards Linked Data Services . 157
Sebastian Speiser, Andreas Harth

SPARQL Views: A Visual SPARQL Query Builder for Drupal 161
Lin Clark

IX

The Polish interface for Linked Open Data . 165
Aleksander Pohl

HANNE - A Holistic Application for Navigational Knowledge Engineering 169
Sebastian Hellmann, Joerg Unbehauen, Jens Lehmann

Automated Mapping Generation for Converting Databases into Linked
Data . 173

Simeon Polfliet, Ryutaro Ichise

Avalanche: Putting the Spirit of the Web back into Semantic Web
Querying . 177

Cosmin Basca, Abraham Bernstein

Displaying email-related contextual information using Contextify 181
Gregor Leban, Marko Grobelnik

KiWi - A Platform for Semantic Social Software (Demonstration) 185
Thomas Kurz, Sebastian Schaffert, Tobias Buerger, Stephanie Stroka,
Rolf Sint, Mihai Radulescu, Szabolcs Grünwald

Part III. Demos accompanying full Research or In-Use
papers

Enterprise Data Classification Using Semantic Web Technologies 189
Tamar Domany, Abigail Tarem, David Ben-David

The eCloudManager Intelligence Edition – Semantic Technologies for
Enterprise Cloud Management . 193

Peter Haase, Tobias Mathäß, Michael Schmidt, Andreas Eberhart, Ul-
rich Walther

WebProtege: Supporting the Creation of ICD-11 . 197
Sean Falconer, Tania Tudorache, Csongor Nyulas, Natalya Noy, Mark
Musen

Building Linked Data Applications with Fusion: A Visual Interface for
Exploration and Mapping . 201

Samur Araujo, Geert-Jan Houben, Daniel Schwabe, Jan Hidders

STEREO: a SaT-based tool for an optimal solution of the sERvice
selEctiOn problem . 205

Daniel Izquierdo, Maria Esther Vidal, Blai Bonet

The Catalogus Professorum Lipsiensis - Semantics-based Collaboration
and Exploration for Historians . 209

Thomas Riechert, Ulf Morgenstern, Sören Auer, Sebastian Tramp, Michael
Martin

X

Parallelization Techniques for Semantic Web
Reasoning Applications

Alexey Cheptsov, Matthias Assel

1 HLRS - High Performance Computing Center Stuttgart, University of Stuttgart,

Nobelstrasse 19, 70569 Stuttgart, Germany
{cheptsov, assel}@hlrs.de

Abstract. Performance is the most critical aspect towards achieving high
scalability of Semantic Web reasoning applications, and considerably limits the
application areas of them. There is still a deep mismatch between the
requirements for reasoning on a Web scale and performance of the existing
reasoning engines. The performance limitation can be considerably reduced by
utilizing such large-scale e-Infrastructures as LarKC - the Large Knowledge
Collider - an experimental platform for massive distributed incomplete
reasoning, which offers several innovative approaches removing the scalability
barriers, in particularly, by enabling transparent access to HPC systems.
Efficient utilization of such resources is facilitated by means of parallelization
being the major element for accomplishing performance and scalability of
semantic applications. Here we discuss application of some emerging
parallelization strategies and show the benefits obtained by using such systems
as LarKC.

Keywords: Semantic Web Reasoning, LarKC, parallelization, multi-threading,
message-passing

1 Introduction

Current Semantic Web reasoning systems do not scale to the requirements of the
rapidly increasing amount of data, such as those coming from millions of sensors and
mobile devices or the terabytes of scientific data produced by automated
experimentation.

The latest attempts to overcome the above-mentioned limitations resulted in
infrastructures for large-scale semantic reasoning, such as one set up by LarKC (the
Large Knowledge Collider [1]) which focuses on reasoning over billions of structured
data in heterogeneous data sets. Along with a number of original solutions for
obtaining Web scale by semantic applications, LarKC offers services for transparently
accessing diverse computing architectures, including multi-core (many-core) multi-
processor, and cluster-based computer architectures as well as dedicated high-
performance computers.

Parallelization enables simultaneous execution of independent computational
operations and thus resolves the conflicts occurring between the concurrent operations

1

while performing computation. Given the large problem sizes that are addressed by
LarKC, and considering the benefits of parallelization, it seems natural to explore use
of the main parallelization strategies for semantic applications, too. Here we discuss
some major parallelization techniques for providing parallelism on task-, instruction-,
and data-level, applied for LarKC’s pilot applications. However, the investigated
approaches and techniques are quite generic and can be potentially applied for any
other Semantic Web engine.

2 Parallelization Patterns

There are several parallelization techniques, which have proven their usability for a
wide range of optimization tasks and might be beneficial for semantic applications.
They can be roughly classified according to the level at which the parallelism takes
place (Fig. 1):
1) between loosely-coupled components (workflow level) – implementation of

parallelism by running multiple instances of the same plug-in simultaneously
o task-level parallelism

• workflow branching
2) within a separate component (“plug-in” level) – implementation of parallelism in

the concurrent regions of the component’s algorithms
o instruction-level parallelism

• shared-memory systems: multi-threading
• distributed-memory systems: message-passing

o data and instruction-level parallelism
• MapReduce data processing

Fig. 1. For the semantic applications, which are described through complex
workflows, parallelization can be applied on different levels: workflows (task- and
data-level parallelism), or single components/plug-ins (data- and instruction-level
parallelism).

Workflow branching

Identifier Identifier

Selecter 1Selecter 1

ReasonerReasoner

DeciderDecider

Selecter 2Selecter 2

Query
Transformer

Query
Transformer

Plug-in parallelization

multi-threading
MPI

P
ro

ce
ss

1

P
ro

ce
ss

2
P

ro
ce

ss
2

P
ro

ce
ss

3
P

ro
ce

ss
3

P
ro

ce
ss

4
P

ro
ce

ss
4

MapReduce

2

3 Main Instruction-Level Parallelization Techniques

The techniques presented in Section 2 differ by complexity of their implementation
and obtained performance impact. In this section we discuss only the approaches,
which allow obtaining considerable performance impact with a minimum of
implementation efforts for sequential code. In particular, we consider multi-threading
and message-passing. The achieved performance impact is discussed as well.

3.1 Multi-threading

Most of today’s CPUs are equipped with multiple cores. Unfortunately, many
applications are still using only one of them for their processing (i.e., applications are
still sequentially programmed) instead of distributing particular tasks to different
processor cores concurrently. In order to make use of the capabilities provided by
modern CPU architectures, applications must align their tasks according to the
number of available cores.

Implementation of multi-threading for a sequential code is to large extent trivial
and does not require much development efforts. For evaluation purposes, we
implemented multi-threading support for the Urban Computing application of LarKC
[2]. Realization of multi-threading for the most time consuming component of the
investigated workflow allowed us to obtain a considerable performance speed-up
(Table 1).

Table 1. Performance characteristics after applying multi-threading

Intel @ 1.8 GHz, 2 cores Xeon @ 2.8 GHz, 8 cores
Tested

realization Time, ms % of total
execution

Time, ms % of total
execution

Single thread 4400 80 3400 74
Multiple
threads 1100 37 900 36

Speed-up,
times 3.8 3.7

3.2 Message-Passing

The Message-Passing Interface (MPI) is the most widely used parallel
programming paradigm for highly-scalable parallel applications. MPI enables sharing
the application workload over various nodes of a parallel system (both shared and
distributed memory architectures are supported). The synchronization between the
nodes is achieved by means of the messages passed among the involved processes
through the network interconnect. Implementations of MPI in Java (such as MPIJava
or MPJ-Express) have enabled use of MPI also for Java applications. MPI is highly
beneficial for computing-intensive applications, whereby scalability within a shared-
memory space is not sufficient for obtaining the necessary performance.

3

For evaluation purposes, we implemented message-passing for the “Airhead”
library from the S-Space package1. The parallelization technique was evaluated for
the Linked Life Data subset used by University of Sheffield within the LarKC project.
The obtained performance characteristics, collected in Table 2, prove great benefit of
distributed-memory parallelisation not only for the investigated application, but also
for similar ones coming from other areas of the Semantic Web.

Table 2. Performance characteristics after applying message-passing

Intel @ 1.8 GHz, 2 cores Xeon @ 2.8 GHz, 8 cores Number of
computing

nodes
Time, s. Speed-up (to

1 CPU case)
Time, s. Speed-up (to 1

CPU case)
1 750 1 57 1
2 - - 20 2.85
4 - - 10 5.7
8 - - 5 11.4

4 Conclusions

In our tests we investigated the impact of the main instruction-level parallelization
strategies, namely multi-threading and message-passing, on performance of two
typical Semantic Web use cases. The first application was taken from the urban
computing use case, where parallelization facilitates meeting real-time requirements.
Whereas message-passing was not very useful for this application due to real-time
performance requirements, applying multi-threading allowed the application to
greatly benefit from the multi-core CPU architecture. The second application -
random indexing - was much more complex as the first one, and made great benefit of
message-passing that leveraged a cluster of shared-memory nodes for the application.
Our future investigations will concentrate on further approaches presented here (such
as MapReduce [3]) as well as hybrid algorithms combining them (e.g. multi-threading
inside a shared-memory node combined with message-passing among nodes).

References

1. Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Della Valle, E., et al.
Towards LarKC: A Platform for Web-Scale Reasoning, In: Proceedings of the 2008 IEEE
international Conference on Semantic Computing ICSC, pp. 524--529, IEEE Computer Society
(2008)

2. Della Valle, E., Celino, I., Dell'Aglio, D. The Experience of Realizing a Semantic Web Urban
Computing Application, Transactions in GIS 14,2 (2010)

3. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F. Scalable Distributed Reasoning Using
MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) The Semantic Web - ISWC 2009, LNCS, vol. 5823, pp. 634--649, Springer
(2009)

1 http://code.google.com/p/airhead-research/

4

Visual Reasoning about Ontologies

John Howse1, Gem Stapleton1, and Ian Oliver2

1 University of Brighton, UK {john.howse,g.e.stapleton}@brighton.ac.uk
2 Nokia, Helsinki, Finland ian.oliver@nokia.com

Abstract. We explore a diagrammatic logic suitable for specifying on-
tologies using a case study. Diagrammatic reasoning is used to establish
consequences of the ontology.

Introduction. The primary (formal) notations for ontology modelling are sym-
bolic, such as description logics or OWL [2]. The provision of symbolic notations,
along with highly efficient reasoning support, facilitates ontology specification,
but need not be accessible to the broad range of users. Using diagrammatic no-
tations for reasoning, in addition to specification, can bring benefits. Standard
ontology editors often support a visualization; Protégé includes a plug-in visual-
ization package, OWLVis, that shows derived hierarchical relationships between
the concepts in the ontology and, thus, is very limited. Currently, some diagram-
matic notations have been used for specifying ontologies, but they are either not
formalized [3] or do not offer many of the benefits that good diagrammatic no-
tations afford [4]. In [6], we proposed ontology diagrams, which we now rename
concept diagrams, for ontology modelling. We extend [6] by demonstrating how
one can reason using concept diagrams.

Ontology Specification. We use a variation of the University of Manchester’s
People Ontology [1] as a case study. It relates people, their pets and their vehi-
cles. We now formally define the ontology. The diagrams below assert: (a) a man
is an adult male person, (b) every van is a vehicle, and (c) every driver is an adult:

(a):

adult

person

male

man
(b):

van

vehicle

(c):
driver

adult

In (a), the shading asserts that the set man is equal to the intersection of the
sets adult, male and person. Also, (d) every animal is a pet of some set of people:

(d):
isPetOf

a

animal person Diagram (d) asserts that the relation isPetOf
relates animals to people, and only people:
each animal a is related by the relation is-
PetOf to a (possibly empty) subset of people.

So, when a is instantiated as a particular element, e, the unlabelled curve rep-
resents the image of isPetOf with its domain restricted to {e}. As animal and
person are not disjoint concepts – a person is an animal – the curves representing

5

these concepts are placed in separate sub-diagrams, so that no inference can be
made about the relationship between them.

We define the concepts of being a driver and a white van man: (e) p is a
person who drives some vehicle if and only if p is a driver, and (f) m is a man
who drives a white van if and only if m is a white van man:

(e):

drives
p

person vehicle

p

driver

(f):

drives
p

man

p
whiteVanMan

vehicle

whiteThing

The two parallel, horizontal lines mean if and only if ; a single line means implies.

We now introduce an individual called Mick: (g) Mick is male and drives
ABC1, (h) ABC1 is a white van, and (i) Rex an animal and is a pet of Mick:

(g): ABC1

drives

Mick

male

(h):

vanwhiteThing

ABC1 (i): Mick

isPetOf

Rex

animal

Diagrammatic Reasoning. We have enough information to prove diagram-
matically some lemmas, culminating in proving that Mick is a white van man.

Lemma 1 Mick is a person: Mick

person

Proof From diagram (i) and diagram (d) we
deduce all of the individuals of which Rex is a
pet are people:

Mick

isPetOf

Rex

animal person

Therefore, Mick is a person, as required: Mick

person

In the above proof, the deduction that the set of individuals of which Rex is
a pet relied on pattern matching diagrams (i) and (d). We believe it is clear
from the visualizations that one can make the given deduction. The last step
in the proof simply deletes syntax from the diagram in the preceding step, thus
weakening information, to give the desired conclusion. Much of the reasoning we
shall demonstrate requires pattern matching and syntax deletion.

Lemma 2 Mick is an adult: Mick

adult

6

Proof From diagram (b) we know that all vans
are vehicles so we deduce, from diagram (h):

vanwhiteThing

ABC1

vehicle

Therefore, ABC1 is a vehicle: ABC1

vehicle

From diagram (g), we therefore deduce: ABC1

drives

Mick

male vehicle

Now, ABC1 is a particular vehicle. Therefore,
Mick drives some vehicle:

drives

Mick

male vehicle

By lemma 1, Mick is a person, thus:
drives

Mick

Person vehicle

Hence, by diagram (e), Mick is a driver:
Mick

driver

By diagram (c) drivers are adults: Mick

driver
adult

Hence, Mick is an adult, as required: Mick

adult

Lemma 3 follows from lemmas 1 and 2, together with diagrams (a) and (g) (the
interested reader may like to attempt the proof):

Lemma 3 Mick is a man: Mick

man

Theorem 1 Mick is a white van man: Mick

whiteVanMan

Proof By lemma 3, Mick is a man so
we deduce, using diagram (g): ABC1

drives

Mick

man

7

From diagram (h) we have:
drives

Mick

man van

whiteThing

ABC1

Therefore Mick drives some white thing
which is a van:

drives
Mick

man van

whiteThing

By diagram (f), we conclude that Mick
is a white van man:

Mick

whiteVanMan

The visual reasoning we have demonstrated in the proofs of the lemmas and the
theorem is of an intuitive style and each deduction step can be proved sound.
We argue that intuitiveness follows from the syntactic properties of the diagrams
reflecting the semantics. For instance, because containment at the syntactic level
reflects containment at the semantic level, one can use intuition about the se-
mantics when manipulating the syntax in an inference step. This is, perhaps, a
primary advantage of reasoning with a well-designed diagrammatic logic.

Conclusion. We have demonstrated how to reason with concept diagrams. The
ability to support visual reasoning should increase the accessibility of inference
steps, leading to better or more appropriate ontology specifications: exploring
the consequences of an ontology can reveal unintended properties or behaviour.
These revelations permit the ontology to be improved so that it better models the
domain of interest. Our next step is to formalize the inference rules that we have
demonstrated and prove their soundness. Ideally, these rules will be intuitive to
human users, meaning that people can better understand why entailments hold.
This complements current work on computing justifications [5] which aims to
produce minimal sets of axioms from which an entailment holds; finding minimal
sets allows users to focus on the information that is relevant to the deduction in
question which is important when dealing with ontologies containing very many
axioms. Using a visual syntax with which to communicate why the entailment
holds (i.e. providing a diagrammatic proof) may allow significant insight beyond
knowing the axioms from which a statement can be deduced.

Acknowledgement. Supported by EPSRC grants EP/H012311, EP/H048480.
Thanks to Manchester’s Information Management Group for helpful discussions.

References
1. http://owl.cs.manchester.ac.uk/2009/iswc-exptut, 2009.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nadi, and P. Patel-Schneider (eds).

The Description Logic Handbook. CUP, 2003.
3. S. Brockmams, R. Volz, A. Eberhart, and P. Löffler. Visual modeling of OWL DL

ontologies using UML. Int. Semantic Web Conference, 198–213. Springer, 2004.
4. F. Dau and P. Ekland. A diagrammatic reasoning system for the description logic

ALC. Journal of Visual Languages and Computing, 19(5):539–573, 2008.
5. M. Horridge, B. Parsia, and U. Sattler. Computing explanations for entailments in

description logic based ontologies. In 16th Automated Reasoning Workshop, 2009.
6. I. Oliver, J. Howse, E. Nuutila, and S. Törmä. Visualizing and specifying ontologies

using diagrammatic logics. In Australasian Ontologies Workshop, 2009.

8

Semantic-based Complex Event Processing in the AAL
Domain

Yongchun Xu, Peter Wolf, Nenad Stojanovic and Hans-Jörg Happel

FZI, Research Center for Information Technology, Haid-und-Neu-Str. 10-14,
76131 Karlsruhe, Germany

{xu, wolf, nstojano, happel}@fzi.de

Abstract. Ambient assisted living (AAL) is a new research area focusing on
services that support people in their daily life with a particular focus on elderly
people. In the AAL domain sensor technologies are used to identify situations
that pose a risk to the assisted person (AP) or that indicate the need of proactive
assistance. These situations of interest are detected by analyzing sensor data
coming from a whole variety of sensors. Considering the need for immediate
assistance especially in the case of safety- and health-critical situations, the
detection of situations must be achieved in real-time. In this paper we propose
to use Complex Event Processing (CEP) based on semantic technologies to
detect typical AAL-like situations. In particular, we present how the ETALIS
CEP engine can be used to detect situations in real-time and how this can lead
to immediate and proper assistance even in critical situations in conjunction
with the semantic AAL service platform openAAL.

Keywords: Complex Event Processing, Ambient assisted living, Real-time,
Semantic Technologies, Context-aware, ETALIS, openAAL

1 Introduction

Ambient assisted living (AAL) is a newly research area focusing on services that
support people in their daily life and particular focus on elderly people. The services
include reminding and alerting the assisted person (AP), giving feedback, advice, and
impulses for physical or social activities, among others. [1] In AAL, sensor
technologies monitor devices, environmental conditions, health parameters and
location information. This information is used to build a knowledge base capturing
the current situation of the AP. This situational knowledge is used by context-aware
services to provide personalized assistance, i.e. services can adapt to the current
situation of the user.

Semantic technologies that enable modeling of complex situations, easy integration
of sensor data and automatic service discovery are considered to be a perfect fit for
enabling context-aware services in the AAL domain. However, considering the need
for immediate assistance especially in the case of safety- and health-critical situations,
the detection of situations must be achieved in real-time.

0000000000000000000000000000000000000

00000000000000000000000000000000000009

2 Yongchun Xu, Peter Wolf, Nenad Stojanovic and Hans-Jörg Happel

Complex event processing (CEP), a software technology for the dynamic
processing of high volume events, can be considered a perfect match for detecting
critical situations. With CEP, it is possible to express causal, temporal, spatial and
other relations between events. These relationships specify patterns in which the event
stream is searched in real-time. [2]

In this paper, we combine the AAL service platform openAAL, that acts as central
gateway to sensor events and AAL services, with the ETALIS [3] engine for complex
event processing based on semantic technologies to detect critical situations based on
sensor events in real-time.

2 Semantic-based Event Processing in AAL

Figure 1 shows the architecture of semantic-based event processing in the AAL
domain. The system is based on the OSGi service middleware and consists of two
main sub systems the service platform openAAL and the ETALIS CEP system, which
are combined by the linkage component.

Fig. 1. The Architecture of Semantic-based Event Processing in the AAL domain

2.1 OpenAAL

OpenAAL1 [1] represents a flexible and powerful middleware for AAL scenarios.
The openAAL platform enables easy implementation, configuration and situation-
dependent provision of flexible, context-aware and personalized IT services. It
consists of three components: procedural manager, composer and context manager.

The context manager provides a sensor-level interface to connect with sensor-
bundles. Sensor bundles provide sensors events which are saved in a context store.
Both context store and sensor-level interface are derived from a sensor ontology.
Situations of the assisted person (AP) are modeled by complex event patterns and are
detected through CEP based on sensor events and background knowledge. The
procedural manager manages and executes workflows, which are triggered as reaction

1 OpenAAL is available as open source implementation at http://openaal.org

0000000000000000000000000000000000000

000000000000000000000000000000000000010

Semantic-based Complex Event Processing in the AAL Domain 3

to certain situations. The composer selects and combines services from the set of
currently available services to achieve service goals defined in the workflow.

2.2 ETALIS CEP System

We use CEP to detect critical situation based on sensor events in real-time. The
ETALIS CEP system consists of three components: Event Pattern Editor, ETALIS
CEP engine and Event visualization. The core component is the ETALIS engine2,
which is based on a declarative semantics, grounded in Logic Programming. Complex
events are derived from simpler events by means of deductive rules. Due to its root in
logic, ETALIS engine also supports reasoning about events, context, and real-time
complex situations (i.e., Knowledge-based Event Processing), which is a very
important feature for the event processing in the AAL domain. In addition to
reasoning about sensor-events, ETALIS can also incorporate useful background
knowledge into its reasoning. Moreover, ETALIS supports work with out-of-order
events3, which might occur often in a sensor network.

ETALIS detects safety- and health-critical situations of APs from sensor events
according to the complex event patterns that can be defined by users through the
event pattern editor. The event pattern editor provides a user friendly user interface
enabling easy definition of patterns. The event visualization displays the event
activities in the CEP system. Visualization enables a contextual analysis of emerging
complex events and supports the decision making process (e.g. how to react on a
particular situation).

2.3 Linkage

We combine both sub systems (openAAL and ETALIS) by creating a linkage
component. The linkage component transforms sensor events and useful background
knowledge (both represented in openAAL in a RDFS-like ontology) into the
corresponding ETALIS formats and transmits the information. The linkage
component also implements an adapter for ETALIS CEP engine to enable running
ETALIS in a JAVA environment while ETALIS is implemented in Prolog.

3 Use Case and Validation

The benefits of CEP lie in the efficient real-time detection of complex events. In
the AAL domain these aspects are needed when it comes to situations where
assistance needs to be provided immediately.

Our use case is based on the problem area of forgetfulness which has been
identified as one of the main problems among the elderly. [4] Due to forgetfulness a
critical situation can emerge when devices like iron, stove and oven are forgotten

2 ETALIS engine is open source and can be downloaded from http://code.google.com/p/etalis/.
3 An out-of-order event is the event which has been registered with a delay

0000000000000000000000000000000000000

000000000000000000000000000000000000011

4 Yongchun Xu, Peter Wolf, Nenad Stojanovic and Hans-Jörg Happel

when leaving the home. Our idea is to identify such a safety-critical situation by
means of CEP and then immediately remind the AP when he/she is still at home; thus
allowing the person to intervene. In more severe cases of forgetfulness critical devices
can be automatically turned off.

This use case can be accomplished by the interaction between openAAL and
ETALIS. openAAL with its attached sensors is able to provide sensor information
that can be used to detect such a critical situation. Sensors used in this scenario
include electricity consumption sensors, door sensors, identification sensors (e.g.
RFID), location sensors to distinguish leaving from entering the home and a sensor
detecting the ringing of a door bell (the latter to enhance detection reliability). All
those sensor events are sent to the ETALIS event engine which is identifying the
critical situation by means of complex event patterns. Note that for a reliable
detection of a person leaving the right order of events is especially important; also
background knowledge can be integrated for further increasing detection reliability. In
addition to the real-time properties, the ETALIS system is also supporting design and
maintenance of complex event patterns which can help to reduce the creation of
wrong or bad patterns. Once this situation has been detected, services running locally
on the openAAL platform can be executed to immediately remind the AP of the
potentially critical situation using a touch screen display right next to the front door.

4 Conclusion

In this paper we introduced intelligent semantic-based complex event processing in
AAL using the ETALIS event engine to detect critical situations in real-time. In this
approach sensor data coming from a variety of sensors is processed by ETALIS to
detect situations modeled as complex event patterns. Based on this real-time situation
detection, services, running on a local service platform, can provide proper and
immediate assistance. As a next step we will evaluate the implemented system in a
real world setting and improve the system according to the results of the evaluation.
Furthermore, we would like to apply the system in other domains that require real-
time processing especially in high-load environments.

Reference

[1] Wolf, P., Schmidt, A., Klein, M. Applying Semantic Technologies for Context-Aware
AAL Services: What we can learn from SOPRANO In: Workshop on Applications of
Semantic Technologies 09, Informatik 2009, Lecture Notes in Informatics vol. , GI, 2009

[2] Luckham, D. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, 2002

[3] Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R. A Rule-Based
Language for Complex Event Processing and Reasoning, RR 2010

[4] Larrabee, G. J., Crook III, T. H. Estimated Prevalence of Age-Associated Memory
Impairment Derived From Standardized Tests of Memory Function. International
Psychogeriatrics (1994), 6:1:95-104 Cambridge University Press

0000000000000000000000000000000000000

000000000000000000000000000000000000012

Efficient processing of large RDF streams using
memory management algorithms

Vaibhav Khadilkar, Murat Kantarcioglu, Latifur Khan, and
Bhavani Thuraisingham

The University of Texas at Dallas

Abstract. As more RDF streaming applications are being developed,
there is a growing need for an efficient mechanism for storing and per-
forming inference over these streams. In this poster, we present a tool
that stores these streams in a unified model by combining memory and
disk based mechanisms. We explore various memory management algo-
rithms and disk-persistence strategies to optimize query performance.
Our unified model produces an optimized query execution and inference
performance for RDF streams that benefit from the advantages of using
both, memory and disk.

1 Introduction
An application that processes RDF streams does not know apriori the size of the
stream. This makes it difficult to store these streams in memory as only a limited
amount of data can be stored, and on the disk which requires a longer query
processing time for small streams. Research has thus far focused on storing RDF
data in relational databases [1] or in non-database approaches [2]. We have a
developed a tool1 that presents a unified model based on an optimal combination
of memory and disk based solutions for storing RDF streams. This tool allows
users to pose any SPARQL query (non-inference or inference) to an application.
Our tool is implemented as a Jena graph which is the basic building block of the
Jena framework. Our graph moves from Jena’s in-memory graph to a Lucene2

graph when we begin to run out memory. The Lucene graph mirrors the in-
memory graph and queries to the unified model are rewritten to query the Lucene
indices. We use different memory management algorithms to select nodes from
the RDF stream to be left in memory based on the frequency of access patterns
and the centrality of nodes in the stream. We have also tested two Lucene index
creation strategies to optimize query performance. Finally, we switch to a Jena
RDB graph when a threshold limit is reached, beyond which the RDB graph is
better than Lucene for non-inference queries. Reference [3] presents an excellent
survey on using memory management algorithms in relational databases. We
have selected Lucene only as a temporary storage mechanism because we will
switch to the RDB graph if more data is streamed. Our proposed model works
very well for query execution and inference tasks with RDF streams.

2 Proposed Architecture
Figure 1 shows a flow of control to store RDF streams using the unified ap-
proach. We begin by storing the RDF stream in Jena’s in-memory triple store.

1 http://jena.sourceforge.net/contrib/contributions.html,http://cs.utdallas.edu/semanticweb
2 http://lucene.apache.org/java/docs/index.html

13

Fig. 1. Unified Approach Architecture - Creating a model

If the triple is an ABox triple we also store or update for every subject of each
incoming triple, it’s degree, a timestamp of when it was last accessed and a
pointer to the triples belonging to it, in a memory buffer. The TBox triples
are first read into memory without maintaining any statistics for them in the
buffer. This helps to distinguish TBox triples from ABox triples. Since no statis-
tics are maintained these TBox triples are never written to disk. When the
writeThreshold is reached the buffer management subsystem returns a sorted
buffer based on the selected memory management algorithm such as FIFO,
LIFO, LRU, MRU and RANDOM. We also adapted social network central-
ity measures such as degree centrality (DC) and clustering coefficient (CC)
[4] into memory management algorithms. The writeThreshold is defined as,
writeThreshold = initThreshold×totalMem. The equation takes initThreshold
as a number of triples and the memory size (specified in gigabytes) given to the
current run from the user. Triples from the in-memory graph are moved to the
Lucene graph using the pointer of every subject node (from the sorted buffer) and
the selected persistence strategy. This process of moving triples continues as long
as x% of the writeThreshold is not reached (x is also user configurable). Finally,
when the dbThreshold is reached we move all triples to Jena’s RDB graph. From
this point onwards all incoming triples are directly stored in the RDB graph.
We use a combination of in-memory, Lucene and RDB graphs for non-inference
models and a combination of in-memory and Lucene graphs for inference models.
For query execution, the input query is submitted to the graph that is currently

14

being used. A non-inference query is run on either the in-memory and Lucene
graphs or the RDB graph and a complete result is returned to the user. For an
inference query, Pellet infers additional triples by reasoning over the result from
the in-memory and Lucene graphs, using the TBox triples that are always in
memory. The resulting triples are then returned to the user.

3 Experimental Results

We performed benchmark experiments to compare the performance of the unified
model to both, the Jena database backends and a purely Lucene triple store. We
used the Sp2Bench [5] benchmark to check non-inference query execution and the
LUBM [6] benchmark to test inference. Although we have tested all queries of
both benchmarks on our system, in this section we show results only for Q5b and
Q8 from Sp2Bench and for Q4 and Q6 from LUBM as they are representative of
the overall trend. The graphs below show only query time and they do not include
loading times. We have also performed scalability tests with varying graph sizes,
but in this poster we only show graph sizes of 50168 triples for Sp2Bench and
1 university (≈ 103000 triples) for LUBM. We use these small sizes since we
only want to determine the best algorithm and Lucene persistence strategy in
this paper. Further, we set writeThreshold = (3/4)×no. of triples in the graph,
totalMem = 1 and x = no. of triples in mem/90. We chose these values for the
parameters so that we always have a good balance of triples between memory
and Lucene giving us a good indication of the overall performance of various
queries of both benchmarks.

Q5b Q8
0

5000

10000

15000

20000

25000

30000

Ti
m
e(
m
s)

Query

 LRU+DegC
 MRU+DegC
 FIFO
 LIFO
 DegC
 IndCC
 Random
 Lucene
 RDB
 SDB

(a) Algorithms - Sp2Bench

Q4 Q6
0

5000

10000

15000

20000

Ti
m
e(
m
s)

Query

 LRU
 MRU
 FIFO
 LIFO
 DegC
 IndCC
 Random
 Lucene
 RDB
 SDB

(b) Algorithms - LUBM

Fig. 2. Comparison of all algorithms and persistence strategies

We have used the degree and timestamp values to implement the memory man-
agement algorithms. For example, if we use LRU, we sort the buffer in the in-
creasing order of timestamp values while for degree centrality we sort the buffer
in increasing order of DC values. The reader should note that the DC and CC
values are recomputed for every node each time the buffer is sorted. We then
move triples to the Lucene graph for every node starting from the top of the
buffer until x% of the triples are moved. We have also combined LRU and MRU
with both DC and CC by first using the timestamp to sort the buffer and if there
is a tie we use DC or CC to break the tie. Figure 2 shows a comparison of all
memory management algorithms that we have tested for Sp2Bench and LUBM.

15

For Sp2Bench, we see that DC gives us the best result because it keeps nodes
that are relevant to the Sp2Bench queries in memory. In comparison, for LUBM,
we see that MRU performs the best. This is due to the fact that MRU leaves
the least recently used nodes in memory that are used by the Pellet reasoner for
inference and query execution.

Q5b Q8
0

5000

10000

15000

20000

25000
Ti
m
e(
m
s)

Query

 C-S
 C-S-Eff
 Mem
 Lucene
 RDB
 SDB

(a) Persistence strategies - Sp2Bench

Q4 Q6
0

5000

10000

15000

20000

25000

Ti
m
e(
m
s)

Query

 C-S
 C-S-Eff
 Mem
 Lucene
 RDB
 SDB

(b) Persistence strategies - LUBM

Fig. 3. Comparison of persistence strategies

We have also tested two Lucene persistence strategies, the first creates all in-
dices at the same time (C-S) while the second creates each index as needed
starting with the predicate, then the object and finally the subject (C-S-Eff).
In the unified model we do not create the subject Lucene index, instead we set
dbThreshold to be the number of triples at this point. The C-S strategy works
well with LUBM queries but does not work for the Sp2Bench queries as shown in
figure 3. With C-S-Eff we get a query time comparable to in-memory storage for
Sp2Bench, but a much higher query time for LUBM. For LUBM, the Pellet rea-
soner needs to query the larger predicate Lucene index multiple times, making it
slower than the C-S approach where the reasoner needs to query the smaller sub-
ject and object Lucene indices. The Sp2Bench queries use the in-memory subject
and object structures, and hence perform as well as the in-memory model.

4 Conclusion
In this paper we show that creating a unified model by combining the in-memory,
Lucene and relational database models gives us excellent query execution and
inference time with an enhanced scalability for RDF streams.

References

1. Dave Beckett. Scalability and Storage: Survey of Free Software/Open Source RDF
storage systems. http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_

storage_report/, July 2002.
2. AllegroGraph RDFStore. http://www.franz.com/agraph/allegrograph/, 2005.
3. Hong-Tai Chou and David J. DeWitt. An Evaluation of Buffer Management Strate-

gies for Relational Database Systems. In VLDB, pages 127–141, 1985.
4. M. O. Jackson. Social and Economic Networks. Princeton University Press, 2008.
5. Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.

SP2Bench: A SPARQL Performance Benchmark. In ICDE, pages 222–233, 2009.
6. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL

knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

16

Text Based Similarity Metrics
and Deltas for Semantic Web Graphs

Krishnamurthy Koduvayur Viswanathan and Tim Finin

University of Maryland, Baltimore County
Baltimore, MD 21250 USA
{krishna3, finin}@umbc.edu

Abstract. Recognizing that two Semantic Web documents or graphs
are similar and characterizing their differences is useful in many tasks,
including retrieval, updating, version control and knowledge base edit-
ing. We describe several text-based similarity metrics that characterize
the relation between Semantic Web graphs and evaluate these metrics
for three specific cases of similarity: similarity in classes and properties,
similarity disregarding differences in base-URIs, and versioning relation-
ship. We apply these techniques for a specific use case – generating a
delta between versions of a Semantic Web graph. We have evaluated our
system on several tasks using a collection of graphs from the archive of
the Swoogle Semantic Web search engine.

Keywords: Semantic Web graphs, similarity metrics, delta

1 Introduction and Motivation

Semantic Web search engines can benefit from recognizing nearly duplicate doc-
uments [2] for many of the same reasons that text search engines do. Comparing
Semantic Web documents or graphs, however, is more complicated. In natural
language text local word order is important to meaning while the order of triples
in a Semantic Web document (SWD) is not important. As a result, equivalent
Semantic Web documents may have completely different statement ordering. It
is also possible to have two different SWDs, which become identical after per-
forming inference. The presence of “blank nodes” in SWDs further complicates
their comparison.

We explore three different ways in which a pair of Semantic Web graphs can
be similar to each other: similarity in classes and properties used while differ-
ing only in literal content, difference only in base-URI, and implicit versioning
relationship [4, 3]. We define text-based similarity metrics to characterize the
relation between them. As a part of this, we identify whether they may be dif-
ferent versions of the same graph. Furthermore, if we determine a versioning
relationship between a candidate pair, then we generate a delta, i.e., a detailed
description of their differences at the triple level delta between them.

These methods enable a Semantic Web search engine to organize its query
results into groups of documents that are similar with respect to the different
metrics and also generate deltas between documents judged to have a versioning
relationship.

17

2 Objective and Approach

Our objective is identify pairs of documents that are similar to each other in a
collection of SWDs. We characterize SWD similarity along three dimensions: a
similarity in classes and properties used while differing only in literal content,
difference only in base-URI, and versioning relationship. For pairs of SWDs
exhibiting a versioning relationship we compute a triple-level delta for them.

Our input corpus is in the form of a set of RDF documents. Our approach
involves the following steps:

Convert to canonical representation: We convert all the documents into
a uniform n-triple serialization. Since equivalent semantic web graphs may have
different n-triple serializations, we apply the algorithm described in [4] which
assigns consistent IDs to blank nodes and lexicographically order the triples.

Generate reduced forms: In order to compute the similarity measures,
the canonical representations are decomposed into the following four reduced
forms. Each is a document with:

1. only the literals from the canonicalized n-triples file
2. literals replaced by the empty string1

3. the base-URI of every node replaced by the empty string
4. literals and the base-URI of every node are replaced by the empty string

Thus, each Semantic Web graph has a canonical representation, and four reduced
forms i.e. five forms in all.

Compute similarity measures: Given the text-based reduced forms, we
can use the the following similarity measures from the information retrieval field.

1. Jaccard similarity and containment: We construct sets of character 4-
grams from the input documents which are used to compute the measures.
A high value for both Jaccard and containment metrics indicates a strong
possibility of a versioning or equivalence relation between two.

2. Cosine Similarity between semantic features: Each SWD is repre-
sented as a vector of terms. The non-blank, non-literal nodes from each
SWD are extracted and their term-frequency in the SWD is used as the
feature weight.

3. Charikar’s Simhash: We compute the Hamming distance between the
simhashes of the documents being compared. Simhash [1] is a locality sensi-
tive hashing technique where the fingerprints of similar documents differ in
a small number of bit positions.

Pairwise computation of metrics: Given an input of Semantic Web doc-
uments, we need to find all pairs that are similar to each other. The total number
of metrics computed for each pair of SWDs is 17: two kinds of cosine similarity,
and three other metrics for each reduced form pair. The process is as follows:

1. Compute the two cosine similarity values between the canonical representa-
tions (already generated) of both the SWDs.

1 Another viable approach is to replace each literal string by its XSD data type

18

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.973 0.000 1.000 0.973 0.986 1.000 yes

1.000 0.027 0.973 1.000 0.987 0.996 no

Weighted Avg. 0.986 0.014 0.987 0.986 0.986 0.998

Table 1: Accuracy by class (classes and properties used), using Naive Bayes

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1.000 0.040 0.962 1.000 0.980 0.979 yes

0.960 0.000 1.000 0.960 0.980 0.990 no

Weighted Avg. 0.980 0.020 0.981 0.980 0.980 0.985

Table 2: Accuracy by class (pairs different only in base URI), using Naive Bayes

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.864 0.045 0.950 0.864 0.905 0.909 yes

0.955 0.136 0.875 0.955 0.913 0.909 no

Weighted Avg. 0.909 0.091 0.913 0.909 0.909 0.909

Table 3: Accuracy by class (versioning relationship), using SVM with linear kernel

.

2. If the cosine similarity values are below a pre-determined threshold, then
eliminate this pair from further consideration, else add this pair to a list of
candidate pairs. The threshold for this step was determined empirically by
performing pilot experiments, and was set at 0.7.

3. For all candidate pairs, compute the remaining three pairwise similarity met-
rics for each reduced form.

Thus the cosine similarity metric is used as an initial filter to reduce the re-
maining computations. It is to be noted that this pairwise comparison approach
entails a quadratic number of comparisons.

3 Classification and Delta

We trained three classifiers (one for each kind of similarity defined) with a dataset
collected from the Swoogle, annotated with human judgements of the three kinds
of similarity. Pairwise similarity measures are computed for each candidate pair
in the labeled dataset and three different feature vectors (one for each classi-
fier) are constructed for each candidate pair, using appropriate attributes. The
attributes used are the similarity measures that have been computed. These clas-
sifiers are then used to detect the three forms of similarity that we have defined.
For a list of attributes used for each classifier, see [4].

Once it is determined that two SWDs have a versioning relationship between
them, we compute the set of statements that describe the change between suc-
cessive versions of the SWD. For details on the specific deltas that we compute
between two versions, see [4].

19

4 Evaluation and Conclusion

Our system is based on several informal types of similarity that we have observed
among documents in Swoogle’s repository. In addition, there exists no standard
labeled dataset of similar Semantic Web documents that we could use for the
purpose of evaluating our system. Hence we constructed a collection of Seman-
tic Web documents from Swoogles Semantic Web archive and cache services.
Swoogle periodically crawls the Semantic Web and maintains several snapshots
for each indexed SWD. We added such versions to our data-set and labeled
them as having a versioning relationship. We constructed a labeled dataset of
402 SWDs (over 161,000 candidate pairs) from Swoogle’s Semantic Web archive
and cache services2. The results of the classification process are as shown in
Tables 1, 2, and 3.

The results shown in Tables 1, and 2 were obtained by performing a ten-fold
stratified cross validation using the labeled dataset. Table 3 shows results of
evaluation on a test set that was constructed in the same way as the training
data-set. The high true positive rate for determining version relationships be-
tween SW graph pairs allows us to develop applications like generation of deltas.
For details on attributes used for each classifier, refer to [4]

We developed techniques to recognize when two Semantic Web graphs are
similar and characterize their difference in three ways. When the system detects
a versioning relationship between a pair, we also generates a delta in terms
of triples to be added or deleted. One of the future directions is to increase
scalability. We intend to implement a principled filtering mechanism to reduce
the number of pairwise comparisons. We might use the Billion Triples Challenge
dataset for experiments3. We also plan to develop a global similarity and ranking
scheme where, given a sample, we would be able to find and rank the most similar
matches. This would require representation of the similarity measures by more
complex schemes, e.g., lattices.

References

1. M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC ’02: Proc. of the thiry-fourth annual ACM symposium on Theory of comput-
ing, pages 380–388, New York, NY, USA, 2002. ACM.

2. G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-duplicates for web crawling.
In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, editors,
WWW, pages 141–150. ACM, 2007.

3. K. Viswanathan. Text Based Similarity Metrics and Delta for Semantic Web Graphs.
Master’s thesis, 1000 Hilltop Circle, June 2010.

4. K. Viswanathan and T. Finin. Text Based Similarity and Delta for Semantic Web
Graphs. Technical report, UMBC, 1000 Hilltop Circle, August 2010.

2 http://swoogle.umbc.edu/index.php?option=com swoogle service&service=archive
3 http://km.aifb.kit.edu/projects/btc-2010/

20

Towards Stable Semantic Ontology Measurement

Yinglong Ma1,2

1 School of Control and Computer Engineering
North China Electric Power University, Beijing 102206, P.R.China

2 State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R.China

yinglongma@gmail.com

Abstract. Stable semantic ontology measurement is crucial to obtain significant
and comparable measurement results. In this paper, we present a summary of
the definition of ontology measurement stability and the preprocessing for stable
semantic ontology measurement from [5]. Meanwhile, we describe two existing
ontology metrics. For each of them, we compare their stability from the per-
spectives of structural and semantic ontology measurements, respectively. The
experiments show that some structural ontology measurements may be unusable
in cases when we want to compare the measurements of different models, unless
the pre-processing of the models is performed.

1 Introduction

In recent years, ontology engineers have proposed many ontology metrics for assess-
ing ontology quality such as the literatures [1–4]. However, some proposed ontology
metrics are to measure ontology structure instead of ontology semantics which are the
nature of ontology. They only simply calculate the number of classes and class inher-
itances by some labels in ontologies such as owl:Class and rdfs:subClassOf,
and do not consider possibly implicit semantic subsumption between (complex) classes.
Most ontology metrics do not take into account the open world assumption (OWA) and
the possible addition of implicit axioms, which will cause incomparable measurement
results [5]. To use the same metric to measure the ontologies with the same semantic
knowledge will bring about variable values. Such ontology metrics may be unstable.

2 Stable ontology measurement and preprocessing

An ontology can be regarded as a set of triples of the form (s,p,o). The structural de-
scription of an ontology O is the set of explicitly represented triples in O. The semantic
description of O is the set that contains not only the structurally described triples, but
also all implicit triples obtained by reasoning O. Note that an ontology with the same
semantic description possibly has multiple structural descriptions (including O).

Definition 1. Let Sem(O) be the semantic description of an ontology O. Sem(O)
has the multiple structural descriptions, denoted Stru(O)={O, O1, · · ·, On}. A sta-
ble ontology measurement M is mapping, M : Stru(O) → R such that M(O) =
M(O1) = · · · = M(On), where R is a nonempty set of real numbers.

21

We summarize the preprocessing for stable ontology measurement from [5].
1) Naming all anonymous classes and all anonymous individuals. We can automat-

ically detect the related labels and name anonymous classes. Anonymous individuals
can be detected and named by class membership. The set of named concepts of Ontol-
ogy O is denoted CO = {C1, · · · , Cn}, where each Ci is unique, and is either an atomic
concept or a named anonymous concept.

2) Eliminating cycles of concept subsumption such as A v A1, · · ·, An v A, where
A, Ai(1 ≤ i ≤ n) are concepts. Once we detect such a cycle of concept subsumption
in an ontology, we replace all cyclic concept subsumption axioms with B v Ai (1 ≤
i ≤ n), where B is a new concept name for each cycle.

3) Instances explicitly asserted by class membership, object property and datatype
property should be enriched as deeply as possible by reasoning the ontology O.

4) Getting rid of possible transitivity relationships. We attempt to adopt a definition
of axiom fanouts per concept to get rid of the possible transitivity relationships. The
reason to do this is that a well-founded measurement theory should avoid the double
counting problem, e.g., a measurement unit is counted more than once. Once some
axioms are counted, then the axioms derived from these counted axioms should not be
counted. In the following, we specifically discuss axiom fanouts per concept.

Definition 2. ∀C,D ∈ CO, C is directly subsumed by D, i.e., directly-subsumed-
by(C,D), iff ∀C,D ∈ CO(C v D ∧ ¬∃C ′ ∈ CO(C ′ v D ∧ C v C ′)).

Definition 3. ∀C ∈ CO, the axiom fanouts of C are denoted AFC = {D1, · · · , Dm},
where for each Di(1 ≤ i ≤ m ≤ |CO|), directly-subsumed-by(Di, C) holds, and |CO|
represents the cardinality of CO.

In the following, we simply analyze the correction of the preprocessing. On one
hand, as mentioned above, for an ontology O, its semantic description Sem(O) con-
tains not only the structural description of O, but also the implicitly expressed knowl-
edge derived from O. This means that, for any axiom or assertion α in O, O implies α
iff Sem(O) implies α. On the other hand, the preprocessing for stable ontology mea-
surement is terminable because Step 1), Step 2) and Step 3) will be terminated if there
is no complex concept, cycle of concept subsumption, and unenriched concept in O.
At last, this can guarantee that Sem(O) should be finite and unique no matter how the
ontology O is represented. In the case, the measurement result for O will be invariable
and stable if we measure O by Sem(O). We can also obtain the following corollary.

Corollary 1. An ontology measurement of ontology’s semantic description is stable by
using the preprocessing for comparing the measurements of different models.

3 Proposal of two ontology metrics

A structural ontology measurement is just to measure the explicitly expressed ontology
without applying the preprocessing. In contrast to a structural ontology measurement, a
semantic ontology measurement is just to measure the quality of semantic description of
original ontology by using the preprocessing. We describe two ontology metrics related
to axiom fanouts for validating the stability of ontology measurement.

22

Metric 1: Average Axiom Fanouts per Concept (AAFC)

AAFC of Ontology O can be defined as follows: AAFC(O)=

∑
C∈CO

AFC

|CO| .
Metric 2: Average Depth of Concept Subsumption of Leaf Concepts (ADCS-LC)

A concept RC ∈ CO is a root one iff ¬∃C ∈ (CO \ RC) such that RC v C. A
concept LC ∈ CO is a leaf one iff ¬∃C ∈ (CO \ LC) such that C v LC. The depth of
path p, denoted |p|, is the total number of concepts in p. ADCS-LC of O can be defined

as ADCS-LC(O)=

∑
p∈PS

|p|

|LS| , where PS and LS are the set of all paths and the set of leaf
concepts in ontology O, respectively.

AFC and ADCS-LC are ontology metrics related to ontology fanouts which can be
often used as the indicators of some ontology quality properties such as complexity and
cohesion [1–4]. They can be used for structural or semantic ontology measurements.

4 Experiments and measurement stability analysis

The goal of the experiments was designed to compare the stability of the two ontology
metrics from the perspectives of structural and semantic ontology measurements, re-
spectively. The experimental settings were as follows. 1) We randomly searched the 10
testing ontologies by the search engine, Swoogle. They were evaluated for validating
the stability of ontology measurement; and 2) For each of AAFC and ADCS-LC, we
collected the values of their structural and semantic ontology measurements, respec-
tively. The measurement values of AAFC and ADCS-LC were shown in Figure 1.

Fig. 1. Semantic and structural measurement values of AAFC and ADCS-LC

Pearson’s correlation coefficient is used for analyzing the stability of AAFC and
ADCS-LC, which is with the following hypotheses: H0 : ρ = 0 (There is no correla-
tion between the pair of values); H1 : ρ 6= 0 (There is correlation between the pair of
values). For each of AAFC and ADCS-LC, we calculated the correlation coefficient and
p-value of pair of measurement values. The larger absolute value of the correlation co-
efficient means stronger correlation between the pair of variables. If the pair of variables
are independent, the correlation coefficient is 0. P-values are used in hypothesis tests
to either reject or fail to reject a null hypothesis. A small p-value indicates that a null
hypothesis is false. A p-value (<0.001) means that we must reject the null hypothesis.

23

By the statistical software, SPSS , we can obtain the correlation coefficient and
p-value of pairs of AAFC and ADCS-LC, respectively. We find that the correlation co-
efficient and p-value between the pair of semantic and structural measurement values
of AAFC are -0.195 and 0.588, respectively. This means that there is no obvious corre-
lation between the pair of AAFC. However, there is a very strong correlation between
the pair of semantic and structural measurement values of ADCS-LC because their cor-
relation coefficient and p-value are 0.946 and 0.000, respectively. Especially for the
p-value, it is less than 0.001 such that we can obviously reject the null hypothesis.

From Corollary 1, if we we want to compare the measurements of different mod-
els, a semantic ontology measurement is stable by using the preprocessing. In the case,
if the semantic and structural measurements of an ontology metric are strongly corre-
lated, then this means that the structural measurement of the ontology metric may be
usable to compare the measurement values of ontologies, and can be a useful indica-
tor of some ontology quality properties such as complexity and cohesion. Otherwise,
the structural measurement of the ontology metric is likely to be unusable. According
to these analysis, we find that AAFC may be not usable to compare the measurement
values of ontologies. In contrast to AAFC, ADCS-LC is usable for both semantic and
structural ontology measurement. We believe that more experiments should be made to
comprehensively validate the stability of ontology measurement.

5 Conclusions

We summarized the definition about stability of ontology metrics and the preprocessing
for stable ontology measurement. By two ontology metrics to compare the measurement
stability of different models, we found that some structural ontology measurements may
be unusable, unless the pre-processing of the models is performed.

Acknowledgments

This work is supported by National Natural Science Foundation of China (No.61001197),
the Fundamental Research Funds for the Central Universities, and State Key Laboratory
of Computer Science, IOS, Chinese Academy of Sciences (No.SYSKF1010).

References
1. Gangemi A., Catenacci C., Ciaramita C. and Lehmann J. A theoretical framework for ontol-

ogy evaluation and validation. Proceedings of SWAP2005, 2005.
2. Tartir S., Arpinar I.B., Moore M., Sheth A.P. and Aleman-Meza B. OntoQA: Metric-based

ontology quality analysis. Proceedings of IEEE ICDE 2005 Workshop, 2005.
3. Orme A., Yao H. and Etzkorn L. Coupling Metrics for Ontology-Based Systems. IEEE Soft-

ware, 23(2), (2006) 102–108.
4. Orme A., Yao H. and Etzkorn L. Indicating ontology data quality, stability, and completeness

throughout ontology evolution. Journal of Software Maintenance and Evolution: Research
and Experience, 19(1), (2007) 49–75.

5. Vrandecic D. and Sure Y. How to Design Better Ontology Metrics. Proceedings of
ESWC2007, (2007) 311–325.

24

T2LD: Interpreting and Representing
Tables as Linked Data?

Varish Mulwad, Tim Finin, Zareen Syed, and Anupam Joshi

University of Maryland, Baltimore County, Baltimore MD USA 21250
{varish1,finin,joshi}@cs.umbc.edu,zareensyed@gmail.com

Abstract. We describe a framework and prototype system for interpret-
ing tables and extracting entities and relations from them, and producing
a linked data representation of the table’s contents. This can be used to
annotate the table or to add new facts to the linked data collection.
Keywords: linked data, human language technology, entity linking

1 Introduction

Vast amounts of information is available in structured forms like spreadsheets,
database relations, and tables in documents found on the Web. We describe a
framework for interpreting such tables and extracting entities and relations from
them. The results can be used to annotate the table or to contribute its contents
to linked data (LOD) collections. The process assigns column headers to classs
from an appropriate ontology, links table cells (as appropriate) to entities in
a LOD collection, and identifies relations between columns and links them to
ontology properties. The resulting table interpretation can be used to confirm
existing facts in an LOD collection and to propose new facts to be added.

Using the table headers and the data in its rows and columns, we query
existing knowledge bases (KBs) including Wikitology [1] and DBpedia to select
the best class labels for each column, which is then used to identify potential
entity links for table cells. A classifier selects the best entity from the list and a
second classifier decides whether the evidence is strong enough to link the cell
value to it. Relations in the table are discovered using the generated column
classes, linked entities, and KB information bases. Our implemented prototype
was evaluated using a collection of tables from Google Squared, Wikipedia and
tables found on the Web.

Caferella et al. [2] estimated that the Web contains around 14.1 billion HTML
tables, over 154 million containing high quality relational data. This represents a
huge source of knowledge currently unavailable on the Semantic Web. There is a
need for systems that can automatically generate LOD from existing sources, be
it unstructured (e.g., free text), semi-structured (e.g., text embedded in forms
or Wikis) or structured (e.g., data in spreadsheets and databases). Interpreting
tables is a problem of interest in many areas such as databases, web systems
and the Semantic Web. See [3, 4] for a comprehensive study of related work on
interpreting tables and converting databases and spreadsheets into RDF.

? Research supported in part by a gift from Microsoft Research, a Fulbright fellowship,
NSF award IIS-0326460 and the Human Language Technology Center of Excellence.

0000000000000000000000000000000000000

000000000000000000000000000000000000025

2 T2LD : Interpreting and Representing Tables as Linked Data

Existing systems for extracting knowledge from tables [5] require human
intervention and do not focus on a complete interpretation of the table, nor
integrating the table with linked open data cloud. This poster paper focuses on
an automatic framework for generating an linked RDF which can be integrated
into the LOD cloud. The eventual goal of this work is to enrich the LOD cloud by
learning new facts and knowledge from tables and publishing it on the Semantic
Web.

To develop an overall interpretation
city state mayor population

Baltimore MD S.Dixon 640000
Philadelphia PA M.Nutter 1500000
Washington DC A.Fenty 595000
New York NY M.Bloomberg 8400000

Boston MA T.Menino 610000

Fig. 1: In simple tables column headers suggests
the type of data stored in columns and cell val-
ues denote instances of that type.

of a table, we assign every column header
a class label from an appropriate ontol-
ogy, e.g., the column with header City
is assigned a class label dbpedia-owl:City
from the DBpedia ontology. For the ta-
ble in Figure 1, we link “Baltimore” to
dbpedia:Baltimore. Numbers can be map-
ped as values of properties which can
be associated with entities in the table.
We also identify the relations implicit between columns, e.g., that dbpedia-
owl:largestCity seems to hold between the entities denoted by cell values in the
first two columns (i.e., city and state). Finally this information is represented in
a N3 serialization of RDF.

2 T2LD Framework

Given an table as input, the T2LD framework [6] begins with the process of
assigning a class label to every column in the table. For all the cell values in every
column of the table, the algorithm for assigning class labels (see Algorithm 1 in
[3]) submits a complex query to the Wikitology knowledge base to determine the
type of each cell value in the column. Each class label from the set of possible
class labels obtained from query results is scored. The class label with the highest
score is chosen as the class label to be associated with the column. We predict
class labels from four vocabularies - DBpedia Ontology, Freebase, WordNet, and
Yago.

Using the class labels as additional evidence, for every MAP columns
m = 1 11.53%

0 < m < 1 69.23%
m = 0 19.24%

Recall columns
r = 1 46.15%

0 < r < 1 34.61%
r = 0 19.24%

Fig. 2: The percent-
age of columns with
various MAP and re-
call scores.

table cell, the algorithm for linking table cell to entities (see
Algorithm 2 in [3] for detailed algorithm), re-queries the KB.
For every table cell, the KB returns the top N possible enti-
ties. For each of the top N entities, the algorithm generates
a feature vector consisting of the entity’s KB score, entity’s
Wikipedia page length, entity’s page rank, the Levenshtein
distance between the entity and the string in the query and
the Dice score between the entity and the string. The set
feature vectors for each table cell are ranked using a SVM-
Rank classifier. To the highest rank feature vector from SVM rank, two more
features are added - the SVM rank score of the feature vector and the difference

0000000000000000000000000000000000000

000000000000000000000000000000000000026

T2LD : Interpreting and Representing Tables as Linked Data 3

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .
@prefix dbpprop: <http://dbpedia.org/property/> .

“City”@en is rdfs:label of dbpedia-owl:City .
“State”@en is rdfs:label of dbpedia-owl:AdminstrativeRegion .

“Baltimore”@en is rdfs:label of dbpedia:Baltimore .
dbpedia:Baltimore a dbpedia-owl:City .
“MD”@en is rdfs:label of dbpedia:Maryland .
dbpedia:Maryland a dbpedia-owl:AdministrativeRegion .

dbpprop:LargestCity rdfs:domain dbpedia-owl:AdminstrativeRegion .
dbpprop:LargestCity rdfs:range dbpedia-owl:City .

Fig. 3: A example of N3 representation of a table as linked data

in SVM-Rank scores between the top two feature vectors. Based on this new
feature vector, a second SVM classifier decides whether to link the table cell to
this top ranked entity or not. If the evidence is not strong enough, it is likely
that the table cell is a new entity not present in the KB; this step is useful in
discovery of new entities in a given table. If the evidence is strong enough, the
table cell is linked to the top ranked entity returned by SVM-Rank.

We also present a preliminary approach for identifying relations between table
columns (see Algorithm 3 in [3]). The algorithm generates a set of candidate
relations from the relations that exist between the strings in each row of the
two columns. Each candidate relation is scored and the relation with the highest
score is selected to represent relation between the two columns. We have also
developed a preliminary template in N3 (see Figure 3), which is a compact and
human readable serialization of RDF for representing tables as LOD.

3 Evaluation and Conclusion

Our implemented prototype was evaluated against 15 tables obtained from Google
Squared, Wikipedia and from a collection of tables extracted from the Web. Ex-
cluding the columns with numbers, the 15 tables have 52 columns and 611 entities
for evaluation of our algorithms. We used a subset of 23 columns for evaluation
of relation identifcation between columns.

In the first evaluation of the algorithm for assigning class labels to columns,
we compared the ranked list of possible class labels generated by the system
against the list of possible class labels ranked by the evaluators. As shown in
Figure 2 for 80.76% of the columns the Mean Average Precision (MAP) between
the system and evaluators list is greater than 0 which indicates that there was
at least one relevant label in the top three of the system ranked list. Also seen
in Figure 2, for 75% of the columns, the recall of the algorithm was greater
than or equal to 0.6. We also assessed whether our predicted class labels were
reasonable based on the judgment of human subjects (see [3]). 76.92 % of the
class labels predicted were considered correct by the evaluators. The accuracy in

0000000000000000000000000000000000000

000000000000000000000000000000000000027

4 T2LD : Interpreting and Representing Tables as Linked Data

Fig. 4: Category wise accuracy for “column correctness” is shown in (a) and for entity linking in (b)

each of the four categories is shown in Figure 4. 66.12 % of the table cell strings
were correctly linked by our algorithm for linking table cells. The breakdown of
accuracy based on the categories is shown in Figure 4. Our dataset had 24 new
entities and our algorithm was able to correctly predict for all the 24 entities
as new entities not present in the KB. We did not get encouraging results for
relationship identification with an accuracy of 25 % (see [3] for details).

Our existing system performs reasonably well in selecting appropriate types
for columns and linking cell values to LOD entities. We have preliminary results
for identifying and encoding the relationships implicit in the columns as well.
Our current work is focused on improving relationship discovery and generating
new facts and knowledge from tables that contain entities not present in the
LOD knowledge bases.

References

1. Finin, T., Syed, Z.: Creating and Exploiting a Web of Semantic Data. In: Proc.
2nd Int. Conf. on Agents and Artificial Intelligence, Springer (2010)

2. Cafarella, M.J., Halevy, A.Y., Wang, Z.D., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. PVLDB 1 (2008) 538–549

3. Mulwad, V.: T2LD - An automatic framework for extracting, interpreting and
representing tables as Linked Data. Master’s thesis, U. of Maryalnd, Baltimore
County (2010)

4. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr, T., Auer, S., Se-
queda, J., Ezzat, A.: A survey of current approaches for mapping of relational
databases to rdf. Technical report, W3C (2009)

5. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: from Spreadsheets to
RDF. In: Seventh International Semantic Web Conference, Springer (2008)

6. Syed, Z., Finin, T., Mulwad, V., Joshi, A.: Exploiting a Web of Semantic Data for
Interpreting Tables. In: Proceedings of the Second Web Science Conference. (2010)

7. Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables.
In: Proc. First Int. Workshop on Consuming Linked Data. (2010)

0000000000000000000000000000000000000

000000000000000000000000000000000000028

LDSpider: An open-source crawling framework
for the Web of Linked Data

Robert Isele3, Jürgen Umbrich2, Christian Bizer3, and Andreas Harth1

1 AIFB, Karlsruhe Institute of Technology
harth@kit.edu

2 Digital Enterprise Research Institute, National University of Ireland, Galway
juergen.umbrich@deri.org

3 Freie Universität Berlin, Web-based Systems Group
robertisele@googlemail.com, chris@bizer.de

Abstract. The Web of Linked Data is growing and currently consists
of several hundred interconnected data sources altogether serving over
25 billion RDF triples to the Web. What has hampered the exploitation
of this global dataspace up till now is the lack of an open-source Linked
Data crawler which can be employed by Linked Data applications to
localize (parts of) the dataspace for further processing. With LDSpider,
we are closing this gap in the landscape of publicly available Linked Data
tools. LDSpider traverses the Web of Linked Data by following RDF links
between data items, it supports different crawling strategies and allows
crawled data to be stored either in files or in an RDF store.

Keywords: Linked Data, Crawler, Spider, Linked Data tools

1 Introduction

As of September 2010, the Web of Linked Data contains more than 200 inter-
connected data sources totaling in over 25 billion RDF triples4. Applications
that need to localize data from the Web of Linked Data [1] for further pro-
cessing currently either need to implement their own crawling code or rely on
pre-crawled data provided by Linked Data search engines or in the form of data
dumps, for example the Billion Triples Challenge dataset5. With LDSpider, we
are closing this gap in the Linked Data tool landscape. LDSpider is an extensible
Linked Data crawling framework, enabling client applications to traverse and to
consume the Web of Linked Data.

The main features of LDSpider are:

• LDSpider can process a variety of Web data formats including RDF/XML,
Turtle, Notation 3, RDFa and many microformats by providing a plugin
architecture to support Any236.

4 http://lod-cloud.net
5 http://challenge.semanticweb.org/
6 http://any23.org/

0000000000000000000000000000000000000

000000000000000000000000000000000000029

2 Isele, Harth, Umbrich, Bizer

• Crawled data can be stored together with provenance meta-information ei-
ther in a file or via SPARQL/Update in an RDF store.

• LDSpider offers different crawling strategies, such as breadth-first traversal
and load-balancing, for following RDF links between data items.

• Besides of being usable as a command line application, LDSpider also offers
a simple API which allows applications to configure and control the details
of the crawling process.

• The framework is delivered as a small and compact jar with a minimum of
external dependencies.

• The crawler is high-performing by employing a multi-threaded architecture.

LDSpider can be downloaded from Google Code7 under the terms of the
GNU General Public License v3. In the following, we will give an overview of
the LDSpider crawling framework and report about several use cases in which
we employed the framework.

2 Using LDSpider

LDSpider has been developed to provide a flexible Linked Data crawling frame-
work, which can be customized and extended by client applications. The frame-
work is implemented in Java and can be used through a command line application
as well as a flexible API.

2.1 Using the command line application

The crawling process starts with a set of seed URIs. The order how LDSpider
traverses the graph starting from these seed URIs is specified by the crawling
strategy. LDSpider provides two different round-based crawling strategies:

The breadth-first strategy takes three parameters: <depth> <uri-limit>

<pld-limit>. In each round, LDSpider fetches all URIs extracted from the
content of the URIs of the previous round, before advancing to the next
round. The depth of the breadth-first traversal, the maximum number of
URIs crawled per round and per pay-level8 domain as well as the maximum
number of crawled pay-level domains can be specified. This strategy can be
used in situations where only a limited graph around the seed URIs should
be retrieved.

The load-balancing strategy takes a single parameter: <max-uris>. This strat-
egy tries to fetch the specified number of URIs as quickly as possible while
adhering to a minimum and maximum delay between two successive requests
to the same pay-level domain. The load-balancing strategy is useful in situ-
ations where the fetched documents should be distributed between domains
without overloading a specific server.

7 http://code.google.com/p/ldspider/
8 “A pay-level domain (PLD) is any domain that requires payment at a TLD or cc-

TLD registrar.”[3]

0000000000000000000000000000000000000

000000000000000000000000000000000000030

LDSpider: A crawling framework for the Web of Linked Data 3

LDSpider will fetch URIs in parallel employing multiple threads. The strategy
can be requested to stay on the domains of the seed URIs.

Crawled data can be written to different sinks: File output writes the crawled
statements to files using the N-Quads format. Triple store output writes the
crawled statements to endpoints that support SPARQL/Update.

2.2 Using the API

LDSpider offers a flexible API to be used in client applications. Each component
in the fetching pipeline can be configured by either using one of the implemen-
tations already included in LDSpider or by providing a custom implementation.
The fetching pipeline consists of the following components:

The Fetch Filter determines whether a particular page should be fetched by
the crawler. Typically, this is used to restrict the MIME types of the pages
which are crawled (e.g. to RDF/XML).

The Content Handler receives the document and tries to extract RDF data
from it. LDSpider includes a content handler for documents formatted in
RDF/XML and a general content handler, which forwards the documents
to an Any23 server to handle other types of documents including Turtle,
Notation 3, RDFa and many microformats.

The Sink receives the extracted statements from the content handler and pro-
cesses them usually by writing them to some output. LDSpider includes
sinks for writing various formats including N-Quads and RDF/XML as well
as to write directly to a triple store using SPARQL/Update. Both sinks can
be configured to write metadata containing the provenance of the extracted
statements. When writing to a triple store, the sink can be configured to
include the provenance using a Named Graph layout.

The Link Filter receives the parsed statements from the content handler and
extracts all links which should be fetched in the next round. A common use
of a link filter is to restrict crawling to a specific domain. Each Link Filter
can be configured to follow only ABox and/or TBox links. This can be used
for example to configure the crawler to get the schema together with the
primary data.

2.3 Implementation

LDSpider is implemented in Java and uses 3 external libraries: The parsing of
RDF/XML, N-Triples and N-Quads is provided by the NxParser library9. The
HTTP functionality is provided by the Apache HttpClient Library10, while the
Robot Exclusion Standard is repected through the use of the Norbert11 library.

9 http://sw.deri.org/2006/08/nxparser/
10 http://hc.apache.org/
11 http://www.osjava.org/norbert/

0000000000000000000000000000000000000

000000000000000000000000000000000000031

4 Isele, Harth, Umbrich, Bizer

3 Usage examples

We have employed LDSpider for the following crawling tasks:

– We employed LDSpider to crawl interlinked FOAF profiles and write them
to a triple store. For that purpose, we crawled the graph around a single seed
profile (http://www.wiwiss.fu-berlin.de/suhl/bizer/foaf.rdf) and com-
pared the number of traversed FOAF profiles for different number of rounds:

rounds 1 2 3 4 5
profiles 1 10 101 507 6730

– We employed LDSpider to crawl Twitter profiles, which expose structured
data using RDFa. We started with a single seed profile (http://twitter.
com/aharth) and wrote all traversed profiles to a triple store and compared
the number of profiles for different number of rounds:

rounds 1 2 3
profiles 1 38 1160

As the number of profiles grows faster than in the previsous use case, we
can conclude that the interlinked Twitter profiles build a much denser graph
than the FOAF web.

– LDSpider is used in an online service which executes live SPARQL queries
over the LOD Web12

– We used LDSpider to gather datasets for various research projects; e.g. the
study of link dynamics [4] or the evaluation of SPARQL queries with data
summaries over Web data [2]

In summary, LDSpider can be used to collect small to medium-sized Linked
Data corpora up to hundreds of millions of triples.

References

1. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

2. Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sattler, and
Jürgen Umbrich. Data summaries for on-demand queries over linked data. In
WWW ’10: Proceedings of the 19th international conference on World wide web,
pages 411–420, New York, NY, USA, 2010. ACM.

3. Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov. Irlbot:
scaling to 6 billion pages and beyond. In WWW ’08: Proceeding of the 17th in-
ternational conference on World Wide Web, pages 427–436, New York, NY, USA,
2008. ACM.

4. Michael; Hogan Aidan; Polleres Axel; Decker Stefan Umbrich, Jürgen; Hausenblas.
Towards dataset dynamics: Change frequency of linked open data sources. 3rd
International Workshop on Linked Data on the Web (LDOW2010), in conjunction
with 19th International World Wide Web Conference, 2010.

12 http://swse.deri.org/lodq

0000000000000000000000000000000000000

000000000000000000000000000000000000032

Semantic Web Technologies for a Smart Energy
Grid: Requirements and Challenges?

Andreas Wagner, Sebastian Speiser, and Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology, Germany
{a.wagner,speiser,harth}@kit.edu

Abstract. The Smart Grid aims at making the current energy grid more
efficient and eco-friendly. The Smart Grid features an IT-layer, which al-
lows communication between a multitude of stakeholders and will have to
be integrated with other “smart” systems (e.g., smart factories or smart
cities) to operate effectively. Thus, many participants will be involved and
will exchange large volumes of data, leading to a heterogeneous system
with ad-hoc data exchange in which centralised coordination and control
will be very difficult to achieve. In this paper, we show parallels between
requirements for the (Semantic) Web and the Smart Grid. We argue that
the communication architecture for the Smart Grid can be built upon
existing (Semantic) Web technologies. We point out differences between
the existing Web and the Smart Grid, thereby identifying remaining chal-
lenges.

1 Introduction

The Smart Grid – a radical redesign of the traditional energy grid – aims at
profoundly changing the way how energy is created, distributed and consumed,
thereby saving a considerable amount of energy [1, 2]. The envisioned Smart Grid
should be [1]: (V1) flexible, i.e., fulfil current requirements, but also allow future
extensions, (V2) accessible, i.e., allow access to/from all participants, (V3) reli-
able, i.e., assure quality of supply and (V4) economic, i.e., provide best value and
allow for innovation and competition. Keeping the Smart Grid vision in mind, we
wish to design a communication architecture, which achieves the above goals.

In the following, we describe a preliminary communication architecture de-
veloped in context of the Smart Grid project MeRegioMobil1. Our contribution
is two-fold: 1) We outline requirements for a communication architecture for the
Smart Grid and describe how (Semantic) Web technologies meet them. 2) We out-
line the remaining differences between the (Semantic) Web and the Smart Grid,
thereby identifying future research problems.

The remainder of the paper is structured as follows: We present architecture
requirements and an initial architecture in Section 2. In Section 3, we describe
the differences between the Web and the Smart Grid and outline novel problems.
We conclude with Section 4.

? This work was in part supported by the German Federal Ministry of Economics and
Technology (MeRegioMobil, Grant 01ME09005).

1 http://meregiomobil.forschung.kit.edu/

0000000000000000000000000000000000000

000000000000000000000000000000000000033

2

2 A Semantic Web Architecture for the Smart Grid

In this section, we present requirements for a communication architecture, which
we derived from the Smart Grid vision and the literature, e.g., [1, 2]. Further,
we introduce a (Semantic) Smart Grid communication architecture meeting the
requirements.
– R1 - General Requirement A suitable architecture should incorporate a lay-

ered (data access, data representation and application layers) communication
stack providing different functionalities and levels of abstraction. Employing
a layered architecture leads to a more flexible and versatile Smart Grid com-
munication, as varying technologies may be integrated and functionalities can
be modified or replaced (V1).

– R2 - General Requirement We wish an appropriate architecture to be decen-
tralised and thus omit a single point of failure, in order to provide the desired
reliability (V3).

– R3 - Data Access Layer In order to allow full access to/from all participants
we need a naming mechanism to uniquely identify each participant (V2).

– R4 - Data Access Layer The Smart Grid needs flexible, open and scalable
data access procedures (V1/V2/V4). Flexibility means that a communication
architecture should be able to facilitate heterogeneous participants employing
hardware of lower or higher specification. Further, procedures only available
under restrictive licenses to a selected number of participants might hinder
innovation. Thus, standards should be open and royalty-free. As huge amounts
of data are handled within the Smart Grid, data access procedures should be
light-weight, i.e., scale well w.r.t. the data volume.

– R5 - Data Representation Layer We need structured and machine inter-
pretable data models for representation of data semantics and context, in
order to allow flexible application and business logic at higher layers (V1).

– R6 - Data Representation Layer Data semantics may be used for data in-
tegration, thereby fostering the access of heterogeneous participants (e.g.,
employing different data schemas) (V1/V2).

– R7 - Application Layer We have to support participants in making (auto-
mated) decisions, i.e., provide the means to express application and business
logic (V4).

– R8 - Application Layer For allowing decision making based on logic, we have
to fulfil (complex) information needs, thus we need to provide (semantic)
querying features (V2).

– R9 - Application Layer Last, via logic we have to ensure data security and
privacy, i.e., safeguard the grid against attacks and enable data protection
mechanisms (V3).
There have been various proposals for a communication architecture for the

Smart Grid, e.g., [1, 2]. In these works, the authors aim at a top-down architecture
design approach employing a wide spectrum of both open and proprietary proto-
cols. However, we aim at a concrete communication architecture, based on open
and royalty-free standards, which are already applied in similar networks such as
the Web. Further, while stating in [2] that a semantic layer (providing data seman-
tics and context) is needed, no suitable standards are identified. As a solution, we
advocate the use of semantic technologies to provide machine-interpretable data,
thereby enabling advanced Smart Grid applications and processes.

0000000000000000000000000000000000000

000000000000000000000000000000000000034

3

Considering the requirements and in particular the layered architecture, one
might notice strong parallels to the (Semantic) Web Stack – an adaptation of
which would result in a layered and decentralised architecture (R1/R2). More
precisely, we recommend an architecture as follows:

– Data Access Layers We advocate URIs for identification of participants (R3).
We employ a TCP/IP stack with HTTP as transfer protocol for establishing
a connection and accessing data (R4). However, standard Internet protocols
are usually not adequate for low-power devices, due to their overhead from
the various protocol headers. Thus, special protocols developed for low-power
devices (e.g., sensors) may be adapted: e.g., a light-weight layered architecture
such as IEEE 802.15.4 (physical and MAC layer), 6LoWPAN (internet layer,
IPv6 version for IEEE 802.15.4 networks) or a single layer coupled with a
middle-ware (for communication with TCP/IP networks), e.g., [3] (R4).

– Data Representation Layers To support a semantic understanding we advo-
cate RDF(S) (if necessary extended with OWL features) to provide light-
weight means for machine-interpretable data encoding (R5). Via Linked Data
principles, data from different sources can be linked and thus integrated (R6).

– Application Layers Application and business logic can be represented via RIF
(R7). We may use SPARQL as means to query RDF data and thereby allow
the articulation of information needs (R8). Last, employing proof and trust
mechanisms (together with rules), we can model constraints for the necessary
data privacy and security (R9).

3 Open Challenges in the Smart Grid

In this section, we identify future research questions in a (Semantic) Smart Grid.

Challenge 1: Support Heterogeneous Participants (Data Access Layer, R4) De-
vices in the Smart Grid have a higher level of (technical) heterogeneity than within
the Web. That is, we have to enable a flexible and light-weight (ad-hoc) integra-
tion of low-power devices (e.g., sensors and actuators) using low-level protocols
with traditional information systems working on higher levels of abstraction. In
fact, problems well-known within sensor networks (e.g., data uncertainty, vastness
or integration) are aggravated in the Smart Grid, as we have various distributed,
heterogeneous, low-power device networks (e.g., households) and various high-
level applications (e.g., billing or energy consumption prediction) which depend
on reliable data in real-time.

Challenge 2: Flexible Data Schema (Data Representation Layer, R5/R6) In
the Semantic Web schema learning, schema design or schema alignment are well-
known problems. However, in the Smart Grid there is a large number of different
stakeholders (e.g., energy producers, grid operators or appliance manufacturers)
having divisive backgrounds and goals. Thus, creating and enforcing a common
data schema may be challenging. Additionally, in the Smart Grid we have little
a-priori information about the participants and the data exchanged. For exam-
ple, customers may add new or remove old appliances within their households or
new service providers may participate in the markets. Added participants may
contribute new kinds of data, while existing ones still except a certain data in-
put. Thus, we need a very flexible data schema incorporating some fixed parts

0000000000000000000000000000000000000

000000000000000000000000000000000000035

4

(modelling static aspects of the grid), while being easily expandable and (to some
extend) adjustable.

Challenge 3: Large-scale Complex Event Processing (Application Layer, R7)
The vast amount of data that comes from data sources within the grid has to
be processed efficiently to enable smart behaviour. Billing and usage analysis
can be done using conventional batch processing methods. However, the dynamic
adaptation of the grid to the current situation (e.g., current energy consumption)
requires real-time complex event processing on a very large scale. In particular,
due to the data vastness and uncertainty (e.g., data from sensors), efficient and
reliable event processing becomes very challenging. Note, in contrast to traditional
Web scenarios, actions triggered in the Smart Grid have (possibly drastic) real-
world effects (e.g., energy outages). Thus, we have a very low fault tolerance when
making decisions.

Challenge 4: Privacy and Security (Application Layer, R9) Last, there is a
strong need for privacy and security within the Smart Grid. Privacy concerns
the data about individuals, e.g., information about premises, vehicles and appli-
ances or energy consumption. Traditional access control mechanisms are helpful
to block unwanted data access. However, there are many situations where initial
data access is granted, but the subsequent data usage has to be restricted (e.g.,
restricted to few purposes or participants). Also, there may be regulations enforc-
ing the publishing of specific data. Means for expressing usage restrictions and
a technical enforcement such restrictions (e.g., at certain participants such as a
metering provider) must be supported. Thus, e.g., work on WWW policies should
be adapted to allow a privacy-aware grid. Further, the Smart Grid includes par-
ticipants with very high security requirements (e.g., a clearinghouse or an energy
provider). That is, a malicious access at such participants can have disastrous real-
world effects. Thus, a communication architecture must provide strong means for
securing high risk participants, while still allowing access to/from the remaining
(open) grid.

4 Conclusion

In this paper, we have argued that open, royalty-free (Semantic) Web standards
can provide the foundation for a Smart Grid communication architecture. Further,
we listed the remaining challenges that stem from differences between the Smart
Grid and the Web, i.e., support of (very) heterogeneous participants, a flexible
schema, large-scale complex event processing and a strong need for privacy and
security. In the future, we plan to extend our work by implementing the outlined
architecture in our laboratory and conduct first field tests, thereby (on a step-by-
step basis) addressing the outlined problems.

References

1. European Technology Platform - SmartGrids Vision and Strategy for Europes Elec-
tricity Networks of the Future. European Comission, 2006.

2. NIST Framework and Roadmap for Smart Grid Interoperability Standards. National
Institute of Standards and Technology, 2010.

3. K. Aberer, M. Hauswirth, and A. Salehi. A middleware for fast and flexible sensor
network deployment. In VLDB ’06: Proceedings of the 32nd international conference
on Very large data bases, pages 1199–1202. VLDB Endowment, 2006.

0000000000000000000000000000000000000

000000000000000000000000000000000000036

A Graph-based Approach to Indexing Semantic Web
Data

Xin He1 and Mark Baker

1

1 School of Systems Engineering, University of Reading, Whiteknights,
Reading, Berkshire, RG6 6AY, UK

{x.he, mark.baker

Abstract. To the best of our knowledge, existing Semantic Web (SW) search
systems fail to index RDF graph structures as graphs. They either do not index
graph structures and retrieve them by run-time formal queries, or index all row
triples from the back-end repositories. This increases the overhead of indexing
for very large RDF documents. Moreover, the graph explorations from row
triples can be complicated when blank nodes, RDF collections and containers
are involved. This paper provides a means to index SW data in graph structures,
which potentially benefit the graph exploration and ranking in SW querying.

}@reading.ac.uk

Keywords: Semantic Web, search, query, RDF, resource, ontology.

1 Introduction

The task of querying resources on the Semantic Web (SW) is different to information
retrieval from the conventional Web. This is mainly due to the forms in which
information is stored differing between the Web and the SW, and the distinct levels of
semantic support. Instead of web pages and conventional databases, SW data is stored
in Resource Description Framework (RDF) documents. RDF data consists of many
triples, each of which contains a subject, a predicate and an object, represented using
either Uniform Resource Identifier (URI) or Literal (human-readable text). Many
existing SW search systems do not index graph structure, but only make mappings
from literals to the corresponding resources [5, 7] or documents [2, 3, 4]. Other
systems partially or wholly index the RDF graph structure in the backend semantic
data repositories. This structure information is represented as individual triples, and is
stored either as inverted indices in conventional IR engines [6, 8] or as database
records [1]. However, these systems suffer from the following problems:
− Indexing an excessive number of triples. This is very costly when the search engine

is geared towards the future SW.
− Limited support for access patterns in systems. Access patterns (S:?:?), (?:P:O),

(S:?:O), and (?:?:O) are not efficiently supported in the systems that index triples
using IR engines.

− Not supporting complex graph structures. Most of the SW search systems we have
studied are not suitable for RDF graphs that owe to the use of blank nodes, RDF
collections, and containers. Without the necessary graph structure information

37

indexed, exploring graphs that include blank nodes, RDF containers and
collections relying on row triples can be very complicated.

By analysing the limitations in existing efforts and considering the specific way that
SW data is stored, this paper presents a graph-based approach to indexing SW data.

2 Unit-Graph – Handling SW Graph Structures

The SW is not a simple hierarchical tree representing the subsumption relationships
between concepts and their instances, but instead a complicated net-based Directed
Labelled Graph (DLG) with mutual relations between nodes possibly existing.
Established indexing techniques, such as B-trees and hash-tables, are designed for
data with hierarchical structure. It is simple to index textual descriptions on the SW
using such techniques, but is impractical to index SW graph structures.

Although a whole RDF graph is normally not hierarchical, we found that by
dividing it into fractions, it is always possible to represent each fraction using a
hierarchical structure. Therefore, an RDF graph can be indexed as a collcetion of the
tree-based fractions. In this paper, such a fraction is called a Unit-Graph. Figure 1
illustrates three unit-graphs for resources uorcs:M_Baker, uorcs:X_He, and ex:06Pa
per, enclosed using blue, green, and red dashed lines respectively. In each unit-graph,
the resource being described is called the Root node, while each resource describing
the root node is called a Subnode (of the root node). From the root node to each
subnode, only forward links are included. For example, the unit-graph for uorcs:X_He
includes three literals (in conjunction with the three edges) and one subnode (in
conjunction with edge foaf:publications). Edge dc:creator is not included.

Fig. 1. The unit-graphs for three resources on the Semantic Web

These resources may be described in one SW document, or separately described in
multiple documents, and interlinked by semantic links. It should be noted that the
only system properties indexed in unit-graphs are rdfs:label and rdfs:comment.
System properties refer to those described by RDF-S and OWL. System properties
include properties that are not related to the result resources for each query, such as
the restrictions, and ontology versioning. There are also attributes indirectly related to
the description of the result resources, e.g. rdf:type, owl:sameAs, and rdfs:seeAlso.
These attributes are separately indexed.

38

Fig. 2. The unit-graph for a resource that contains blank nodes and RDF collection

Although unit-graphs are strictly hierarchical, they are unsuitable for indexing

using existing indexing techniques due to the possible inclusion of blank nodes, RDF
containers and collections, e.g. the unit-graph in Figure 2 (a) (enclosed using dashed
lines). User defined properties are represented using their label values for simplicity.

Using our approach, each unit-graph is modelled into layers, separated by blank
nodes. These blank nodes are not those used in RDF containers and collections. The
unit-graph for resource ex:Person001 (shown in Figure 2 (a)) is modelled into three
layers, as illustrated in Figure 2 (b). Property label values are omitted for simplicity.

We can intuitively see that each blank node has a maximum of three types of
forward neighbours, that is, subnode, literal, and blank node. Thus, by modelling the
root node or each of the blank node as an object, which contains three primitive value
lists, storing subnode URIs, literal values, and blank nodes respectively, and letting
each of these blank nodes have the type of the same object (as above), the data about
the blank nodes in lower layers can be added to the model recursively. Thus, a unit-
graph can be indexed layer by layer (from top to bottom) into an object.

In addition, multiple-values for each property (1: n relationship for the subject and
object(s) of each property) are supported. Thus, an RDF container or collection can be
pre-processed at indexing time and stored in a primitive value list as an item of one
primitive value list for its “super” blank node object. The graph structure of RDF
containers or collections is not recorded.

Furthermore, in our approach, graph structure and data values are separately
indexed. Each literal is assigned an internal identifier, namely Literal ID, represented

(a)

(b)

39

using a positive integer. Two literals (from different graphs) that contain the same
content will be assigned the same identifier. Each resource in a unit-graph (typically
identified using URI, including the root node, its subnodes and properties) is also
assigned an internal identifier, namely Resource ID, represented using a positive
integer identifier. Thus, all primitive values are represented using integers. This
severely minimises the storage size of unit-graphs, and facilitates the reuse of literals
and resource URIs in unit-graphs. Moreover, using unit-graphs, graph explorations
can be readily performed by matching between subnodes and rootnodes (in different
unit-graphs). Due to the use of Resource IDs, the graph exploration process is actually
the process of comparing numbers (see whether they are equal) rather than matching
long strings (the resource URIs), which is believed to be much more time-efficient.

3 Conclusion

In this paper, we propose an approach to indexing SW data which can address the
drawbacks in existing efforts in the same domain. We have presented a detailed tree-
based data model to effectively hold RDF graph structures. We clarify how it deals
with complex graph structures, especially when blank nodes, and RDF containers and
collections are involved. We have presented how internal identifiers are employed to
represent literals and resource URIs, and thereby minimises the disk capacity for
indexing, and improves system performance. In addition, we explain the advantages
our graph-based approach to dealing with RDF graphs has over the triple-based
indexing schemes. Our graph-based approach provides ready accesses to the SW
graph structures and flexible graph explorations without the need to index an
excessive number of triples, and is capable of dealing with complex graph structures.

References

1. Hogan, A., Harth, A., Umbrich, J., Decker, S.: Towards a Scalable Search and Query Engine
for the Web. In: Proceeding of the 16th

2. Ding, L., Finin, T., Joshi, A., Peng, Y., Cost, R., Sachs, J., Pan, R., Reddivari, P., Doshi, V.:
Swoogle: A Search and Metadata Engine for the Semantic Web. In: Proc. 13

 WWW, Poster Session, pp. 1301--1302 (2007)

th

3. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: A Document-Oriented Lookup Index for Open Linked Data. In: Journal of
Metadata, Semantics and Ontologies, vol. 3, no. 1, pp. 37--52. (2008)

CIKM (2004).

4. d'Aquin, M., Sabou, M., Dzbor, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Motta, E.:
WATSON: A Gateway for the Semantic Web. In: Proc. ESWC, Poster Session. (2007)

5. Lei, Y., Uren, V., Motta, E.: SemSearch: A Search Engine for the Semantic Web. In: Proc.
EKAW, pp. 238--245, (2006)

6. Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: An IR Approach to
Scalable Hybrid Query of Semantic Web Data. In: Proc. ISWC2007 + ASWC2007, pp. 652-
-665. LNCS, vol. 4825, pp. 652--665, (2008)

7. Cheng, G., Ge, W., Qu, Y.: Falcons: Searching and Browsing Entities on the Semantic Web.
In: Proc. WWW2008, Poster Session, pp. 1101--1102, (2008)

8. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: A Lightweight Keyword
Interface to Semantic Search. In: 5th ESWC. LNCS, vol. 5021, pp. 584--598, (2008)

40

xhRank: Ranking Entities on the Semantic Web

Xin He1 and Mark Baker

1

1 School of Systems Engineering, University of Reading, Whiteknights,
Reading, Berkshire, RG6 6AY, UK

{x.he, mark.baker

Abstract. In general, ranking entities (resources) on the Semantic Web (SW) is
subject to importance, relevance, and query length. Few existing SW search
systems cover all of these aspects. Moreover, many existing efforts simply
reuse the technologies from conventional Information Retrieval (IR), which are
not designed for SW data. This paper proposes a ranking mechanism, which
includes all three categories of rankings and are tailored to SW data.

}@reading.ac.uk

Keywords: Semantic Web, ranking, RDF, entity, resource, ontology.

1 Introduction

Semantic Web (SW) querying in general involves matchmaking, graph exploration,
and ranking, which form a process pipeline. Existing approaches to ranking SW
entities (resources) can be categorised into three types, based on importance,
relevance, and query length respectively. Importance-based rankings [2, 4, 5, 6] rank
the importance of SW resources, such as classes, instance resources and properties.
Relevance-based rankings [2, 4, 5, 6] match keywords to SW resources. These
approaches are purely based on word occurrence, and do not taken into account word
order and dispersion in literal phrases. Query length-based rankings [6] rank resource
by following the idea that shorter queries tend to capture stronger connections
between key phrases. However, we rarely see ranking schemes used in existing SW
search engines that cover all of these aspects. In addition, although Information
Retrieval (IR) and web algorithms, such as PageRank and TF-IDF have been adapted
for application in some SW search engines, we argue that they can still be further
improved to be better suited for SW data.

Therefore, by analysing the limitations presented in existing research efforts and
considering the specific way that SW data is stored, this paper proposes an approach,
namely xhRank, to ranking SW resources. This includes relevance, importance, and
query-length based rankings, all of which are particularly designed for SW data.

2 The xhRank Approach

In SW resource searching, there are in general three situations, in which a user input
may match an instance resource that the user intends to find (Target Resource):
− (1) Only the target resource is matched. The user-input keywords uniquely match

41

with the literals that directly describe the target resource. In this case, the user
intends to find a resource by providing its most direct annotations.

− (2) The target resource and its forward neighbouring resources are matched. The
user-input keywords match not only the literals that directly describe the target
resource, but the literals that describe its forward neighbours. These neighbours
represent the attributes of the target resource. In this case, the user intends to find a
resource by providing its most direct annotations as well as information about
some attributes of the resource that is known to the user.

− (3) Only forward neighbouring resources of the target resource (but not the target
resource itself) are matched. The user-input keywords match the literals describing
the forward neighbours of the target resource, but not the literals describing the
target resource itself. In this case, the user intends to find a resource by providing
information about some attributes of the resource that is known to the user.

In xhRank, all these situations are covered in the overall ranking, which is a sum-
mation of the relevance, importance, and query-length rankings, as presented below.

2.1 Relevance-based Ranking

Phrase-level Ranking. xhRank employs an alternative phrase ranking approach to
the word occurrence-based approach used by most existing SW search systems. In
addition to syntactical similarity, our approach takes into account term order and
dispersion. The degree of similarity of a phrase (Key Phrase) to another phrase
(Target Phrase) is determined by a phrase, called Related Key Phrase, extracted from
the key phrase, in which each word corresponds to a word in the target phrase and in
which the term order is compliant with the target phrase. For example, given the key
phrase “Audrey Hepburn Hollywood Actress” and the target phrase “Audrey Hepburn
was a Belgian-born, Dutch-raised actress of British and Dutch ancestry”, the related
key phrase is “Audrey Hepburn Actress”. It should be noted that there may be more
than one such related key phrase exists for a key phrase - target phase pair.

In the context of SW query, a key phrase refers to a phrase extracted from the user
input, whilst a target phrase refers to the value of a literal. Instead of returning an
overall score as the result, the resulting related key phrases (Phrase Similarity Result)
are returned, with each word in the related key phrases represented by its position in
the key phrase, in conjunction with a rating value for that word. Each word in the
related key phrase is rated according to the (1) Syntactical similarity S: the similarity
score between the keyword and the corresponding word in the target phrase; (2)
Importance of the keywords I: specified by the user; (3) Normalisation ratio N: used
to normalise the related key phrase by the length of the literal. The higher the ratio of
words in the key phrase to words in the target phrase, the more valuable these words
are; and (4) Discontinuous weighting D: The more times the words in the related key
phrase are divided by the non-related words, the less valuable these related words are.

Graph-level Ranking. The graph mentioned here is the resulting graph from a graph
exploration process. The node where the graph exploration initiated is called Central
Node, which is by design related to the user input, and the graph itself is called
Context Graph. Graph-level ranking is to compute the relevance of the central node to

42

the user input, which is subject to all resources within the context graph whose literals
are related to the user input. Each of such resources is called a Related Node.

The relevance of a graph to a user input is calculated based on how well the user-
input key phrases are covered by the literals related to the user input. By assembling
the phrase similarity results (each of which is obtained by the phrase-level ranking
against a key phrase - related literal pair), all possible coverage against a key phrase is
obtained. The relevance score is thus computed subjects to the best coverage result.

2.2 Importance-based Ranking

Resource (Node) Ranking. xhRank employs a variation on ReConRank [2] to rank
the importance of resources. ReConRank (employed in SWSE [3]) is altered from the
well-known PageRank/HITS algorithms. xhRank further improves on it by executing
the ranking based on a complete graph (at global scale) and prior to query time.

Property (Edge) Ranking. In xhRank, the importance of SW property resources in
RDF graphs (as edges) is dependent on the cost of that property. This is a prerequisite
of the query length-based ranking, and is uniquely applied to the properties describing
instance resources. The cost of a property P in the unit-graph [1] of a resource A is
determined by the popularity of P among all instance resources of class C, where A is
an instance of C. Thus, each property is ranked against a class.

2.3 Query Length-based Ranking

In xhRank, the query length-based ranking is used to evaluate a node (target node)
within a graph (context graph) against a user input. The target node is evaluated based
on the semantic distance between the target node and each of the nodes (related node)
within the context graph that is related to the user input.

2.4 Overall Ranking

Overall ranking extends the graph-level (relevance) ranking by complementing it with
importance and query-length based rankings. The input to the ranking process is a list
of explored graphs generated by the graph exploration process (a process prior to
ranking). Each explored graph has a related node as its root. Thus, overall ranking is
performed against each of these explored graphs (as the context graph) and against a
node within the graph (as the target node). In the three situations discussed above, in
situation (1) and (2), the target node is just the root node of the explored graph, which
is also a related node. However, in situation (3), the target node is not a related node,
but the “super-node” (backward neighbour) of all related nodes within the context
graph. Thus, for each explored graph, in addition to the root node, the Top Node is
also selected as a target node. A top node of an explored graph is the node, from
which all related nodes can be navigated to by means of only following forward links.

In addition, there are a few more points to note:

43

− Although explored graphs are strictly hierarchical, there can still be more than one
top node in an explored graph. In this case, only the top node with the closest
overall distance to the related nodes is selected.

− Top node strategy is applied only when there is more than one related node in the
explore graph, which would otherwise fall into situation (1).

− Non-root related nodes in an explored graph are not selected as target nodes.

Therefore, in order to incorporate query-length based ranking into the graph-level
(relevance-based) ranking, when performing graph-level ranking, prior to the related
key phrases being assembled, the rating value for each keyword position is multiplied
by the reciprocal for the cost of the path from the target node to the related node that
is described by that literal. In order to introduce the importance-based ranking to the
graph-level (relevance-based) ranking, the importance of each resource node and the
cost of each property is applied to the graph-level ranking. Hence, the overall ranking
of a target node against a user input is obtained. Consequently, the overall ranking
value of all target nodes are ordered, and the best K results are returned to the user.

It should be noted that graph explorations are performed based on the SW data,
which includes all semantic relations that have been deduced from the corresponding
ontologies prior to query time. Therefore, by interpreting the three situations (by
means of following the semantic links) all semantics of the SW data are discovered.

3 Conclusions

In this paper, a ranking approach, namely xhRank, is proposed, which is tailored to
the nature of SW data, in particular, the three possible situations in SW resource
searching. The phrase-level (relevance-based) ranking provides a means to compute
the similarity between two phrases by considering term relevance, position, and
dispersion, which is believed more accurate than pure word occurrence-based
approaches. The introduction of the importance and query length-based rankings to
the graph-level (relevance-based) ranking further improves the ranking accuracy.

References

1. He, X. et al: A Graph-based Approach to Indexing Semantic Web Data. In: Proc. 9th

2. Hogan, A. et al: ReConRank: A Scalable Ranking Method for Semantic Web Data with
Scalable Ranking Method for Semantic Web Data with Context. In: Proc. 2

 ISWC,
Poster and Demo Session (2010)

nd

3. Hogan, A. et al: Towards a Scalable Search and Query Engine for the Web. In: Proc. 16
 SSWS (2006)

th

4. Zhang, L. et al: Semplore: An IR Approach to Scalable Hybrid Query of Semantic Web
Data. In: Proc. 6

WWW, Poster Session, pp. 1301--1302 (2007)

th

5. Cheng, G. et al: Searching and Browsing Entities on the Semantic Web. In: Proc. 17
 ISWC+ASWC2007, pp. 652--665. LNCS, vol. 4825, pp. 652--665, (2008)

th

6. Wang, H. et al: Q2Semantic: A Lightweight Keyword Interface to Semantic Search. In:
Proc. 5

WWW, Poster Session, pp. 1101--1102, (2008)

th ESWC. LNCS, vol. 5021, pp. 584--598, (2008)

44

Extending SMW+ with a
Linked Data Integration Framework

Christian Becker1, Christian Bizer2, Michael Erdmann3, and Mark Greaves4

1 MediaEvent Services GmbH & Co. KG, Berlin, Germany — chris@beckr.org
2 Web-based Systems Group, Freie Universität Berlin, Germany — chris@bizer.de

3 ontoprise GmbH, Karlsruhe, Germany — erdmann@ontoprise.de
4 Vulcan Inc., Seattle WA, US — markg@vulcan.com

Abstract. In this paper, we present a project which extends a SMW+
semantic wiki with a Linked Data Integration Framework that performs
Web data access, vocabulary mapping, identity resolution, and quality
evaluation of Linked Data. As a result, a large collection of neurogenomics-
relevant data from the Web can be flexibly transformed into a unified
ontology, allowing unified querying, navigation, and visualization; as well
as support for wiki-style collaboration, crowdsourcing, and commentary
on chosen data sets.

Keywords: Linked Data, Data Integration, Semantic MediaWiki

1 Introduction

The Allen Brain Atlas5 (ABA) comprises a growing collection of interactive im-
age databases that integrate gene expression and neuroanatomic information for
a variety of different organisms. Recently, the Allen Institute has started to ex-
plore new ways to accelerate scientific progress in its area, in particular by map-
pings between the ABA data and other standard data resources in neuroscience.
As part of this project, the Semantic MediaWiki Linked Data Extension (SMW-
LDE) is being built with two broad goals: to support unified querying, naviga-
tion, and visualization through a large collection of neurogenomics-relevant data
sources; and to support wiki-style collaboration, crowdsourcing, and commen-
tary on the chosen data sets.

The software base is the SMW+ semantic wiki.6 SMW+ is a set of open-
source extensions to the popular Semantic MediaWiki [6] software which render
it more appropriate for enterprise-scale use. We added a new Linked Data Inte-
gration Framework to SMW+, building on a number of open-source components
for Web data access, vocabulary mapping, identity resolution, and quality eval-
uation of Linked Data. In SMW-LDE, data from multiple Linked Data sources
can be flexibly transformed into a unified ontology that allows researchers to
pose queries over data spanning multiple domains and data sets. The first phase

5 http://www.brain-map.org/
6 http://wiki.ontoprise.de/

0000000000000000000000000000000000000

000000000000000000000000000000000000045

2 C. Becker, C. Bizer, M. Erdmann, M. Greaves

of the project will bring ABA, Uniprot7, KEGG Pathway8, PharmGKB9 and
Linking Open Drug Data [5] data sets together in order to solve the challenge
of finding drugs that target elements within a disease pathway, but are not yet
used to treat the disease. The genes associated with the found drugs may then be
compared for commonalities through an integrated analysis of the related ABA
structure expression data.

2 Integrating Linked Data from the Web

In this chapter, we discuss the architecture of the SMW-LDE deployment, which
is depicted in figure 1.

	

	

	

	

	 	

Application	 Layer	

Data	 Access,	 	

Integration	 and	 	
Storage	 Layer	

Web	 of	 Linked	 Data	

Publication	 Layer	

Integrated	
Web	 Data	

R2R	
Vocabulary	
Mapping	
Module	

Silk	 Server	
Identity	

Resolution	
Module	

SPARQL	

RDF/	
XML	

D2R	 Server	

HTTP	

HTTP	

PharmGKB	

HTTP	

TPEE	
Quality	

Evaluation	
Module	

ABA	

KEGG	
Pathway	

RDF/	
XML	

Uniprot	

HTTP	

SMW+	 Linked	 Data	 Integration	 Framework	

SMW+	 Semantic	 Enterprise	 Wiki	 	

LDimporter,	
LDspider	
Web	 Data	

Access	 Module	

D2R	 Server	

Fig. 1. Overall architecture of a Semantic MediaWiki using SMW-LDE to integrate
Linked Data from the Web

All base data sets for the project, including Brain Atlas data, are published
on the Web according to the Linked Data principles, thereby becoming part of
a giant global graph – the Web of Linked Data. This logical graph is depicted
in the Web of Linked Data layer in figure 1. Non-RDF data sources such as
KEGG Pathway and PharmGKB are published using D2R Server10. The SMW+
Linked Data Integration Framework takes the role of a data access, integration
and storage layer that makes Web data available to the application (in this case,

7 http://www.uniprot.org/
8 http://www.genome.jp/kegg/pathway.html
9 http://www.pharmgkb.org/

10 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

0000000000000000000000000000000000000

000000000000000000000000000000000000046

Extending SMW+ with a Linked Data Integration Framework 3

the semantic wiki) in a unified manner. It consists of an integrated chain of Web
data access, integration, and storage modules implemented in Java and Scala
using the Jena framework. The modules and their tasks are described in the
following.

1. Web Data Access Module The basic means to access Linked Data on the
Web is to dereference HTTP URIs and to discover additional data sources by
traversing RDF links, are realized using the LDspider11 Linked Data crawler.
In addition, our LDimporter module can also import data from various RDF
dump formats or SPARQL endpoints using data set descriptions based on
voiD descriptions [1] and Semantic Sitemaps [4].

2. Vocabulary Mapping Module Different Linked Data sources often use
different vocabularies to represent the same type of information. For in-
stance, both ABA and Uniprot ontologies contain the concept of a gene, but
associate different relations and properties with it. In order to make Web
data understandable to wiki users, the R2R Framework12 is employed as
the vocabulary mapping module in order to translate terms from different
vocabularies into the wiki ontology.

3. Identity Resolution Module Different Linked Data sources use different
URIs to identify the same entity, such as genes or proteins. The framework
integrates Silk Server13 as its identity resolution module, which interlinks
newly discovered data about entities with data about them that is already
defined in the wiki or other connected data sources.

4. Quality Evaluation Module In order to prefer data from sources known
for good quality and to resolve data conflicts [2], the framework includes a
data quality evaluation module, the Trust Policy Evaluation Engine (TPEE).

5. Integrated Web Data The repository finally stores the Web data together
with provenance information to be used by the application layer. We employ
the Named Graphs data model [3] for representing Web data together with
provenance information as an integrated model.

3 Using Linked Data in the Wiki

Making the integrated neurogenomics-relevant data available in a semantic wiki
empowers users to access it in various ways:

– An ontology browser (cf. figure 2) of SMW+ enables the exploration of the
integrated data, including representation of provenance information. In this
way, correlations between data from different sources, as well as data conflicts
can be identified in an interactive manner.

– Inline queries (cf. figure 2) and the interactive query interface offer means
for ad hoc queries against the set of integrated Linked Data sources. The
query results can be organized in wiki pages and complemented with textual
descriptions or interpretations.

11 http://code.google.com/p/ldspider/
12 http://www4.wiwiss.fu-berlin.de/bizer/r2r/
13 http://www4.wiwiss.fu-berlin.de/bizer/silk/server/

0000000000000000000000000000000000000

000000000000000000000000000000000000047

4 C. Becker, C. Bizer, M. Erdmann, M. Greaves

Fig. 2. SMW+ Ontology Browser showing mapped Uniprot data (left), a related query
within a wiki article (top right) and rendered query result in that article (bottom right)

The most prominent benefit of using a semantic wiki environment in this
project is the collaborative creation of semantic meta-data via annotations.
Rather than just querying integrated Web data, users of the wiki can make
use of the data by referring to imported genes or proteins in their own arti-
cles. By doing so, further statements about Web data resources are created that
are in turn exported as Linked Data. This includes cross data source connec-
tions – for instance, the Allen Institute can publish their own data in the wiki
and cross-reference it to Uniprot proteins.

Acknowledgement

This work was supported in part by Vulcan Inc. as part of its Project Halo
(www.projecthalo.com).

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J. Describing linked datasets.
In Proceedings of the 2nd Workshop on Linked Data on the Web (LDOW2009),
2009.

2. Bleiholder, J., Naumann, F. Data fusion. ACM Computing Surveys, 41(1):1–41,
2008.

3. Carroll, J., Bizer, C., Hayes, P., Stickler, P. Named graphs. Journal of Web Seman-
tics, 3(4):247–267, 2005.

4. Cyganiak, R., Delbru, R., Stenzhorn, H., Tummarello, G., Decker, S. Semantic
sitemaps: Efficient and flexible access to datasets on the semantic web. In Proceed-
ings of the 5th European Semantic Web Conference (ESWC2008), 2008.

5. Jentzsch, A., Hassanzadeh, O., Bizer, C., Andersson, B., Stephens, S. Enabling
tailored therapeutics with linked data. In Proceedings of the 2nd Workshop on
Linked Data on the Web (LDOW2009), 2009.

6. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R. Semantic wikipedia.
Journal of Web Semantics, 5:251–261, September 2007.

0000000000000000000000000000000000000

000000000000000000000000000000000000048

Learning Co-reference Relations

for FOAF Instances⋆

Jennifer Sleeman and Tim Finin
University of Maryland, Baltimore County

Baltimore. MD 21250 USA

Abstract. FOAF is widely used on the Web to describe people, groups
and organizations and their properties. Since FOAF does not require
unique IDs, it is often unclear when two FOAF instances are co-referent,
i.e., denote the same entity in the world. We describe a prototype system
that identifies sets of co-referent FOAF instances using logical constraints
(e.g., IFPs), strong heuristics (e.g., FOAF agents described in the same
file are not co-referent), and a Support Vector Machine (SVM) generated
classifier.

Keywords: FOAF, machine learning, linked data

1 Introduction

The FOAF (Friend of a Friend) vocabulary has been one of the most widely used
ontologies since the beginning of the Semantic Web. It defines classes and prop-
erties for describing entities (people, organizations and groups), their attributes,
and their relations. What FOAF does not require is a property that represents
a globally unique identifier (GUID) that can be used to recognize when two
foaf:Agent individuals are co-referent, i.e., refer to the same individual whether
real or fictional.

A traditional approach for identifying co-reference entities on the Semantic
Web is the process of smushing [4] FOAF instances combining the information
from various sources that are determined to represent the same person. One can
choose to rely solely on the presence of owl:sameAs, however, its presence is not
always found and it can also be represented inaccurately. There are multiple
techniques used to both identify co-referent FOAF profiles and that perform
some type of smushing as mentioned in our previous work [5]. We describe a
hybrid approach for deciding when RDF descriptions of two FOAF agents are
likely to be co-referent that combines rules and an SVM-based classifier.

While the owl:sameAs relation is typically used to assert that two FOAF
instances refer to the same individual, this can lead to unwarranted and prob-
lematic inferences [2, 3]. For this reason, we use the weaker predicates, coref
and notCoref to represent that two instances are or are not thought to be
coreferential. For coreferential instances, we can merge their descriptions for
some, but not all, uses. Figure 1 gives some axioms in N3 for the coref and
notCoref properties. The coref property is transitive and symmetric and has

⋆ Partial support for this research was provided by NSF award 0910838 and the Johns
Hopkins University Human Language Technology Center of Excellence.

0000000000000000000000000000000000000

000000000000000000000000000000000000049

2 Jennifer Sleeman and Tim Finin

:coref a owl:TransitiveProperty, a owl:SymmetricProperty.

owl:sameAs rdfs:subPropertyOf :coref.

:notCoref a owl:SymmetricProperty.

owl:differentFrom rdfs:subPropertyOf :notCoref.

{?a :notCoref ?b. ?b :coref ?c.} => {?a :notCoref ?c}

{?a foaf:knows ?b.} => {?a :notCoref ?b}

Fig. 1: Definitions of the :coref and :notCoref properties uses instead of owl:sameAs.

owl:sameAs as a sub-property. notCoref is symmetric, but not transitive and has
owl:differentFrom as a sub-property. The first rule states that if two instances,
a and b, are not coreferent, then every instance coreferent with a is :notCoref

with every instance coreferent with b. The second, which is really a heuristic,
states that if a knows b, then they are assumed to be distinct individuals and
thus :notCoref. Note that owl:sameAs implies coref and owl:differentFrom

implies notCoref, so reasoners that can derive sameAs and differentFrom prop-
erties will also contribute to computing coreference relations.

2 Approach

Given a collection of FOAF instances to com-

Fig. 2: Our system architecture
starts by selecting pairs of foaf in-
stances to compare and applies both
rule-based reasoning and an SVM-
based classifier to determine likely
co-reference relations that are then
use to form clusters.

pare, we would like to cluster them into sets
that we believe refer to the same person in
the world. This process is divided into five
stages: (i) generating candidate pairs, (ii)
generating a rules-based model, (iii) classifi-
cation, (iv) designating pairs as co-referent
or not, and (v) creating clusters. Figure 2
shows a high level architecture of our sys-
tem. We describe our approach below as de-
fined in [6].

Pair Generation. With a potentially
large collection of FOAF instances we could
proceed by testing each of the O(N2) possi-
ble pairs to see which are co-referent. Since
the vast majority of the pairs will not be
matched and the co-reference test will be rel-
atively expensive, we start by filtering the
possible pairs to produce a smaller set of
candidates using a simple string matching heuristic test for each pair.

Rule-based Model and Classification. Filtered pairs are evaluated by
rules that provide a result that indicates whether the pair is or is not co-referent.
Rules can include properties such as owl:sameAs, property attributes such as
inverse functional properties and rules deduced from the data itself. For exam-
ple, persons defined by a persons knows graph are likely not to be co-referent

0000000000000000000000000000000000000

000000000000000000000000000000000000050

Learning Co-reference Relations for FOAF Instances 3

Fig. 3: After assigning each foaf individual to a singleton coreference set, we use a
greedy algorithm to merge the sets that are judged to be similar.

with that person. The co-referent classifier takes a pair of FOAF instances and
decides if they are co-referent or not. Property-specific features used by the clas-
sifier include distance measures of properties common to both instances, inverse
functional properties, more complex distance measures, which might include
unpacking semantic information (e.g., the geographical distance between to geo-
tags) and resolving entity mentions (e.g., Baltimore) to linked data nodes, and
partial analysis of the graphs centered on the instances, such as the immediate
(one-hop) social networks formed by foaf:knows properties. Refer to [6] for a
more detailed discussion.

Co-referent Designation. The results of the classifier are used by the co-
referent process when determining co-referent pairs. The rules-based model is
used to determine if a pair of FOAF instances are co-referent. If the results of
the rules-based model are indeterminate, then the prediction generated by the
classifier is used. Pairs that are designated as co-referent form a new cluster.
Clusters are then processed by the system in addition to pairs.

Clustering. New co-referent pairs can be considered as a graph where the
nodes are the original set of FOAF instances and an edge exists between two
nodes that are a candidate pair as determined by the co-referent processing.
Co-referent triples become part of larger cluster groups and are used for future
pair matching.

Figure 3 depicts the greedy process for four foaf individuals. We begin by
putting each in a singleton coreference set. A merging process continues as long
as two candidate sets are judged to be similar enough to be merged into a new
one that replaces its ancestors and stops when there are no pairs that can be
merged. In this figure, the four foaf individuals end up in two coreference sets.

3 Evaluation

We ran two experiments, the first experiment resulted in about 50,000 triples
with over 500 entity mentions. We applied the rules which resulted in 900 pairs
that were designated as a non-match and the majority was undetermined. The
classification portion of this process consisted of 600 pairs used for training and
3 tests consisting of 200 pairs each. The third test also included a single post-
clustering run.

Our latest experiment contained about 250,000 triples with over 3500 entity
mentions. We applied the rules which resulted in positive co-referent cases based

0000000000000000000000000000000000000

000000000000000000000000000000000000051

4 Jennifer Sleeman and Tim Finin

True Positive Rate False Positive Rate Precision Recall F-Measure

E1 0.933 0.267 0.930 0.933 0.930

E2 0.959 0.128 0.958 0.959 0.958

Table 1: The results of a 10-fold cross-validation classification test show good results
fir both precision and recall.

on the inverse functional property. The majority of the rules resulted in an un-
determined state. As expected, the foaf:knows rule returned a number of pairs
that resulted in a non-co-referent state. The classification training set consisted
of over 1800 classes. We conducted a 10-fold cross-validation with results con-
veyed in table 1. Table 1 shows that our classification step is likely predicting
accurately co-referent and non-co-referent pairs.

During our E2 clustering phase, the first phase of clustering resulted in a
90% accuracy. The error occurred in pairs that should have been clustered but
were not. A second round of clustering did not yield any new relationship pairs
among instances but cluster to cluster pairing did occur. Additional tests and
evaluations are outlined in [6].

4 Conclusions and Future Work

We have described an approach to predicting coreferent pairs of FOAF instances
that uses a small set of rules, a classifier developed by supervised machine learn-
ing process and clustering co-referent pairs. We have been working with FOAF
data as an instance of a larger problem: automatically linking RDF instances
based on their descriptions.

References

1. Artiles, J., Gonzalo, J., Sekine, S.: Weps 2 evaluation campaign: Overview of the
web people search clustering task. In: 18th WWW Conf. Madrid (2009)

2. Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.: OWL:sameAs and linked data:
an empirical study. In: Proc. 2nd Web Science Conf. (April 2010)

3. Halpin, H., Hayes, P., McCusker, J., McGuinness, D., Thompson, H.: When
owl:sameas isn’t the same: An analysis of identity in linked data. In: Proc. 9th
Int. Semantic Web Conf. (2010)

4. Foaf-project.org definition of smushing. http://wiki.foaf-project.org/w/Smushing
(2010), accessed January 2010

5. Sleeman, J., Finin, T.: A Machine Learning Approach to Linking FOAF Instances.
In: Spring Symposium on Linked Data Meets AI. AAAI (January 2010)

6. Sleeman, J., Finin, T.: Computing FOAF Co-reference Relations with Rules and
Machine Learning. In: Proceedings of the Third International Workshop on Social
Data on the Web (November 2010)

0000000000000000000000000000000000000

000000000000000000000000000000000000052

Silk – Generating RDF Links while publishing or
consuming Linked Data

Anja Jentzsch, Robert Isele, Christian Bizer

Freie Universität Berlin, Web-based Systems Group
mail@anjajentzsch.de, robertisele@googlemail.com, chris@bizer.de

Abstract. The central idea of the Web of Data is to interlink data
items using RDF links. However, in practice most data sources are not
sufficiently interlinked with related data sources. The Silk Link Discovery
Framework addresses this problem by providing tools to generate links
between data items based on user-provided link specifications. It can be
used by data publishers to generate links between data sets as well as
by Linked Data consumers to augment Web data with additional RDF
links. In this poster we present the Silk Link Discovery Framework and
report on two usage examples in which we employed Silk to generate
links between two data sets about movies as well as to find duplicate
persons in a stream of data items that is crawled from the Web.

Keywords: Linked Data, Link Discovery, Identity Resolution

1 Introduction

The Web of Data is built on the fundamental idea that data items are published
using dereferencable URIs wherein related data items are connected using RDF
links [1]. While the Web of Data is constantly growing1, it still forms a weakly
interlinked graph and contains only a small fraction of the RDF links that could
in theory be set [2]. In order to tackle this problem, we provide the Silk Link
Discovery Framework. Silk generates RDF links between data items based on
user-provided link specifications. Silk specifications are expressed using a declar-
ative language and define the conditions that data items must fulfill in order to
be interlinked.

The Silk Link Discovery Framework addresses the following two use cases:
It can be used by data providers to generate RDF links pointing at existing
datasets on the Web. These RDF links can then be published together with the
primary data sets on the Web. Furthermore, Silk can be used as an identity
resolution component within applications that consume Linked Data from the
Web in order to augment Web data with additional RDF links which have not
been set by the data providers.

Silk is provided in three different variants which address different use cases:

1 http://lod-cloud.net/

0000000000000000000000000000000000000

000000000000000000000000000000000000053

2 A. Jentzsch, R. Isele, C. Bizer

• Silk - Single Machine is used to generate RDF links on a single machine.
The datasets that should be interlinked can either reside on the same ma-
chine or on remote machines which are accessed via the SPARQL protocol.
Silk - Single Machine provides multithreading and caching. In addition, the
performance can be further enhanced using an optional blocking feature.

• Silk - Map Reduce is used to generate RDF links between data sets using a
cluster of multiple machines. Silk - Map Reduce is based on Hadoop and can
for instance be run on Amazon Elastic MapReduce. Silk - Map Reduce en-
ables Silk to scale out to very big datasets by distributing the link generation
to multiple machines.

• Silk - Server can be used as an identity resolution component within appli-
cations that consume Linked Data from the Web. Silk - Server provides an
HTTP API for matching instances from an incoming stream of RDF data
against a local set of known instances. It can be used for instance together
with a Linked Data crawler to populate a local duplicate-free cache with
data from the Web.

The Silk Link Discovery Framework is implemented in Scala2 and can be
downloaded from the project homepage3 under the terms of the Apache Software
License.

In the following, we will give an overview of the Silk Link Discovery Frame-
work, report on two usage examples in which we employed the framework and
present planned future work.

2 The Silk Link Discovery Framework

The Silk Link Discovery Framework consists of a console application used to
interlink two data sets as well as of the Silk Server, an HTTP server, which
receives an incoming RDF stream and creates links between data items. Both
applications provide a flexible configuration language, the Silk Link Specification
Language (Silk-LSL), to specify the conditions data items must fulfill in order to
be interlinked [3]. For this purpose, the user may apply similarity metrics, such
as string, date or URI comparison methods, to multiple property values of an
entity or related entities. The resulting similarity scores can be combined and
weighted using various similarity aggregation functions. A Silk link configuration
may contain several link specifications if links for different types of data items
should be generated.

The central part of the Silk Link Discovery Framework is the Silk Linking
Engine, which generates the links between data items according to user-provided
link specifications. The Silk Linking Engine processes the incoming data items,
which are usually originating from a SPARQL endpoint, in subsequent phases:

The optional Blocking phase partitions the incoming data items into clus-
ters. Since comparing every source resource to every single target resource results

2 http://scala-lang.org
3 http://www4.wiwiss.fu-berlin.de/bizer/silk/

0000000000000000000000000000000000000

000000000000000000000000000000000000054

Silk – Generating RDF Links while publishing or consuming Linked Data 3

in a number of n∗m comparisons which might be time-consuming, blocking can
be used to reduce the number of comparisons. Blocking partitions similar data
items into clusters limiting the comparisons to items in the same cluster. For
example, given a set of books to be compared, in order to reduce the number of
comparisons, one could block the books by publisher.

The Link Generation phase reads the incoming data items and computes a
similarity value for each pair. The incoming data items, which might be allocated
to a cluster by the preceding blocking phase, are written to an internal cache.
From the cache, pairs of data items are generated. If blocking is disabled, this
will generate the complete cartesian product of the two data sets. If blocking is
enabled, only data items from the same cluster are compared. For each pair of
data items, the link condition is evaluated, which computes a similarity value
between 0 and 1. Each pair generates a preliminary link with a confidence value
according to the similarity of the source and target data item.

The Filtering phase filters the incoming links in two stages: In the first stage,
all links with a lower confidence than the user-defined threshold are removed. In
the second stage, all links which originate from the same data item are grouped
together. The number of links per source item which are forwarded to the output,
is specified by an optional link limit. If a link limit is defined, only the links with
the highest confidence are forwarded.

3 Silk Server

Silk Server is an identity resolution component, that can be used within Linked
Data application architectures to add missing RDF links to data that is con-
sumed from the Web of Linked Data. It is designed to be used with an incoming
stream of RDF instances, produced for example by a Linked Data crawler such
as LDspider. Silk Server matches data describing incoming instances against a
local set of known instances and discovers missing links between them. Based
on this assessment, an application can store data about newly discovered in-
stances in its repository or fuse data that is already known about an entity with
additional data about the entity from the Web.

4 Usage Examples

Silk has been employed in several scenarios to generate links between data sets
on the Web of Data. In the following we report the results of employing Silk -
Single Machine and Silk - Server within two usage scenarios.

4.1 Interlinking DBpedia movies with LinkedMDB directors

We employed Silk - Single Machine to interlink movies in DBpedia with the
corresponding director in LinkedMDB. For this purpose, Silk was fed with the
50000 movies from DBpedia and 2500 directors from LinkedMDB. For each

0000000000000000000000000000000000000

000000000000000000000000000000000000055

4 A. Jentzsch, R. Isele, C. Bizer

movie, Silk was configured to set a dbpedia:director link from the movie to
its director.4 A single PC with a Core 2 Duo CPU and 4GB of RAM needed
55 minutes to match the complete cartesian product resulting in 125 000 000
comparisions. Silk successfully identified 5900 links between a movie and its
director. In order to increase the performance, the Linking Specification was
extended to employ blocking on the director names to reduce the number of
comparisions. As blocking may decrease the recall of the matching, we compared
the generate links. With blocking enabled Silk was still able to identify 5857 links,
resulting in a loss of less than one percent, while reducing the runtime of the
matching considerable to only 7 minutes.

4.2 Identifying duplicate person descriptions in a data stream

In the Web of Data we can usually find different URIs which effectively iden-
tify the same entity, e.g. <http://tomheath.com/id/me> and <http://www.

eswc2006.org/people/#tom-heath> describe the same person. We employed a
Linked Data crawler to crawl the FOAF web and stream the traversed profiles to
the Silk Server in order to identify duplicate persons and generate owl:sameAs

links between them. For evaluation, we used the Semantic Web Dog Food data
set5 which already interlinks some of the contained persons with their corre-
sponding FOAF profile. Among the 56 persons for which the Semantic Web Dog
Food data set provides links to their FOAF profile, Silk Server was able to re-
construct 51 links from the stream. In addition, it was able to identify the FOAF
profile of another 132 persons for which Semantic Web Dog Food did not provide
a link to their profile yet.

5 Acknowledgments

This work was supported in part by Vulcan Inc. as part of its Project Halo
(www.projecthalo.com) and by the EU FP7 project LOD2 - Creating Knowledge
out of Interlinked Data (Grant No. 257943, http://lod2.eu/).

References

1. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009.

2. M. A. Rodriguez. A graph analysis of the linked data cloud. CoRR, abs/0903.0194,
2009.

3. J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links
on the web of data. In International Semantic Web Conference, pages 650–665,
2009.

4 The link specification can be found on http://www4.wiwiss.fu-berlin.de/bizer/

silk/linkspecs/dbpedia_linkedmdb_directors.xml
5 http://data.semanticweb.org/

0000000000000000000000000000000000000

000000000000000000000000000000000000056

Hybrid Graph based Keyword Query
Interpretation on RDF

Kaifeng Xu1, Junquan Chen1, Haofen Wang1, and Yong Yu1

Apex Data and Knowledge Management Lab
Shanghai Jiao Tong University, Shanghai, 200240, China
{kaifengxu,jqchen,whfcarter,yyu}@apex.sjtu.edu.cn

Abstract. Adopting keyword query interface to semantic search on
RDF data can help users keep away from learning the SPARQL query
syntax and understanding the complex and fast evolving data schema.
The existing approaches are divided into two categories: instance-based
approaches and schema-based approaches. The instance-based approaches
relying on the original RDF graph can generate precise answers but take
a long processing time. In contrast, the schema-based approaches rely-
ing on the reduced summary graph require much less processing time
but cannot always generate correct answers. In this paper, we propose
a novel approach based on a hybrid graph which can achieve significant
improvements on processing time with a limited accuracy drop compared
with instance-based approaches, and meanwhile, can achieve promising
accuracy gains at an affordable time cost compared with schema-based
approaches.

1 Introduction

On the way to Semantic Web, Resource Description Framework (RDF) is a
language for representing information about resources in the World Wide Web.
The ever growing semantic data in RDF format provides fertile soil for semantic
search, and formal query languages (e.g. SPARQL) are adopted by most current
semantic search systems[1, 2] to accurately express complex information needs.
However, the disadvantages of formal queries are: (1) Complex Syntax : It is hard
to learn and remember complex syntax of formal queries for ordinary users. (2)
Priori Knowledge: Users have to know the schema of the underlying semantic
data beforehand. In contrast, keyword queries cater to user habits since keywords
(or known as keyword phrases) are easier to be understood and convenient to
use. An approach that can leverage the advantages of both query types is to
provide a keyword user interface and then translate keyword queries into formal
queries.

In XML and database communities, bridging the gap between keyword queries
and formal queries has been widely studied. However, there exists a limited
amount of work on how to answer keyword queries on semantic data in RDF
format. As an early attempt to build a semantic search system, SemSearch [3]
employed a template-based approach to capture the restricted interpretations

57

of given keywords. Later, improved approaches [4, 5] have been proposed to ad-
dress the problem of finding all possible interpretations. In particular, Thanh
et al. [5] employed the RDF graph (instance-based approaches) to discover the
connections between nodes matching the input keywords, through which the
interpretation accuracy can be ensured, but at the cost of a longer processing
time. This problem has been recently tackled by [6, 7], where keyword queries
are translated using a summary graph extracted from the RDF data (schema-
based approaches). Although schema-based approaches significantly speed up
the processing, the schema-graph loses too much connectivity information of the
corresponding RDF graph to guarantee the interpretation accuracy.

In this paper, we propose a novel effective and efficient keyword query in-
terpretation approach based on a hybrid graph carefully constructed from the
original RDF graph. A hybrid graph is much smaller than the original RDF
graph, and meanwhile it can preserve as much connectivity information as pos-
sible. In this way, we construct the hybrid graph under the guidance of a graph
score which reflects the best tradeoff between effectiveness and efficiency of key-
word query interpretation.

2 The Hybrid Graph based Approach

Figure 1 describes the entire process (both offline and online stages) of keyword
query interpretation. In the offline stage, a hybrid graph is constructed from
the origin RDF graph. After that, a keyword index is built for the mapping of
keywords to corresponding nodes in the hybrid graph. During the online process,
keywords input by end users are first mapped to the nodes in the hybrid graph
using the keyword index, and then we search on the hybrid graph to construct
top-k potential tree-shaped conjunctive queries (i.e., formal queries). While our
focus is the construction of the hybrid graph, we implement a similar keyword
mapping, query construction and ranking as mentioned in Q2Semantic [6]. Due
to space limitations, we refer you to [6] for details.

Keyword Query

ExtractingRDF Graph Hybrid Graph

Keyword
Mapping

Mapped
Nodes

Query Constructions
and Ranking

IndexingKeyword index

Formal
Query

Offline

Online

Fig. 1. The flow chart of keyword query interpretation

The construction of hybrid graph is an iterative process which extracts and
refines a qualified subgraph from the original RDF graph by means of a graph

58

score. The graph score is used to define the overall interpretation performance,
which plays an important role from the starting point to the ending point of each
interaction in the whole construction process. More precisely, the graph score is
the linear combination of the size of the hybrid graph and the amount of the
connectivity information contained in the graph. The workflow of a hybrid graph
construction is illustrated in Figure 2(a) which takes the original RDF graph as
input. A construction unit (CU) is employed to carry out the refinement on the
given RDF graph to generate a qualified hybrid subgraph. The CUs are addi-
tionally used several times for further refinement on the remaining unqualified
RDF subgraphs. Finally, several qualified hybrid subgraphs are returned, and
combined together to form an overall hybrid graph.

RDF Graph

CU

Unqualified
Subgraph

Qualified
Subgraph

…
…

Qualified
Subgraph

Qualified
Subgraph

CU

Hybrid
Graph

CU

CU

Unqualified
Subgraph

…
…

Qualified Subgraph

Unqualified Subgraph

RDF Graph

Instance Node Cluster Node

Fig. 2. (a) The work flow of hybrid graph construction. (b)The work flow of CU.

Figure 2(b) shows the detailed components inside a CU. Given a RDF graph
G, CU will work through the following streamline: (1) Instance Clustering : This
phase aims to generate the nodes of hybrid graph. Each instance in G is repre-
sented by the feature set of its relations and regarded as a trivial cluster initially.
After that, the cluster pairs with the highest similarity are hierarchically clus-
tered until a cluster tree T is derived. (2) Relation Refinement : This phase aims
to generate the relations of hybrid graph. It tries to substitute the relations in
the given RDF graph with those between the high level nodes in the cluster tree.
The relation replacement will increase the score of the graph, and the goal is to
get a hybrid graph with the highest score. (3) Graph Detachment The score of
the whole graph generated after relation refinement might be too low. Thus, we
extract a part of the graph (called a qualified subgraph) whose score is above
the given score threshold, and feed the remaining part (called an unqualified
subgraph) into the CU for next iterations.

59

3 Preliminary Results

We compare our approach with instance-based approches and schema-based
counterparts on three different datasets (i.e., semanticweb.org, DBpedia, DBLP)
in terms of processing time and interpretation accuracy. Table 1 lists The statis-
tics of the three data sets. We manually construct 42 scenarios (17 from seman-
ticweb.org, 10 from DBpedia, and 5 from DBLP) for the comparison.

Table 1. Statistics of semanticweb.org, DBLP and DBpedia.

Data set]Category]Instance]Relation]Inst.degree]Rel.kind]Rel/kind

semanticweb.org 5.06 × 102 7.483 × 103 1.628 × 104 2.18 4.77 × 102 3.413 × 101

DBLP 1.0 × 101 1.640 × 106 3.176 × 106 1.94 1.0 × 101 3.176 × 105

DBpedia 2.694 × 105 2.520 × 106 6.868 × 106 2.73 1.128 × 104 6.088 × 102

1.00 1.00 1.00
0.88

1.00
0.93

0.53

0.40
0.330 40

0.60

0.80

1.00

cc
ur
ac
y

Instance HG Schema
1.00 1.00 1.00

0.88
1.00

0.93

0.53

0.40
0.33

0.00

0.20

0.40

0.60

0.80

1.00

SemanticWeb DBLP DBpedia

A
cc
ur
ac
y

Data set

Instance HG Schema
1.00 1.00 1.00

0.88
1.00

0.93

0.53

0.40
0.33

0.00

0.20

0.40

0.60

0.80

1.00

SemanticWeb DBLP DBpedia

A
cc
ur
ac
y

Data set

Instance HG Schema

848
973

Inf

803
882

647

600

800

1000

1200

g
Ti
m
e
(m

s)

Instance HG Schema

848
973

Inf

27

803
882

26 13

647

0

200

400

600

800

1000

1200

SemanticWeb DBLP DBpedia

Ru
ni
ng

 T
im

e
(m

s)

Data set

Instance HG Schema

848
973

Inf

27

803
882

26 13

647

0

200

400

600

800

1000

1200

SemanticWeb DBLP DBpedia

Ru
ni
ng

 T
im

e
(m

s)

Data set

Instance HG Schema

Fig. 3. The practical interpretation accuracy and efficiency on different data sets

Figure 3 shows that our approach has achieved a 61.66% efficiency improve-
ment with a 6.17% accuracy drop over instance-based approaches on average. On
the other hand, our approach achieves a 132.30% accuracy gain with a 20.08%
time increase compared with schema-based approaches.

References

1. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: ISWC. (2002) 54–68

2. Lu, J., Ma, L., Zhang, L., Brunner, J., Wang, C., Pan, Y., Yu, Y.: SOR: a practical
system for ontology storage, reasoning and search. In: VLDB. (2007) 1402–1405

3. Lei, Y., Uren, V., Motta, E.: Semsearch: A search engine for the semantic web. In:
EKAW. (2006) 238

4. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: Spark: Adapting keyword query
to semantic search. In: ISWC/ASWC. (2007) 694

5. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of
keywords for semantic search. In: ISWC/ASWC. (2007) 523

6. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: A lightweight keyword
interface to semantic search. In: ESWC. (2008) 584

7. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates
for efficient keyword search on graph-shaped (RDF) data. In: ICDE. (2009) 405–416

60

A Semantic Web Repository for Managing and

Querying Aligned Knowledge

James P. McGlothlin, Latifur Khan

The University of Texas at Dallas
Richardson, TX USA

{jpmcglothlin, lkhan}@ utdallas.edu

Abstract. Ontology alignment is the task of matching concepts and terminology

from multiple ontologies. Ontology alignment is especially relevant in the
semantic web domain as RDF documents and OWL ontologies are quite
heterogenous, yet often describe related concepts. The end goal for ontology
matching is to allow the knowledge sets to interoperate. To achieve this goal, it
is necessary for queries to return results that include knowledge, and inferred
knowledge, from multiple datasets and terminologies, using the alignment
information. Furthermore, ontology alignment is not an exact science, and
concept matchings often involve uncertainty. The goal of this paper is to

provide a semantic web repository that supports applying alignments to the
dataset and reasoning with alignments. Our goal is to provide high performance
queries that return results that include inference across alignment matchings,
and rank results using certainty information. Our semantic web repository uses
distributed inference and probabilistic reasoning to allow datasets to be
efficiently updated with ontology alignments. We materialize the inferred,
aligned data and make it available in efficient queries.

1 Introduction

We shall begin this paper by defining the high level problem we wish to solve and the
system goals. Given multiple datasets (RDF documents) and ontologies, the goal is to

allow queries against the complete knowledge set. The queries should be able to be

specified using the terminologies from any of the ontologies, or from a new common

global terminology. The queries should return all relevant knowledge, including

inferred triples and triples that are specified using different, but corresponding,

terminologies. The queries should rank results based on confidence values, and should

enable selection based on probability conditionals. Furthermore, these queries should

return such knowledge in a very timely manner.

Determining the alignments or matchings is the obvious first task. If two datasets

use different terminology, then the concepts must be aligned to enable queries across

both knowledge sets. Ontology alignment is already a well-researched area. Our
contribution is to allow these alignments to be applied to the dataset, to transform the

data accordingly, and to allow queries against the aligned results.

In [2], we first introduced RDFKB (Resource Description Framework Knowledge

Base), a bit vector schema that is uniquely able to materialize inferred triples without

a performance penalty. In [6], we introduced a multiple bit vector schema using

thresholds to support efficient queries involving probability. RDFKB is the only

semantic web repository to materialize uncertain information and to support queries

involving probabilistic inference.

61

Our solution in this paper builds on these technologies. We propose to materialize

all inferred triples including those inferred by reasoning with alignment matchings. In

fact, we propose to implement all alignment matches as inference rules. We also

propose to use the threshold vector schema as our solution for propagating and

querying similarity measurements.

However, this paper involves more than just utilizing previous versions of RDFKB

to apply alignments. We must be able to support distributed inference across multiple

datasets, which changes our data management schema. We must be able to add
inference rules to an existing dataset, which changes our inference rules

specifications. Ontology alignment is a fluid process. Similarity measures can

fluctuate through user feedback, additional machine learning, etc. Therefore, we must

be able to change or even delete inference rules from the system. Also, many times

the alignment goal is to transform the data into new terminology, thus replacing the

original data. Finally, trust factors should be able to be associated with data origins,

in order to facilitate handling conflicting information during dataset merges.

In Section 2, we will briefly overview the RDFKB schemata and our previous

work. In Section 3, we will specify the new features that enable us to apply

alignments. In Section 4, we will present experimental results, and, in Section 5, we

make some conclusions and define some future work.

2 Background

RDFKB uses two schemata, one for data management, and one for queries. The data

management schema is centered around a Triples table. This allows us to associate
additional information (probability) with each triple, to optimize the addition and

deletion processes, and to encapsulate the query schema from the user.

Our query schema includes two bit vector tables: POTable and PSTable. POTable

contains 5 columns: the property, object, subjectbitvector, bitcount and threshold.

The subject bit vector has a 1 for each subject that appears in a triple with the

corresponding property and object and with probability >= threshold. PSTable

contains 5 columns: property, subject, objectbitvector, bitcount and threshold. Bit

vectors allow us to access entire collections of triples by reading a single tuple.

Furthermore, joins and unions can be performed using efficient bit operations.

All inferred triples are materialized during addition time using forward chaining.

[2] details how our bit vector schema is able to support inference materialization

without a performance penalty, and describes our implementation of OWL inference
rules. [6] details our probability solution using multiple bit vectors and thresholds,

and demonstrates that adding probability does not reduce query performance.

3 New Features

Inference Rules. RDFKB uses inference rules to materialize inferred data. The

actual instantiated inference rules are registered with RDFKB rather than

implemented by RDFKB. At a high level, an inference rule defines that given a set of

1 or more triples (A1,…,An), we can conclude an additional triple B. For example,
given <Professor1 type AssistantProfessor>, we can conclude <Professor1 type

62

Professor>. Using our high level definition above, it is obvious we can use inference

rules to perform any alignment transformation.

The inference rule must define two methods Infer() and Infer(triple T). Infer(triple

T) returns the set of inferred triples that this inference rule can infer if T is added to

the dataset. Infer() returns all triples that can be inferred across an entire dataset.

This new method allows an inference rule to be added to an existing dataset, one of

our requirements to support applying ontology alignments.

Provenance. In [6], RDFKB uses an InferenceCount value and forward chaining to

enable updates and deletes. However, this will not allow us to update or delete an

inference rule, which is required to support changing alignments and similarity

measures. Therefore, we replace the InferenceCount field in the Triples table with

Lineage, a foreign key into one of our provenance tables. The provenance tables are

Users, Datasets, Events, and Dependencies. The Events table defines what inference

event materialized an inferred triple, including the Inference Rule. This allows us

query all triples materialized by an inference rule, so we are able to delete inference

rules or update probabilities associated with inference rules.

The provenance tables also solve several of our other requirements. The Datasets

table and Users table provide our trust factors. A concrete triple specifies its Dataset

in the lineage column and we have replaced the Triples table with a collection of
Triples tables. The Datasets table allows us to traverse over these tables, and

inference rules can now query the entire collection of triples tables during the forward

chaining process. This enables distributed inference, a core requirement for reasoning

with alignment. We can apply any inference rule across multiple datasets and

ontologies, which enables all possible alignment updates.

Remove(). Often, the goal is to transform the dataset to a new terminology rather than

to just enable queries using the new terminology. The difference between these two

scenarios is whether the original instances, using the original terminology, persist in

the dataset. Inference rules can transform the dataset by instantiating inferred triples

using the new terminology. To support deleting the original triples, we add a function
Remove(triple T). Remove, unlike delete(triple T) , removes the concrete triple

without removing the inferred (transformed) triples.

4 Experimental Results

In [6], we show that we are faster than all existing semantic web repositories using all

26 queries defined by LUBM[3] and Barton Dataset[4]. In fact, we are faster than the

next fastest solution, RDF-3X[1], by almost 3x times. There is no standard dataset

and set of alignments for us to test our new features with. Our claim therefore is that

since we are faster than other repositories for basic queries, and the current

technologies for applying alignments (bridges, transformation APIs, etc) are all query

time functions, we will also be much faster for queries involving alignment.

We have defined some simple experiments to demonstrate that we can apply

alignment matchings to the dataset, and that queries are still efficient. For these

experiments, we continued to use LUBM (with 67 million triples) and Barton dataset.

Certain relationships between these datasets are natural since university students and

63

professors commonly author publications. Our tests utilize only the most common

alignment matchings: sameAs and subClassOf. However, these tests verify that each

of the requirements in Section 1 is satisfied. Performance times are listed in seconds.

The first experiment we performed was simply to align type Person by applying a

sameAs inference rule matching the two Person classes. We applied this rule to the

two datasets in 0.91s. We were then able to query ?s type Person in 0.08s.

In the second experiment, we aligned instances. We choose 100,000 specific

professors from LUBM and arbitrarily aligned them with 100,000 authors from
Barton Dataset in 10.8s. We then queried all members of University0 who wrote a

item of type text (0.03s), all professors who wrote a conference publication (0.24s),

and all conferences which published a work by a professor (0.13s).

The third experiment we performed was to align the LUBM type Publication. We

first aligned this with Item. This alignment took 0.91s. We queried all Items (0.07s)

and Publications (0.08s). We then deleted this alignment and added a new alignment

between Publication and Text (1.27s to delete and add the alignments). We changed

the probability on this alignment from 1.0 to 0.97 (0.38s). We then queried and

ranked items of type text(0.06s). The results from the Barton Dataset were first

(p=1.0) followed by all items of type Publication from LUBM (p=0.97).

Finally, we used the subject types in Barton to align with the publicationResearch

in LUBM. We took this a step further and used this information to guess the subjects
associated with research groups and departments in LUBM. For example, if 6/7

publications written by members of a research group were on the topic of data mining,

we concluded the research group related to data mining with p= 0.86. The main point

in this experiment was to validate our ability to adjust alignments on the fly. For

example, matching four researchers with authors increases the number of known

topics for a research group and alters the similarity measure of the research group.

5 Conclusion and Future Work

We have defined a set of specific requirements necessary to allow ontology alignment

to be applied to data in a semantic web repository. No existing semantic web

repositories provide these features. We have presented experiments validating that

we do provide these features, and we have presented performance numbers

documenting the times required to apply various alignments and to query the results.

For future work, we would like to develop a complete benchmark and perform

more elaborate experiments and comparisons. We also plan to use cloud computing
solutions such as HBase and Hadoop[5] to further increase RDFKB’s scalability.

6 References

1. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB(2008) 647-659
2. McGlothlin, J.P., Khan, L.R.: RDFKB: efficient support for RDF inference queries and

knowledge management. In IDEAS(2009) 259-266
3. Lehigh University Benchmark (LUBM), http://swat.cse.lehigh.edu/projects/lubm
4. The Barton dataset, http://simile.mit.edu/wiki/Dataset:_Barton
5. Hadoop, http://hadoop.apache.org
6. Mcglothlin, J., Khan, L.: Materializing and Persisting Inferred and Uncertain Knowledge in

RDF Datasets. In AAAI(2010)

64

Ontology Mapping Neural Network: An
Approach to Learning and Inferring
Correspondences among Ontologies

Yefei Peng1⋆, Paul Munro1, and Ming Mao2

1 University of Pittsburgh, Pittsburgh PA 15206, USA,
yep3@pitt.edu, pmunro@pitt.edu,

2 SAP Labs, Palo Alto CA 94304, USA,
ming.mao@sap.com,

Abstract. An ontology mapping neural network (OMNN) is proposed
in order to learn and infer correspondences among ontologies. It extends
the Identical Elements Neural Network (IENN)’s ability to represent
and map complex relationships. The learning dynamics of simultaneous
(interlaced) training of similar tasks interact at the shared connections
of the networks. The output of one network in response to a stimulus
to another network can be interpreted as an analogical mapping. In a
similar fashion, the networks can be explicitly trained to map specific
items in one domain to specific items in another domain. Representation
layer helps the network learn relationship mapping with direct training
method.
OMNN is applied to several OAEI benchmark test cases to test its per-
formance on ontology mapping. Results show that OMNN approach is
competitive to the top performing systems that participated in OAEI
2009.

Keywords: neural network, ontology mapping, analogy, learning

1 Introduction

Ontology mapping is important to the emerging Semantic Web. The pervasive
usage of agents and web services is a characteristic of the Semantic Web. How-
ever agents might use different protocols that are independently designed. That
means when agents meet they have little chance to understand each other with-
out an“interpreter”. Ontology mapping is “a necessary precondition to establish
interoperability between agents or services using different ontologies.” [2]

The Ontology Mapping Neural Network (OMNN) extends the Identical Ele-
ments Neural Network(IENN)’s [3, 4, 1, 5] ability to represent and map complex
relationships. The network can learn high-level features common to different
tasks, and use them to infer correspondence between the tasks. The learning
dynamics of simultaneous (interlaced) training of similar tasks interact at the
⋆ The author is working at Google now. Email: yefeip@google.com

65

shared connections of the networks. The output of one network in response to a
stimulus to another network can be interpreted as an analogical mapping. In a
similar fashion, the networks can be explicitly trained to map specific items in
one domain to specific items in another domain.

2 Network Architecture

The network architecture is shown in Figure 1. Ain and Bin are input subvectors
for nodes from ontology A and ontology B respectively. They share one represen-
tation layer ABr. RAin represents relationships from graph A; RBin represents
relationships from graph B. They share one representation layer Rr.

In this network, each to-be-mapped node in graph is represented by a sin-
gle active unit in input layers (Ain, Bin) and output layers (Aout, Bout). For
relationships representation in input layer (RAin, RBin), each relationship is
represented by a single active unit.

The network shown in Figure 1 has multiple sub networks shown in the
following list.

1. NetAAA : {Ain-ABr-XAB; RAin-RRA-XR }-H1-W -H2-VA-Aout;
2. NetBBB : {Bin-ABr-XAB; RBin-RRB-XR }-H1-W -H2-VB-Bout;
3. NetAAB : {Ain-ABr-XAB; RAin-RRA-XR }-H1-W -H2-VB-Bout;
4. NetBBA : {Bin-ABr-XAB; RBin-RRB-XR }-H1-W -H2-VA-Aout;

An explicit cross training method is proposed to train the correspondence
of two relationships by directly making their representations more similar. Only
a portion of the neural network is involved in this cross training method: the
input subvectors and representation layer. For example, we want to train the
relationship correspondence of < R1, R2 >, where R1 belongs to ontology A and
R2 belongs to ontology B. R1 will be presented at RAin. The output at Rr will
be recorded, which we will name as RR1. Then R2 is presented at RBin. RR1 will
be treated as target value at Rr for R2. Weights RUB will be modified so that R1
and R2 have more similar representation at Rr with standard back propagation
method. Then < R1, R2 > will be trained so that weight RUA will be modified to
make R1’s representation at Rr similar to that of R2. The sub networks involved
in this training method will be named as RNetAB and RNetBA.

Network is initialized by setting the weights to small random values from
a uniform distribution. The network is trained with two vertical training tasks
(NetAAA and NetBBB), two cross training tasks (NetAAB and NetBBA), and
two explicit training tasks (RNetAB and RNetBA).

3 Results

Selected OAEI 3 benchmark tests are used to evaluate OMNN approach. All
test cases share the same reference ontology, while the test ontology is different.
3 http://oaei.ontologymatching.org/

66

Fig. 1. Proposed network architecture

The reference ontology contains 33 named classes, 24 object properties, 40 data
properties, 56 named individuals and 20 anonymous individuals. In the OMNN
approach, classes are treated as items; object properties and data properties are
treated as relationships; lastly individuals are not used.

Texture information is used to generate high confident mappings which are
then used as cross-training data in OMNN. However OMNN does not focus on
how well texture information is used.

In order to compare with other approaches that heavily use texture informa-
tion, 19 test cases with limited texture information are selected to be used in our
experiments. They are test case 249, 257, 258, 265, 259, 266 and their sub-cases.

To get a meaningful comparison, the Wilcox test is performed to compare
OMNN with the other 12 systems participated in OAEI 2009 on precision, recall
and f-measure. The result is shown in Table 1. It shows that OMNN has better
F-measure than 9 of the 12 systems, OMNN’s recall is significantly better than 10

67

of the systems. It should be noted that p-value< 0.05 means there is significant
difference between two systems compared, then detailed data is visited to reveal
which is one is better than the other.

Table 1. p-value from Wilcox test for 19 benchmark test cases. The green color means
that OMNN is significantly better than the system; red color means the system is
significantly better than OMNN; yellow means no significant difference. Significance is
defined as p-value< 0.05.

System Precision Recall F-Measure
aflood 0.000 0.570 0.182

AgrMaker 0.014 0.000 0.000
aroma 0.420 0.000 0.000

ASMOV 0.000 0.046 0.679
DSSim 0.027 0.000 0.000

GeRoMe 0.042 0.000 0.000
kosimap 0.008 0.000 0.000

Lily 0.000 0.306 0.000
MapPSO 0.000 0.000 0.000
RiMOM 0.136 0.002 0.032
SOBOM 0.811 0.000 0.000
TaxoMap 0.011 0.000 0.000

.

References

1. Bao, J., Munro, P.W.: Structural mapping with identical elements neural network.
In: Proceedings of the International Joint Conference on Neural Networks - IJCNN
2006. pp. 870–874. IEEE (2006)

2. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap (Semantic Web and
Beyond). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

3. Munro, P.: Shared network resources and shared task properties. In: Proceedings of
the Eighteenth Annual Conference of the Cognitive Science Society (1996)

4. Munro, P., Bao, J.: A connectionist implementation of identical elements. In: In Pro-
ceedings of the Twenty Seventh Ann. Conf. Cognitive Science Society Proceedings.
Lawerence Erlbaum: Mahwah NJ (2005)

5. Munro, P.W.: Learning structurally analogous tasks. In: Kurková, V., Neruda, R.,
Koutńık, J. (eds.) Artificial Neural Networks - ICANN 2008, 18th International
Conference. Lecture Notes in Computer Science, vol. 5164, pp. 406–412. Springer:
Berlin/Heidelberg (2008)

68

Lily-LOM: An Efficient System for Matching
Large Ontologies with Non-Partitioned Method

Peng Wang

School of Computer Science and Engineering, Southeast University, China
pwang@seu.edu.cn

Abstract. Since the high time and space complexity, most existing on-
tology matching systems are not well scalable to solve the large ontology
matching problem. Moreover, the popular divide-and-conquer matching
solution faces two disadvantages: First, partitioning ontology is a com-
plicate process; Second, it will lead to loss of semantic information dur-
ing matching. To avoid these drawbacks, this paper presents an efficient
large ontology matching system Lily-LOM, which uses a non-partitioned
method. Lily-LOM is based on two kinds of reduction anchors, i.e. posi-
tive and negative reduction anchors, to reduce the time complexity prob-
lem. Some empirical strategies for reducing the space complexity are also
discussed. The experiments show that Lily-LOM is effective.

1 Introduction

Since high time and space complexity, most ontology matching systems cannot
deal with large ontology matching (LOM) problem. First, matching process re-
quires a large amount of memory space, which would cause the system to crash
due to the out of memory error. The space complexity of a matching system
usually is O(n2). Second, most ontology matching algorithms are O(n2) time
complexity, i.e. it needs n2 times similarity calculations.

Divide-and-conquer strategy is a feasible solution for LOM problem. How-
ever, it also has two main issues to be resolved. First, we notice that some
ontology partitioning approach cannot control the size of blocks, which may be
too small or too large for matching. Second, the ontology partitioning idea also
would cause another considerable issue, namely, the partitioning would make
the elements on the boundaries of blocks lose some semantic information, that
would in turn affect the quality of final matching results.

This paper presents Lily-LOM, a system for matching large ontologies, which
is based on a non-partitioned method. Compared with the existing work, Lily-
LOM has two distinct advantages: First, it needs not to partition large ontologies
but it also has the high performance. Second, it is a general solution for LOM
problem, namely, it can adopt most existing matching techniques.

0000000000000000000000000000000000000

000000000000000000000000000000000000069

2 Wang P.

2 Matching Large Ontologies Based on Reduction
Anchors

During matching large ontologies, we notice two interesting facts: (1) a large
ontology is often composed of the hierarchies organized by is-a or part-of prop-
erties, and a correct alignment should not be inconsistent with such hierarchies;
(2) an alignment between two large ontologies has locality, i.e., most elements
of region Di in ontology O1 will match to the elements of region Dj in ontology
O2. The two facts provide new ways for finding efficient solution about LOM.

In Fig. 1. (a), if high similarity values exist between ai and bp or bq, we can
decide that ai matches bp or bq. This decision will bring a direct benefit: the
subsequent similarity calculations between sub-concepts(/super-concepts) of ai
and super-concepts(/sub-concepts) of bp or bq can be skipped. This paper calls
such concept pairs like (ai, bp) the positive reduction anchors(P-Anchors), which
employ ontology hierarchy feature to reduce the time complexity in LOM.

O1 O2

ai
bp

bq

br bs

bx

O1 O2

ai

bx

D1

D2

D0

(a) Positive Reduction Anchor (b) Negative Reduction Anchor

Fig. 1. Reduction anchors in large ontology matching

Fig. 1. (b) shows the locality phenomenon in LOM, where Di refers to a
region in the ontology. Suppose ai in D0 does not match bx in D2, then we can
infer that the neighbors of ai do not match bx too, i.e., the similarity values
between them are very low. As a result, we can skip the subsequent similarity
calculations between the neighbors of ai and bx, which can also reduce the times
of similarity calculations. This paper calls such concept pairs like (ai, bx) the
negative reduction anchors(N-Anchors).

P-Anchors and N-Anchors provide two ways to design new efficient solutions
for LOM. Based on the two kinds of anchors, matching process can skip many
times of similarity calculations to reduce the time complexity significantly. Ob-
viously, P-Anchors and N-Anchors cannot be identified in advance, so it needs
to discover them dynamically in matching, then uses the anchors to predict the
ignorable similarity calculations.

Let the P-Anchors of ai is PA(ai) = {b1, b2, ..., bk}. We call all the ignorable
similarity calculations predicted by PA(ai) the positive reduction set of ai. The
corresponding reduction set can be calculated by following formula, in which lub
denotes least upper bound and glb is greatest lower bound.

PS(ai) = [sub(ai)⊗ sup(lub(b1, ..., bk))] ∪ [sup(ai)⊗ sub(glb(b1, ..., bk))]

We can prove that when the order of similarity calculations can divide the
hierarchy path L into equal parts continually, the P-Anchors can generate the

0000000000000000000000000000000000000

000000000000000000000000000000000000070

Lily-LOM: An Efficient System for Matching Large Ontologies 3

maximum valid positive reduction set with |L| ∗ (|L| − 2) size [1]. It means the
algorithm has the best time complexity O(2n). Generally, the algorithm has

O((1− d̄
n)n2) time complexity, where d̄ is the average depth of the ontology.

N-Anchors can also predict the ignorable similarity calculations, which are
called the positive reduction set. If (ai, bj) is a N-Anchor, we can predict that
neighbors of ai are also irrelevant to bj . The set of all ignorable similarity cal-
culations predicted by this way are called the negative reduction set.

Let NA(ai) refer to the N-Anchors about ai, the neighbors with nScale
distance to ai constitute a set Nb(ai) = {ax|d(ax, ai) <= nScale}, the negative
reduction set generated by ai is:NS(ai) = NA(ai)⊗Nb(ai). The time complexity
of the algorithm is O(αn2), where α is in [0, 1] and is determined by size of
negative reduction set.

3 Empirical Space Complexity Processing

Besides the time complexity, the space complexity is another challenge in LOM.
We present some empirical methods for handling the space complexity problem,
and it may be useful for other matching systems. The number of elements in
large ontology is large, so we should avoid allocating a n× n similarity matrix.
Considering the similarity matrix is a typical sparse matrix, it can adopt the
compression techniques to replace it. It usually compresses a similarity matrix
into several MBs. In our LOM algorithms, the size of reduction set will become
bigger and bigger, which takes a large amount of space. We first replace the two
dimension reduction set with one dimension style, then merge the continuous
number of elements as a link. Memory space resource is valuable in LOM, so if
a variable or a data structure is unused, we should free its space immediately.
This principle will reduce the possibility of out of memory error.

4 Experimental Evaluations

All algorithms proposed in this paper are implemented in ontology matching sys-
tem Lily-LOM. More information about Lily can be found at http://cse.seu.edu
.cn/people/pwang/lily.htm.

We get some matching results on several real large ontologies by participating
in OAEI1. Here we present the results of our LOM algorithms on three LOM
tasks (Anatomy, Fao, and Library) in OAEI2008.

From 2007 to 2008 years, there are 13 systems participated in the anatomy
task, but only three systems: Lily, Falcon-AO, and TaxoMap, used the spe-
cial large ontology matching method. Falcon-AO proposed a divide-and-conquer
method called PBM algorithm. TaxoMap uses the PBM algorithm, so it is a
re-implement of PBM. We measure quality of the results with the classic F1-
measure, and use Recall+ [2] to measure how many non trivial correct align-
ments can be found.

Table 1 shows the results of three LOM systems. According to the results,
we have four conclusions: (1) Lily is one of the LOM system can perform well in
Anatomy task. (2) For the three LOM systems, Lily and Falcon-AO have similar
quality, which are better than TaxoMap. (3) The running time of Lily has two
parts: the special matcher used in Lily takes 3.1 hours for the preprocessing, but
the matching computing and postprocessing only spend 13 minutes. It indicates
that if we use other literal-based matchers, we would have close running time

1 Ontology Alignment Evaluation Initiative http://oaei.ontologymatching.org/

0000000000000000000000000000000000000

000000000000000000000000000000000000071

4 Wang P.

Table 1. Matching results of systems on Anatomy

System Runtime Precision Recall F-Measure Recall+
Label Eq. – 0.981 0.613 0.755 0.000

Lily 3.1h+13min 0.796 0.693 0.741 0.470
Falcon-AO 12min 0.963 0.599 0.738 0.127
TaxoMap 25min 0.460 0.764 0.574 0.470

0.529

0.867

0.368 0.403

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Library Fao-agrafsa

Precision Recall

Fig. 2. Matching results of Lily on the real large ontologies

to other systems. (4) Lily and Taxomap have high Recall+ value, it means that
they have the ability to discover the difficult alignments, but Lily has better
F-measure.

The results of Lily on the Library and Fao tasks are showed as Fig. 2, which
also demonstrates that it can discover some alignments in the two tasks.

5 Conclusion

This paper present a system Lily-LOM, which proposes a new large ontology
matching method based on reduction anchors. The reduction anchors are useful
to predict the ignorable similarity calculations during matching, that can reduce
the high time complexity problem.

Acknowledgments

This research is supported by the National Natural Science Foundation of China
(61003156).

References

1. Peng Wang and Baowen Xu. Matching large ontolo-
gies. Technical Report WIP-TR-2009-02, Southeast university,
http://cse.seu.edu.cn/people/pwang/publication/WIP-TR-2009-02.pdf, 2009.

2. Caterina Caracciolo, Jrme Euzenat, Laura Hollink, Ryutaro Ichise, and et al. Results
of the ontology alignment evaluation initiative 2008. In The Third International
Workshop on Ontology Matching (OM2008), Karlsruhe, Germany., 2008.

0000000000000000000000000000000000000

000000000000000000000000000000000000072

Toward Seoul Road Sign Management

on the LarKC Platform

Tony Lee1 , Stanley Park1 , Zhisheng Huang2 and Emanuele Della Valle3 4

1 Saltlux Inc., Seoul, Korea

2 Vrije University Amsterdam, Netherlands
3 CEFRIEL – Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy

4 Dip. di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

{tony, hgpark}@saltlux.com, huang@cs.vu.nl, emanuele.dellavalle@polimi.it

Abstract. Geo Semantic Technology is evaluated as the core technology for

supporting interoperability of geospatial data and building urban computing

environment. We made semantic integrations of LOD's Linked Geo Data and

Open Street Map with Korean POI data set, and have researched for developing

intelligent road sign management system based on the LarKC platform.

Keywords: Geo Semantics, Semantic Web, Reasoning,

1 Introduction

The LarKC5 project’s main goal is to develop a platform for reasoning using massive

amounts of heterogeneous information [1]. The platform has a pluggable architecture

to exploit techniques and heuristics from diverse areas such as databases, machine

learning, and the Semantic Web.

Within LarKC, we are running an Urban Computing [2] use case, with the aim of

proving the commercial feasibility of the LarKC platform and its architectures when

applied to huge geo semantic and urban data sets. In particular, in this poster, we

briefly present our efforts toward developing real-world Road Sign Management

systems (RSM) for Seoul.

2 Motivation

A typical building in South Korea is described by the administrative divisions6 in

which it lies rather than street names. If the address is written in Korean, the largest

division will be written first, followed by the smaller divisions, and finally the

5 http://www.larkc.eu
6 http://en.wikipedia.org/wiki/Administrative_divisions_of_South_Korea

73

building and the recipient, in accordance with the East Asian addressing system.

Divisions could be identified after the name of the nearest point of interest (POI).

The problem is that Korean cities grow and evolve much faster than western cities.

POIs may move, new roads may be built, and road signs may be changed accordingly.

Effectively managing road signs, in particular validating if a sequence of road signs

leads to a given address, is a major problem. For this reason the Korean Road Traffic

Authority maintains a database of all Seoul road signs. The directions given on each

road sign are formally described together with their actual location.

3 Research Challenges

Effective management of road signs requires processing the directions that are given

on each road sign together with a large amount of urban-related information. Until a

couple of years ago the cost of obtaining and maintaining up-to-date urban-related

information was high; but nowadays it is much less expensive thanks to collaborative

projects such as Open Street Map7 (OSM), which creates free editable maps of the

world, or Wikipedia, where POI descriptions can be found.

In the LarKC project, we have investigated a data integration solution for urban

information [3] that can provide a basis for intelligent road sign management. The

solution supports data modeling and the integration of massive amounts of linked

geo-data, POI data, and road sign data, as well as scalable querying and reasoning.

4 Data Integration

Fig. 1. The mediation ontology we use in our system.

7 http://www.openstreetmap.org/

74

The data set we are manipulating contains about 1.1 billion triples. 2 million triples

describe the streets of Seoul, and were directly extracted from OSM. 4 million triples

describe POIs related to road signs and come from the Korean Road Traffic Authority

database. Half million triples describe road signs and also come from the Korean

Road Traffic Authority database.

The data were integrated using the mediation ontology illustrated in Figure 1.

Roads are modeled as a sequence of nodes and links. Four types of node are modeled:

the generic nodes that can identify either a junction between multiple roads or a bend

in a road; the road sign (RS) nodes that indicate the presence of a road sign; the

Korean POIs (KPOI) that indicate POIs from the Korean Road Traffic Authority

database; and the Wikipedia POIs (WPOI) that indicate POIs from Wikipedia

(obtained through DBpedia). A way is composed of links. A road is composed of

ways. Road signs and points of interest are placed along the roads. If KPOIs and

WPOIs are understood to be same, owl:sameAs is used to state it. Due to quality

issues in the OSM data set, not all the junctions are explicitly stated; where necessary

owl:sameAs is also used to state that two nodes are the same node and, thus, that a

junction is present among multiple roads. Finally, note that not all POIs are directly

on the roads - some of them may be places nearby a node in the road.

5 Queries and Reasoning for RS validation

In Figure 2, we give an idea of the queries and reasoning required for the intelligent

management of the road signs that we are developing. Sign R1 indicates that two

POIs (i.e., G1 and G2) can be found straight ahead. R2 indicates that POIs G2 and G3

are straight ahead while G1 can be reached by turning right. R3 indicates that G3 is

straight ahead, while G2 can be reached by turning right.

Fig. 2. Road sign validations by using SPARQL and OWL Horst Reasoning

75

In the boxes we show the validation process of the three road signs. The directions

for G1 and G2 on R1 are valid because going straight in two nodes we can find road

sign R2 that contains further indications for G1 and G2. Similarly the direction for G2

and G3 on R2 are valid because going straight at the junction we can find road sign

R3 that contains further indications for G2 and G3. The direction for G1 on R2 is also

valid, because turning right, G1 can be found near the second node of the street. The

direction for G2 on R3 is valid, but the direction for G3 is not valid: G3 is reachable

only by executing a U-turn. This also means that the direction for G3 on R2, which

we previously stated to be valid, is not valid because it refers to a road sign R3 which

is not valid.

Current implementation of the RSM system is based on 40 SPARQL queries

executed under the Owl Horst entailment regime including some axioms of

rdfs:subClassOf, rdfs:subPropertyOf, owl:inverseOf and owl:sameAS. They encode

30 Korean road sign regulations related to positioning and naming.

4 Conclusions and Future work

In the work done so far we have found several data quality issues, which are due to

the presence in OSM of a lot of useless information, together with poor accuracy and

missing data. We have partially solved this issue by cleaning up data manually;

automatic cleaning support is under investigation. Data errors are also present in the

Korean Road Traffic Authority database data set in terms of direction and location

errors. An important issue is that different names for the same POI are present both in

OSM and in the Korean Road Traffic Authority database, e.g., Seoul Univ. and Seoul

National University. We used a semi-automatic technique to assert owl:sameAs

relationships. Finally, we are investigating techniques for rewriting SPARQL queries

in SQL/MM Spatial for efficiently evaluating SPARQL queries that manipulate

geographic knowledge [4] including real world reasoning with noisy data.

Acknowledgments. The work described in this poster has been partially supported by

the European LarKC project (FP7-215535).

References

1. Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Valle, E.D.,

Fischer, F., Huang, Z., Kiryakov, A., il Lee, T.K., Schooler, L., Tresp, V., Wesner, S.,

Witbrock, M., Zhong, N.: Towards larKC: A platform for web-scale reasoning. In: ICSC,

IEEE Computer Society (2008) 524–529

2. Kindberg, T., Chalmers, M., Paulos, E.: Guest editors’ introduction: Urban com- puting.

IEEE Pervasive Computing 6(3) (2007) 18–20

3. Tony Lee, Albert Ahn and Saung hoon Lee : Semantic Search and Data Interoperability for

GeoWeb: The 14th International Seminar on GIS (2010)

4. Della Valle, E., Celino, I., Dell’Aglio, D.: The experience of realizing a semantic web urban

computing application. T. GIS 14(2) (2010) 163–181

76

MoKi: a Wiki-Based Conceptual Modeling Tool

Chiara Ghidini, Marco Rospocher, and Luciano Serafini

FBK–irst, Via Sommarive 18 Povo, I-38123, Trento, Italy

Abstract. The success of wikis for collaborative knowledge construction is trig-
gering the development of a number of tools for collaborative conceptual model-
ing based on them. In this paper we present a completely revised version of MoKi,
a tool for modelling ontologies and business process models in an integrated way.

1 Introduction

MoKi 1 is a collaborative MediaWiki-based2 tool for modeling ontological and proce-
dural knowledge in an integrated manner. The main idea behind MoKi is to associate
a wiki page, containing both unstructured and structured information, to each entity of
the ontology and process model. In this section we present a completely revised ver-
sion of MoKi, which extends the first release of the tool (see [1]). The main changes
w.r.t. [1] are (i) the redesign of the content organisation of the MoKi page, which now
comprises an unstructured part and a structured part (this extends and replaces the sim-
ple representational languages used in [1]); and (ii) the multi-mode access to the page
content, to support easy usage both by domain experts and knowledge engineers, thus
facilitating them to play an equally central role in the modelling activities (this extends
and replaces the single template-based access mode provided in [1]).

1.1 The MoKi page

Being a tool supporting the description of ontological and procedural knowledge ac-
cording to the OWL Web Ontology Language and the Business Processes Modelling
Notation (BPMN), the basic element for MoKi are concepts, properties, and individuals
in the ontology, and processes in the process model. Each instance of these elements is
therefore associated to a MoKi page, composed of an unstructured part and a structured
part.

The unstructured part This part contains text written following the standard MediaWiki
markup format: in particular, it can contain plain text, possibly enriched by formatting
information, links to other MoKi pages or to external resources, uploaded images, and
so on. The format of this part of the page is the same for all the different elements of
the models.

The structured part This part, which is delimited by specific tags to separate it from
the unstructured text, contains knowledge stored according to the modelling language
adopted. In the current implementation, the structured part of a page describing an on-
tology element contains a RDF/XML serialisation of a set of OWL statements formal-
ising the element, while, similarly, the structured part of a page describing a BPMN
process contains an XML serialisation of the process diagram.

1 See http://moki.fbk.eu.
2 See http://www.mediawiki.org.

77

Fig. 1. Lightly-structured access mode and Fully-structured access mode for ontology concepts.

1.2 Supporting multi-mode access in MoKi

Users can access the ontological and procedural knowledge contained in MoKi using
three different access modes: one mode, the unstructured access mode, to access the
unstructured part of a MoKi page, and two different modes, the fully-structured access
mode and the lightly-structured access mode, to access the structured part.

The unstructured access mode This access mode allows the user to edit/view the content
of the unstructured part of the MoKi page of a model element. The editing/viewing of
this part occurs in the standard MediaWiki way.

The fully-structured access mode This access mode allows the user to edit/view the
content of the structured part of a MoKi page using the full expressivity of the mod-
elling language adopted. For ontological knowledge the fully-structured access mode
allows the user to view/edit formal statements (axioms) describing the element associ-
ated to the page. Axioms are written according to the latex2owl syntax3, an intuitive
latex-style format for writing ontologies using a text-editor, format which can be auto-
matically translated into (an RDF/XML serialisation of) OWL. The user can easily edit
the list of axioms in a form based interface, as shown in Figure 1 (right). For proce-
dural knowledge we have implemented an access mode that, by tightly integrating in
MoKi the Oryx editor4, a full-fledged business process editor, allows the user to edit the
BPMN process diagram described in the page, as shown in Figure 2 (up).

The lightly-structured access mode The purpose of this access mode is to allow users
with limited knowledge engineering skills, to edit/view the content of the structured part
of the MoKi page in a simplified and less formal way. For ontological knowledge the
lightly-structured access mode is provided through a form made of two components, as
depicted in Figure 1 (left). In the top half part the user can view and edit simple state-
ments which can be easily converted to/from OWL statements. If the OWL version of
any of these statements is already contained in the structured part of the page, then the

3 See http://dkm.fbk.eu/index.php/Latex2owl
4 See http://bpt.hpi.uni-potsdam.de/Oryx/

78

Fig. 2. Fully-structured access mode and lightly-structured access mode for processes.

corresponding fields are pre-filled with the appropriate content. Similarly, when any of
these simple statements is modified in the lightly-structured access mode, the changes
are propagated to the content of the structural part of the page. The bottom half of
the form provides a description of those OWL statements which cannot be intuitively
translated/edited as simple statements as the ones in the top half of the page. In the cur-
rent implementation, this part contains the translation of those statements in Attempto
Controlled English, provided by the OWL 2 Verbalizer5. For procedural knowledge
we have implemented an access mode based on a light-weight graphical process editor
which uses a restricted subset of process building blocks, as shown in Figure 2 (down).

1.3 Model Overview pages in MoKi

Model Overview pages are MoKi special pages dynamically created from the (struc-
tured) content of the pages describing model elements. For ontological knowledge, the
model overview pages allow to explore the generalisation and part/subparts decompo-
sition hierarchies of ontology concepts, as well as the classification of the ontology
individuals. In particular, MoKi provides two kinds of model overview pages. In the
tabular-based one, the user can access a table listing every concept (resp. individual) of
the ontology together with the concepts of which it is a specialisation and the concepts
in which it decomposes according to the part of relation (resp. the concepts to which the
individual belongs to). In the graphical-based one, a tree-like view shows the hierarchy
of concepts according to either the subclass or the part-of relation, or the membership of
individuals to concepts. Drag and drop editing facilities are also provided to rearrange

5 See http://attempto.ifi.uzh.ch.

79

the tree. For procedural knowledge, the model overview page provides an overview of
the process/sub-process decomposition mechanism by means of a table listing every
process defined in MoKi together with the processes in which it decomposes.

1.4 Usages of MoKi

The different versions of MoKi have been applied in several scenarios. Focusing on
the usages with real domain experts, MoKi has been successfully applied by four ap-
plication partners within the FP6 EU-project APOSDLE6 to develop enterprise models
(composed of a domain ontology and a process model) in six different domains, and it is
currently used by a team of knowledge engineers and domain experts to collaboratively
build an Organic Agriculture and Agroecology Ontology within the FP7 EU-project
Organic.Edunet7.

Although the version of the tool here presented is tailored to the development of
ontologies and business processes, the tool can be customized to support modelling
other kinds of knowledge. For example, a preliminary version of the tool which support
modelling of clinical protocols according the ASBRU language is described in [2].

2 Conclusions

In this paper we have presented a completely revised version of MoKi, a tool for mod-
elling ontologies and business process models in an integrated way. The main novelties
of the tool w.r.t. the previous version presented ([1]), are (i) a different content organ-
isation of the page, which now comprises an unstructured part and a structured part,
and (ii) the implementation of a multi-mode access to the page content, to support easy
usage both by domain experts and knowledge engineers, thus facilitating them to play
an equally central role in the modelling activities.

In our future work, we aim at improving the support for process modeling, in partic-
ular in providing an extensive automatic support for aligning the fully-structured access
mode and lightly-structured access mode in case of procedural knowledge. We also aim
at evaluating our tool further, on larger case studies.

Acknowledgements

The work described in this paper has been partially funded by the European Commis-
sion under the contract number FP7-248594.

References
1. Ghidini, C., Kump, B., Lindstaedt, S., Mahbub, N., Pammer, V., Rospocher, M., Serafini, L.:

MoKi: The Enterprise Modelling Wiki. In: Proceedings of ESWC 2009. Volume 5554 of
LNCS., Springer (2009) 831–835 Demo Session.

2. Eccher, C., Ferro, A., Seyfang, A., Rospocher, M., Miksch, S.: Modeling clinical protocols us-
ing semantic MediaWiki: the case of the Oncocure project. In: ECAI workshop on Knowledge
Management for Healthcare Processes (K4HelP). (2008)

6 See http://www.aposdle.org/
7 See http://www.organic-edunet.eu/

80

Publishing Bibliographic Data on the
Semantic Web using BibBase

Reynold S. Xin×, Oktie Hassanzadeh+, Christian Fritz§

Shirin Sohrabi+, Yang Yang+, Minghua Zhao+, Renée J. Miller+

+Department of Computer Science, University of Toronto
{oktie,sohrabi,c7yangya,mzhao,miller}@cs.toronto.edu

×Department of EECS, University of California, Berkeley
rxin@berkeley.edu

§Information Sciences Institute, University of Southern California
fritz@isi.edu

Abstract. We present BibBase, a system for publishing and manag-
ing bibliographic data available in BibTeX files on the Semantic Web.
BibBase uses a powerful yet light-weight approach to transform BibTeX
files into rich Linked Data as well as custom HTML and RSS code that
can readily be integrated within a user’s website. The data can instantly
be queried online on the system’s SPARQL endpoint. In this demo, we
present a brief overview of the features of our system and outline a few
challenges in the design and implementation of such a system.

Keywords: Bibliographic Data Management, Linked Data, Data Inte-
gration

1 Introduction

Management of bibliographic data has received significant attention in the re-
search community. Many online systems have been designed specifically for this
purpose, e.g., BibSonomy [9] and CiteSeer [10]. The work in the semantic web
community in this area has also resulted in several tools (such as BiBTeX to
RDF conversion tools [5]), ontologies (such as SWRC [7] and the Bibliographic
Ontology [6]) and data sources (such as DBLP Berlin [8]). These systems, tools,
and data sources are widely being used and have considerably simplified and
enhanced many bibliographic data management tasks such as data curation,
storage, retrieval, and sharing of bibliographic data.

Despite the success of the above-mentioned systems, very few individuals and
research groups publish their bibliographic data on their websites in a structured
format, particularly following the principles of Linked Data [1] which mandate
the use of HTTP dereferenceable URIs and structured (RDF) data to convey
the semantics of the data This is mainly due to the fact that existing systems
either are not designed to be used within an external website, or they require
expert users to set up complex software systems on machines that meet the
requirements of this software. BibBase aims to fill this gap by providing several
distinctive features that our demo will illustrate.

0000000000000000000000000000000000000

000000000000000000000000000000000000081

2 Authors Suppressed Due to Excessive Length

2 Light-weight Linked Data publication

BibBase makes it easy for scientists to maintain publication lists on their per-
sonal web site. Scientists simply maintain a BiBTeX file of their publications,
and BibBase does the rest. When a user visits a publication page, BibBase dy-
namically generates an up-to-date HTML page from the BiBTeX file, as well as
rich Linked Data with resolvable URIs that can be queried instantly on the sys-
tem’s SPARQL endpoint. We have chosen to use an augmented version of MIT’s
BiBTeX ontology definition to publish data in RDF1.

Compared to existing Linked Data publication tools, this approach is notably
easy-to-use and light-weight, and allows non-expert users to create a rich linked
data source without any specific server requirements, the need to set up a new
system, or define complex mapping rules. All they need to know is how to create
and maintain a BiBTeX file and there are tools to help with that.

It is important to note that this ease of use does not sacrifice the quality
of the published data. In fact, although the system is light-weight on the users’
side, BibBase performs complex processing of the data in the back-end. When a
new or updated BiBTeX file arrives, the system transforms the data into several
structured formats using our ontology, assigns URIs to all the objects (authors,
papers, venues, etc.), performs duplicate detection and semantic linkage, and
maintains and publishes provenance information.

3 Duplicate Detection

BibBase needs to deal with several issues related to the heterogeneity of records
in a single BiBTeX file, and across multiple BiBTeX files. BibBase uses existing
duplicate detection techniques in addition to a novel way of managing duplicated
data following the Linked Data principles.

Within a single BiBTeX file, the system uses a set of rules to identify dupli-
cates and fix errors. For example, if a BiBTeX file has two occurrences of author
names “J. B. Smith” and “John B. Smith”, the system matches the two author
names and creates only a single author object. In this example, the assumption
is that the combination of the first letter of first name, middle name, and last
name, “JBSmith”, is a unique identifier for a person in a single file.

For identification of duplicates across multiple BiBTeX files, the assumptions
made for local duplicate detection may not hold. Within different publication
lists, “JBSmith” may (or may not) refer to the same author. BibBase deals with
this type of uncertainty by having a disambiguation page on the HTML interface
that informs the users looking for author name “J. B. Smith” (by looking up the
URI http://data.bibbase.org/author/j-b-smith) of the existence of all the
entities with the same identifier, and having rdfs:seeAlso properties that link
to related author entities on the RDF interface.

1
Notably, the MIT’s BiBTeX ontology (http://zeitkunst.org/bibtex/0.1/) is extended to allow
description of the order of authors, unlike some widely-used bibliographic ontologies. We also
provide owl:sameAs and umbel:isLike links to the other existing bibliographic ontologies. The new
ontology definition is available at http://data.bibbase.org/ontology.

0000000000000000000000000000000000000

000000000000000000000000000000000000082

Publishing Bibliographic Data on the Semantic Web using BibBase 3

Duplicate detection, also known as entity resolution, record linkage, or ref-
erence reconciliation is a well-studied problem and an active research area [3].
We use some of the existing techniques to define local and global duplicate de-
tection rules, for example using fuzzy string similarity measures [2] or semantic
knowledge for matching conference names and paper titles [4].

4 Discovering semantic links to external data sources

“Tim Berners-Lee” (author)
src: http://www.w3.org/People/Berners-Lee/Publications

“Tom Heath” (author)

owl:SameAs

owl:SameAs

"Linked Data - The Story So Far" (article)

“Christian Bizer” (author)

“Int. J. Semantic Web Inf. Syst.” (journal)

http://data.bibbase.org/

“Tim Berners-Lee” (person)

“Linked Data” (buzzword)

“Semantic Web” (buzzword)
DBLP

"Linked Data - The Story So Far"

RKBExplorer

“Tim Berners-Lee” (person on dblp)

“Tim Berners-Lee” (person on citeseer)

“Christian Bizer” (person on eprints)

PubZone

“Tim Berners-Lee”"Linked Data - The Story So Far"

“Tim Berners-Lee”

1
“Tim Berners-Lee” (person on dblp)

DBLP Berlin

W3C

People

“Tim Berners-Lee” (foaf:Person)

“Int. J. Semantic Web Inf. Syst.” (journal)

Revyu.com

"Linked Data - The Story So Far" (review)

owl:SameAs

skos:closeMatch

foaf:page

rdfs:seeAlso

bibtex0.2:

has_keyword

skos:closeMatch

skos:closeMatch

owl:SameAs

foaf:page

foaf:page

foaf:page

bibtex0.2:has_keyword

Fig. 1. Sample entities in BibBase interlinked with several related data sources.

In order to publish our data in the Web, not just on the Web, to avoid
creation of an isolated data silo, we need to discover links from the entities in
BibBase to entities from external data sources. Figure 1 shows a sample of en-
tities in BibBase and several possible links to related Linked Data sources and
web pages. In order to discover such links, similar to our duplicate detection ap-
proach, we can leverage online and offline solutions. The online approach mainly
uses a dictionary of terms and strings that can be mapped to external data sets.
A similar approach is used to match abbreviated venues, such as “ISWC” to “In-
ternational Semantic Web Conference”. The dictionaries (or ontology tables) are
maintained inside BibBase, and derived from sources such as DBpedia, Wordnet,
and DBLP. We also allow the users to extend the dictionaries by @string def-
initions in their BiBTeX files. Offline link discovery is performed using existing
link discovery tools [4]. Our demo will allow users to interactively add BiBTeX

entries, then view and query the semantically annotated entry and discovered
links.

5 Additional Features

The success of BibBase as a Linked Data source depends on scientists using Bib-
Base for their publications pages. To further entice scientists to do so, BibBase
sports a number of additional features that make it an attractive proposition.

0000000000000000000000000000000000000

000000000000000000000000000000000000083

4 Authors Suppressed Due to Excessive Length

• Storage and publication of provenance information, i.e., metadata about the
source of each entity and each link in the data.

• Dynamic grouping of entities based on attributes (e.g., by year or keyword).

• An RSS feed, allowing anyone to receive notifications whenever a specified
scientist publishes a new paper.

• A DBLP fetch tool that allows scientists who do not yet have a BiBTeX file
to obtain their DBLP publications to start using BibBase right away.

• Statistics regarding users, page views, and paper downloads.

We enable users to provide feedback on the quality of data and links. By
providing feedback, users will not only improve the quality of the data published
on their own websites, they will also help create a very high-quality data source
in the long run that could become a benchmark for the notoriously hard task of
evaluating duplicate detection and semantic link discovery systems.

6 Conclusion

In this demonstration, we will present BibBase, a system for light-weight publi-
cation of bibliographic data on personal or research group websites, and manage-
ment of the data using existing semantic technologies as a result of the complex
triplification performed inside the system. BibBase extends the Linked Data
cloud with a data source that unlike existing bibliographic data sources, allows
online manipulation of the data by non-expert users. We plan to continue to
extend the features of BibBase. A list of currently implemented and upcoming
experimental features is available at http://wiki.bibbase.org.

References

1. T. Berners-Lee. Linked Data - Design Issues. http://www.w3.org/DesignIssues/
LinkedData.html, 2006. [Online; accessed 14-June-2010].

2. A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi, and D. Srivastava. Bench-
marking Declarative Approximate Selection Predicates. In ACM SIGMOD Int’l
Conf. on the Mgmt. of Data, pages 353–364, 2007.

3. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate Record Detection:
A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16,
2007.

4. O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller, and M. Wang. A Frame-
work for Semantic Link Discovery over Relational Data. In Proc. of the Conf. on
Information and Knowledge Management (CIKM), pages 1027–1036, 2009.

5. I. Herman. BibTeX in RDF. http://ivan-herman.name/2007/01/13/

bibtex-in-rdf/, 2007. [Online; accessed 14-June-2010].
6. http://bibliontology.com/.
7. http://ontoware.org/swrc/.
8. http://www4.wiwiss.fu-berlin.de/dblp/.
9. http://www.bibsonomy.org/.

10. http://citeseer.ist.psu.edu/.

0000000000000000000000000000000000000

000000000000000000000000000000000000084

Visualizing Populated Ontologies with OntoTrix

Benjamin Bach1,3, Gennady Legostaev2,1, and Emmanuel Pietriga1

1 INRIA and LRI (Université Paris-Sud & CNRS), Orsay, France
benjamin.bach@lri.fr, emmanuel.pietriga@inria.fr

2 St Petersburg State University, Saint Petersburg, Russia
glegostaev@gmail.com

3 Dresden University of Technology, Germany

Abstract. Most tools for visualizing Semantic Web data structure the represen-
tation according to the concept definitions and interrelations that constitute the
ontology’s vocabulary. Instances are often treated as somewhat peripheral infor-
mation, when considered at all. The visualization of instance-level data poses
different but significant challenges as instances will often be orders of magnitude
more numerous than the concept definitions that give them machine-processable
meaning. We present a visualization technique designed to visualize large in-
stance sets and the relations that connect them. This visualization uses both node-
link and adjacency matrix representations of graphs to visualize different parts of
the data depending on their semantic and local structural properties, exploiting
ontological knowledge to drive the layout of, and navigation in, the visualization.

1 Introduction

By making use of the rich capabilities of graphical representations and by abstracting
from the complex syntactic details of textual formats, visual tools aim at providing bet-
ter cognitive support to users, from knowledge engineers to domain-expert end-users.
They provide them with interactive representations of the data based upon state-of-the
art information visualization techniques, better supporting tasks such as ontology un-
derstanding, discovery, search, comparison and mapping [3].

Most tools structure the visualization according to the concept definitions and in-
terrelations that constitute the ontology’s vocabulary. While many of them do support
the visualization of instance data, instances are often treated as somewhat peripheral
information. Employing Description Logics terminology, the visualization is mainly
structured according to the TBox, instances that constitute the ABox being treated as
leaf nodes in this tree or graph structure. Exceptions to this general observation exist,
but either give a limited view of the ABox [1,6] or use conventional node-link diagram
representations that hardly scale beyond a few hundred nodes at best [4].

Instances represent an essential part of the overall knowledge base. Compared to
the definition of concepts based on OWL constructs, instance data are at a lower level
of abstraction. But more importantly, instance datasets are often orders of magnitude
larger (see, e.g., many of the datasets currently part of the Linking Open Data graph).
As such, the visualization of instance-level data poses different but real challenges that
remain to be addressed. We present OntoTrix, a visualization technique designed to
enable users to visualize, and navigate in, large instance sets and their relations.

0000000000000000000000000000000000000

000000000000000000000000000000000000085

2

Fig. 1. Overview of SWEET’s units.owl ontology with OntoTrix.

2 OntoTrix

Ontology graphs contain many nodes and edges, and are often non planar. Two main
issues with node-link diagram representations of such graphs are their inefficient use of
screen real-estate and edge crossings that make dense regions difficult to read, both
eventually causing scalability problems. A well-known alternative to node-link dia-
grams for graph visualization are adjacency matrices. Nodes are represented as rows and
columns, and edges as filled cells at the intersection of connected rows and columns.
While node-link diagrams are good at showing the structure of relatively small and
sparse graphs, adjacency matrices are very effective at showing large (better use of
screen real-estate) and dense (no edge crossing) graphs. However, adjacency matrix
representations are much less familiar to users than node-link diagrams, and make tasks
that involve following paths in the graph more difficult [2].

OntoTrix is inspired by a recent hybrid network visualization technique, NodeTrix
[2], that uses both node-link and adjacency matrix representations to visualize differ-
ent parts of the data depending on their semantic and structural properties (Figure 1).
The technique has proven successful at handling large networks, being very efficient
at visualizing locally dense but globally sparse networks. It displays the overall struc-
ture of the network using a node-link diagram, and the dense subgraphs that represent
communities using matrices. While the graph structure of ontologies might not always
share the small-world characteristics of social networks, such a hybrid representation,
combined with appropriate interaction techniques, can be an efficient means to perform
exploratory visualization of large ontology instance sets.

0000000000000000000000000000000000000

000000000000000000000000000000000000086

3

A

B

C D
Fig. 2. OntoTrix Interface Overview: (A) Main NodeTrix view, (B) Bird’s eye view, (C) Class
hierarchy view, (D), Property hierarchy view.

NodeTrix was originally devised for undirected social network structures that only
feature one type of node and one type of relation. We extend NodeTrix to handle the
much richer and complex graph structure of populated ontologies, exploiting ontolog-
ical (TBox) knowledge to drive the layout of, and navigation in, the representation.
Embedded in a smooth zoomable interface [5], and coupled with visual representations
of the class and property hierarchies that enable interactive navigation and filtering of
instance data, this visualization produces more compact and legible representations than
node-link diagram approaches, thus better scaling to large instance sets.

The OntoTrix environment features four main views (Figure 2). The main view (A),
contains the OntoTrix representation of the instance set. (B) provides an interactive
bird’s eye view of (A). The class hierarchy is visualized in (C), the property hierarchy
in (D). These views are highly synchronized. For instance, hovering a node in the class
hierarchy view highlights all corresponding instances in the OntoTrix view. Hovering
a node in the property hierarchy view highlights all corresponding elements in matri-
ces, as well as corresponding edges between matrices. Classes declared as being in the
domain or range of the property are highlighted in the class hierarchy, and conversely.

0000000000000000000000000000000000000

000000000000000000000000000000000000087

4

Matrices in NodeTrix basically correspond to highly-connected groups of actors,
i.e., dense subgraphs that represent social communities. In OntoTrix, we propose dif-
ferent methods for grouping instances into matrices, yielding very different perspectives
on the dataset. Instances can be clustered in matrices based on edge density, taking into
account all types of relations between instance nodes (Figure 1). A second method
groups instances into matrices according to class membership. A third method repre-
sents a tradeoff between the previous two. From an initial grouping based on density, all
nodes are grouped together on a per-matrix basis according to class membership as de-
scribed above (reordering columns and rows). Each of the original matrices can then be
split into smaller matrices corresponding to class membership groups. The last method
groups all instances involved in statements based on selected object property type(s).

Beyond improvements in terms of readability of a graph’s structure, NodeTrix fea-
tures an interesting property that is related to the above view of matrices as aggregates
of instance nodes for the layout process. Often, these aggregates will by themselves
represent interesting entities, not explicitly represented in the ontology, but that bear
semantics. When grouping by class membership in OntoTrix, matrices obviously rep-
resent groups of similar instances. We thus label each matrix with the associated class
name. When grouping by other methods, matrices cannot easily be tagged as there is
no explicit information about the grouping that stems from the purely structural clus-
tering of the graph. Matrices might still represent interesting entities, but will have to
be labeled manually and are currently assigned a random identifier. For instance, the
matrices in Figure 1 illustrate interesting grouping patterns: matrix [0] contains mostly
time-related units, matrix [1] mostly energy-related units, matrix [6] units related to
measuring light, etc. These groupings are very different from what is obtained when
grouping by class membership, and give an interesting perspective on the dataset. By
supporting dynamic, smoothly-animated transitions between grouping methods, On-
toTrix allows for rapid switching between these perspectives.

OntoTrix is implemented in Java, using the ZVTM zoomable user interface toolkit,
LinLogLayout for layout and clustering, Jena 2 for parsing ontologies, and the TDB
backend for storing. Jena’s OWL transitive reasoner provides a complete classification
of the ontology. Additional reasoning can be performed using other reasoners.

References

1. Fluit, C., van Harmelen, F., Sabou, M.: Supporting user tasks through visualisation of light-
weight ontologies. In: Handbook on Ontologies in Info. Systems. Springer-Verlag (2003)

2. Henry, N., Fekete, J.D., McGuffin, M.J.: Nodetrix: a hybrid visualization of social networks.
IEEE Transactions on Visualization and Computer Graphics 13(6), 1302–1309 (2007)

3. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualiza-
tion methods—a survey. ACM Computing Surveys 39(4), 10:1–10:42 (2007)

4. Noppens, O., Liebig, T.: Interactive Visualization of Large OWL Instance Sets. In: Interna-
tional Workshop on the Semantic Web and User Interaction (SWUI) (2006)

5. Pietriga, E.: A toolkit for addressing hci issues in visual language environments. In: Symp. on
Visual Languages and Human-Centric Computing (VL/HCC’05). pp. 145–152. IEEE (2005)

6. Tu, K., Xiong, M., Zhang, L., Zhu, H., Zhang, J., Yu, Y.: Towards imaging large-scale ontolo-
gies for quick understanding and analysis. In: ISWC. pp. 702–715. Springer-Verlag (2005)

0000000000000000000000000000000000000

000000000000000000000000000000000000088

BRAMBLE: A Web-based Framework for
Interactive RDF-Graph Visualisation

Nikolas Schmitt, Mathias Niepert, and Heiner Stuckenschmidt

KR & KM Research Group
University of Mannheim

Abstract. Most graph visualisation tools for RDF data are desktop
applications focused on loading complete ontologies and metadata from
a file and allowing users to filter out information if needed. Recently both
scientific and commercial frameworks have started to shift their focus to
the web, however they still rely on plugins such as Java and rarely handle
larger collections of RDF statements efficiently.
In this abstract we present a framework which visualises RDF graphs in
a native browser environment, leveraging both the SVG standard and
JavaScript technology to provide a responsive user interface. Graphs can
be directly expanded, modified and explored. Users select nodes and
edges from a central data repository containing millions of statements.
The resulting graph can be shared with other users retaining full inter-
activity for collaborative work or presentation purposes.

1 Introduction

With the growth of datasets such as the Linked Open Data project1, finding
and presenting relevant information becomes an increasingly complex process.
Graphs are well suited to browse and visualise linked data and a wide range of
tools exist that provide graph drawing functionality on various platforms and in
a myriad of formats. In particular there are commercial products2 integrating
graphs with web applications, allowing users to view and interact with a graph
using their web-browser. So far these solutions rely on either a heavy server
back-end generating the graph visualisation as images and sending them to the
client, which imposes heavy restrictions with regard to interactivity of the graph,
or they use a Java Applet or similar plugin which has to be downloaded first and
does not run natively in the browser. The WiGis framework [1] shifts the entire
workload onto the server and sends images to the browser at a constant frame
rate after every user interaction. While this does solve some performance and
scalability problems with large graphs, it makes the user interface feel slow and
unresponsive since any actions taken by the user have to be evaluated by the
server before there can be a response. All of the graph visualisation frameworks

1 http://linkeddata.org/
2 Tom Sawyer Software: Tom Sawyer Visualization (http://www.tomsawyer.com)

TouchGraph: TouchGraph Navigator (http://www.touchgraph.com)

89

rely on the ”Overview - Filter” approach where the user is presented a graph
over the entire collection of nodes and edges and is then expected to filter out the
information he needs. This method has some inherent disadvantages: The whole
graph has to be loaded and drawn up front. Thus frameworks employing this
approach can only process a few hundred nodes and even those developed for
large graphs have difficulties handling more than 10,000 nodes at an acceptable
speed.

In this abstract we demonstrate how the Bramble Framework3 implements
web-based graph visualisation aiming for fully interactive graphs displayed in a
native, browser-based environment. After the user has selected graph nodes and
edges through a browser-based graphical user interface, the data is retrieved from
a server-based RDF repository. Graphs are presented directly in a browser using
Scalable Vector Graphics (SVG). The user may expand the graph by adding new
nodes that are connected to existing nodes or explore the graph dynamically by
moving from node to node. Attributes are displayed for nodes and edges and
the user may influence their visualisation (colour, text) or delete them from the
graph.

2 User Interface

After connecting to the data repository of choice, the user can utilise the Chain
Manager dialog to retrieve specific information. The process is started by defining
a Node Set: one or more entities from the datastore that share common features.

Fig. 1. The framework interface with Chain Manager and Properties dialog open.

3 http://alkmaar.informatik.uni-mannheim.de:8080/bramble

90

Entities will be represented in the graph as nodes. Figure 1 shows a node set
which contains entities whose rdf:type conforms to a product from the Ama-
zon.com database and whose sioc:name matches the pattern ”The Fountain*”.
Relevant classes and relations are suggested by the interface based on the RDF
schema definitions present in the datastore. A set of nodes can be chained to
another set either by specifying a relation that connects the two or leaving the
field blank, in which case the framework will retrieve any relations between both
sets. In Fig. 1 reviews (orange) are added to the graph by attaching a node set
to the chain which automatically selects entities linked to the product (yellow).

To enhance the visualisation of the graph the user may customise the style
of each individual node set and the edges that connect them. Customisation
includes changing the colour and size of nodes, the strength of edges and adding
textual descriptions to entities. The graph layout is determined by choosing
one of the available algorithms such as the Kamada-Kawai [2] algorithm and
optionally tweaking their parameters.

Once the graph is generated the user may select any graph element to re-
trieve additional information. Clicking nodes opens a property dialog displaying
all links to other resources. These links can be added to the graph with their
predicate becoming an edge and their object becoming a new node. Any graph
element can be transformed into a more detailed version of itself, displaying
information directly in the graph, or be removed from the graph.

3 Architecture and Implementation

The server-client architecture depicted in fig. 2 offers many advantages for a
graph visualisation framework: Users upload data they want to analyse to a
central repository. Any users with access to the repository can now use their
browser to construct and customise graphs. Saving their work to the server
allows them to continue editing from another computer or platform and sharing
fully interactive graphs with other users.

Fig. 2. Server-Client architecture with data query.

A Java web service is used
as the interface between the
OpenRDF Sesame repository
and the client web applica-
tion. It connects to the reposi-
tory, retrieves data and relays
them to the web application using JSON. The web service takes Chains as in-
put and translates them into SeRQL queries. The query results are parsed and
transformed into node and edge objects which the web application can use to
draw the graph.

The web application is served as XHTML markup with a large collection of
JavaScript aided by popular libraries such as jQuery. No server page technology
is used, the communication to the server relies sololy on AJAX requests to the
web service. The entire process of evaluating the data, applying custom style
rules, calculating the graph layout using the algorithm of choice and drawing

91

the graph is done on the client-side. The graph rendering engine generates the
SVG markup (which uses XML syntax) and embeds scripts and triggers to enable
interactivity as well as RDF metadata.

4 Use Case

In order to test and evaluate the framework an example repository has been
created using the data gathered from the Amazon.com database by the Multi-
Domain Sentiment Data Analysis project [3]. The repository contains millions
of product reviews which provide information on how highly certain products
are regarded by different groups of users.

The data on products from the category DVD make up for almost 100,000
reviews written by 50,000 users about 13,000 products. Visualising all the in-
formation in one graph is not only technically infeasible but also useless as a
medium for research. The Bramble Framework enables analysts to search for
information about one certain product and visualise how well it is received by
users. Different styles can be used to identify quickly which customers are in
favour of a product and which are not. Analysts are able to display additional
information about a customer who dislikes a certain product and find out if
and why another product is preferred. This leads to identifying strong market
contenders and fields to improve the product in.

5 Conclusion

The Bramble Framework demonstrates how graphs can be visualised over the web
while retaining full interactivity and a responsive user interface. Using SVG to
render nodes and edges has several advantages over plugins such as Java or Adobe
Flash: graphs can be exported as SVG to be modified on a per-element basis by
external programs and scaled without loss of quality. In addition, metadata can
be embedded into the XML markup and the technology is supported by all major
browsers and platforms. The client-server approach with a web-based frontend
makes data in existing web repositories more accessible. Furthermore, complex
relationships in datasets consisting of millions of statements can be visualised
using the frameworks flexible selection method.

References

1. B. Gretarsson, S. Bostandjiev, J. O’Donovan and T. Höllerer: WiGis: A Framework
for Scalable Web-based Interactive Graph Visualizations. (2009)

2. T. Kamada and S. Kawai: An algorithm for drawing general undirected graphs. Inf.
Process. Lett., 31, 7–15 (1989)

3. J. Blitzer, M. Dredze and F. Pereira: Biographies, bollywood, boomboxes and
blenders: Domain adaptation for sentiment classification. In ACL, 187–205 (2007)

92

A web-based Evaluation Service for Ontology
Matching

Jérôme Euzenat1, Christian Meilicke2,
Heiner Stuckenschmidt2, Cássia Trojahn1

1 INRIA & LIG, Grenoble
2 University of Mannheim

Abstract. Evaluation of semantic web technologies at large scale, in-
cluding ontology matching, is an important topic of semantic web re-
search. This paper presents a web-based evaluation service for automati-
cally executing the evaluation of ontology matching systems. This service
is based on the use of a web service interface wrapping the functional-
ity of a matching tool to be evaluated and allows developers to launch
evaluations of their tool at any time on their own. Furthermore, the ser-
vice can be used to visualise and manipulate the evaluation results. The
approach allows the execution of the tool on the machine of the tool
developer without the need for a runtime environment.

1 Introduction

Evaluation of matching tools aims at helping designers and developers of such
tools to improve them and to help users to evaluate the suitability of the pro-
posed methods to their needs. The Ontology Alignment Evaluation Initiative
(OAEI)3 has been the basis for evaluation over the last years [1]. It is an annual
evaluation campaign that offers several data sets organized by different groups
of researchers. However, additional effort has to be made in order to catch up
with the growth of ontology matching technology. The SEALS project4 aims at
providing standardized datasets, evaluation campaigns for typical semantic web
tools and, in particular, a software infrastructure for automatically executing
evaluations. In this context, we have developed a web-based evaluation service
that allows developers to launch their own evaluations at any time while using a
set of approved datasets. It is based on the use of a web service interface wrap-
ping the functionality of a matching tool to be evaluated. In the following, we
describe the main components of our service and present a complete evaluation
example.

2 Evaluation Service Architecture

The evaluation service is composed of three main components: a web user inter-
face, a BPEL workflow and a set of web services. The web user interface is the

3 http://oaei.ontologymatching.org/
4 Semantic Evaluation at Large Scale http://about.seals-project.eu/

93

entry point to the application. This interface is deployed as a web application in
a Tomcat application-server behind an Apache web server. It invokes the BPEL
workflow, which is executed on the ODE5 engine. This engine runs as a web
application inside the application server.

The BPEL process accesses several services that provide different function-
alities. The validation service ensures that the matcher web service is available
and fullfills the minimal requirements to generate an alignment in the correct
format. A redirect service is used to redirect the request for running a matching
task to the matcher service endpoint. The test iterator service is responsible
for iterating over test cases and providing a reference to the required files. The
evaluation service provides measures such as precision and recall for evaluating
the alignments generated by the matching system. A result service is used for
storing evaluation results in a relational database.

Once the web service matcher implementation has been deployed and pub-
lished at a stable endpoint by the tool developer, its matching method can be
invoked within the BPEL workflow. For that reason, an evaluation starts by
specifying the web service endpoint via the web interface. This data is then
forwarded to BPEL as input parameters. The complete evaluation workflow is
executed as a series of calls to the services listed above. The specification of the
web service endpoint becomes relevant for the invocation of the validation and
redirect services. They implement internally web service clients that connect to
the URL specified in the web user interface.

Test and result services used in the BPEL process require to access addi-
tional data resources. For accessing the test data, the test web service can access
the metadata describing the test suite, extracts the relevant information and
forwards the URLs of the required documents via the redirect service to the
matcher, which is currently evaluated. These documents can then be accessed
directly via a standard HTTP GET-request by the matching system. The result
web service uses a connection to the database to store the results for each execu-
tion of an evaluation workflow. For visualizing and manipulating the stored re-
sults we use an OLAP (Online Analytical Processing) application, which accesses
the database for retrieving the evaluation results. Results can be re-accessed at
any time e.g., for comparing different tool versions against each other.

3 Evaluating a Matching Tool

For demonstration purposes, we have extended the Anchor-Flood [2] system
with the web service interface6. This system has participated in the two pre-
vious OAEI campaigns and is thus a typical evaluation target. The current
version of the web application described in the following is available at http:

//seals.inrialpes.fr/platform/. At http://alignapi.gforge.inria.fr/

5 ODE BPEL Engine http://ode.apache.org/
6 Available at http://mindblast.informatik.uni-mannheim.de:8080/sealstools/

aflood/matcherWS?wsdl

94

tutorial/tutorial5/, there is complete information about how to create a
valid matcher.

In order to start an evaluation, one must specify the URL of the matcher ser-
vice, the class implementing the required interface and the name of the matching
system to be evaluated (Figure 1). Three of the OAEI datasets have been se-
lected, namely Anatomy, Benchmark and Conference. In this specific example,
we have used the conference test case.

Fig. 1. Specifying a matcher endpoint as evaluation target.

Submitting the form data, the BPEL workflow is invoked. It first validates
the specified web service as well as its output format. In case of a problem, the
concrete validation error is displayed to the user as direct feedback. In case of a
successfully completed validation, the system returns a confirmation message and
continues with the evaluation process. Every time an evaluation is conducted,
results are stored under the enpoint address of the deployed matcher (Figure 2).

The results are displayed as a table (Figure 3), when clicking on one of the
three evaluation IDs in Figure 2. The results table is (partially) available while
the evaluation itself is still running. By reloading the page from time to time,
the user can see the progress of an evaluation that is still running. In the results
table, for each test case, precision and recall are listed. Moreover, a detailed view
on the alignment results is available (Figure 4), when clicking on the alignment
icon in Figure 3.

4 Final Remarks

Automatic evaluation of matching tools is a key issue for promoting the devel-
opment of ontology matching. In this demo we have presented a web-based tool
for automatic evaluation of matching systems that is available for the research
community at any time. The major benefit of this service is to allow developers
to debug their systems, run their own evaluations, and manipulate the results
immediately in a direct feedback cycle.

95

Fig. 2. Listing of available evaluation results.

Fig. 3. Display results of an evaluation. Fig. 4. Detailed view on an alignment.

Acknowledgements The authors are partially supported by the SEALS project
(IST-2009-238975).

References

1. J. Euzenat, A. Ferrara, L. Hollink, V. Malaisé, C. Meilicke, A. Nikolov, J. Pane,
F. Scharffe, P. Shvaiko, V. Spiliopoulos, H. Stuckenschmidt, O. Sváb-Zamazal,
V. Svátek, C. T. dos Santos, and G. Vouros. Results of the ontology alignment
evaluation initiative 2009. In Ontology Matching Workshop, 2009.

2. H. Seddiqui and M. Aono. Anchor-flood: results for OAEI 2009. In Proceedings of
the ISWC 2009 workshop on ontology matching, Washington DC, USA, 2009.

96

SemWebVid - Making Video a First Class Semantic Web
Citizen and a First Class Web Bourgeois*

Thomas Steiner,

Google Germany GmbH, ABC-Straße 19, 20354 Hamburg, Germany
tsteiner@{google.com, lsi.upc.edu}¶

Abstract. SemWebVid1 is an online Ajax application that allows for the
automatic generation of Resource Description Framework (RDF) video
descriptions. These descriptions are based on two pillars: first, on a
combination of user-generated metadata such as title, summary, and tags; and
second, on closed captions which can be user-generated, or be auto-generated
via speech recognition. The plaintext contents of both pillars are being analyzed
using multiple Natural Language Processing (NLP) Web services in parallel
whose results are then merged and where possible matched back to concepts in
the sense of Linking Open Data (LOD). The final result is a deep-linkable RDF
description of the video, and a “scroll-along” view of the video as an example
of video visualization formats.

Keywords: RDF, LOD, Linked Data, Semantic Web, NLP, Video

1 Introduction

Over recent years the use of Resource Description Framework (RDF) in documents
has gained massive popularity with even mainstream media2 picking up stories of big
companies deploying RDF on their Web presence. However, these efforts have
mainly concentrated on textual documents in order to annotate concepts like shop
opening hours, prices, or contact data. Far fewer occurrences can be noted for RDF
video description on the public Web. Related efforts are automatic video content
extraction, or the W3C Ontology for Media Resource.

The development of SemWebVid was driven by the following objectives:

* This work is partly funded by the EU FP7 I-SEARCH project (project reference 248296)
¶ The author is currently a PhD student at Universitat Politècnica de Catalunya, Department

LSI, Campus Nord, Edifici Omega, Jordi Girona 1-3, 08034 Barcelona, Spain. We would
like to thank Michael Hausenblas from DERI Galway for the review of this work and paper.

1 Live demo at http://tomayac.com/semwebvid/, username: iswc2010, password: iswc2010
2 http://www.nytimes.com/external/readwriteweb/2010/07/01/01readwriteweb-how-best-buy-

is-using-the-semantic-web-23031.html

97

• Improve searchability of video content by extraction of contained entities
and disambiguation of those entities (for queries like videos of Barack
Obama where he talks about Afghanistan while being abroad).

• Enable graphical representations of video content through symbolization
of entities (for e.g. video archives of keynote speeches where one could
graphically skim through long video sections at a glance).

These goals can be reached through RDF video descriptions and we thus developed
SemWebVid to create RDF video descriptions in a potentially automatable way based
on live data found on YouTube.

2 SemWebVid Dataflow

Fig. 1. SemWebVid Dataflow Diagram

The raw data for the RDF video descriptions consist of the beforementioned two
pillars: the user-generated video title, video (plaintext) description, and tags on the
one hand, and the user- or auto-generated3 closed captions on the other.

3 Curation of Raw Data

Before the entity mapping and extraction steps, the raw data need to be curated. While
the video titles are typically trouble-free as they are usually very descriptive, the main
problem with the plaintext video descriptions is that sometimes they get abused for
non-related spam-like messages or comments rather than providing a proper summary
of the video content. Unfortunately this is hard to detect, so in the end we decided to
simply use them as is. With regards to tags the main issue are different tagging styles.
As an example see potential tags for the concept of the person Barack Obama:

• "barack", "obama" (all words separated, 2 tags)
• "barack obama" (space-separated, 1 tag)
• "barackobama" (separate words concatenated, 1 tag)

The first split style is especially critical if complete phrase segments are expressed in
tag form:

3 YouTube allows for auto-generation of closed captions through speech recognition:

http://youtube-global.blogspot.com/2010/03/future-will-be-captioned-improving.html

98

• "one", "small", "step", "for", "a", "man"
For our demonstration we use an API from Bueda4 in order to split combined tags into
their components and try to make sense of split tags. We use Common Tag to
represent tags in the application.

The curation step for closed captions mainly consists of removing speaker and
hearable events syntax noise from the plaintext contents, and obviously the cues (time
markers for each caption). This can be easily done using regular expressions, the
syntax being a variation of ">>Speaker:" and "[Hearable Event]".

4 Entity Extraction and Mapping

We try to map the list of curated tags back to entities using plaintext entity mapping
Web services5 from DBpedia [1], Sindice [2], Uberblic, and Freebase. This works
quite well for very popular tags (samples below from the DBpedia URI Lookup Web
service, all results are prefixed with http://dbpedia.org/resource/"):

• "barack obama" => Barack_Obama
It somewhat succeeds for very generic tags (though with obvious ambiguity issues):

• "obama" => Obama,_Fukui
It fails for specific tags ("ggj09" was a tag for the event "Global Game Jam 2009"):

• "ggj09" => N/A
It is thus very important to preserve provenance data in order to judge and estimate
the quality of the mapped entities. With regards to the curated closed captions,
description, and title we work with NLP Web services6, namely OpenCalais,
Zemanta, and AlchemyAPI. For the test cases we used (famous speeches, keynotes)
results were relatively accurate from our judgments. In a final step the detected
entities are merged, and a symbolization for each entity gets retrieved by means of a
heuristic approach, including Google image search.

Fig. 2. Graphical symbolizations of several entities (TimBL, Semantic Web, etc.)

5 Description of the SemWebVid Demonstration

SemWebVid is designed to be an online Ajax application for interactive use.
Unfortunately the terms and conditions of some of the NLP Web services involved do

4 http://www.bueda.com/developers
5 http://platform.uberblic.org, http://www.freebase.com, http://sindice.com, http://dbpedia.org
6 http://opencalais.com, http://zemanta.com, http://alchemyapi.com

99

not allow for a SemWebVid API, however, due to its design both on-the-fly RDF
description generation and permanent linking to previous descriptions are possible.

Fig. 3. SemWebVid screenshot showing Tim Berners-Lee’s infamous potato chips speech at
gov2.0 Expo 2010. Below the video box the concept of the city of Philadelphia is symbolized.
The left lower box shows the closed captions directly, the right box the RDF description.

6 Conclusion and Future Work

While we are not the first7 to connect RDF (and thus Linked Data) with video,
SemWebVid's contribution is to present an automatic text-based way to generate RDF
video descriptions. Future work is among other things to determine whether the
expected searchability improvements pay off the high processing efforts.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nucleus
for a Web of Open Data. In: Proc. of 6th Int. Semantic Web Conf., 2nd Asian Semantic Web
Conf., November 2008, pp. 722–735.

2. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com – A Document-oriented Lookup Index for Open Linked Data. International
Journal of Metadata, Semantics and Ontologies, 3 (1), 2008.

7 Sack, H: http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/papers/Harald/DSMSA09.pdf

100

RExplorator - supporting reusable explorations of
Semantic Web Linked Data.

Marcelo Cohen, Daniel Schwabe

Pontifical Catholic University of Rio de Janeiro

R. M. S. Vicente 225
Gávea, Rio de Janeiro, RJ, Brazil

+55 21 3527-1500
{mcohen21@gmail.com, dschwabe@inf.puc-rio.br}

Abstract. This demo presents RExplorator, an environment which allows non-
technically savvy users, but who understand the problem domain, to explore
the data until they understand its structure They employ a combination of
search, query and faceted navigation in a direct manipulation, query-by-
example style interface. In this process, users can reuse previously found
solutions by other users, which may accomplish sub-tasks of the problem at
hand. It is also possible to create an end-user friendly interface to allow them
to access the information. Once a solution has been found, it can be
generalized, and optionally made available for reuse by other users. This
enables the establishment of a social network of users that share solutions for
problems in particular domains (repositories) of interest.

Keywords. RDF, exploratory search, exploration, ontology, semantic web,
reuse, interface, set-based navigation

1 Introduction
The availability of Linked Open Data in the WWW has increased tremendously1.

Currently, when building a new application, it is becoming increasingly common to
first explore available data that can be leveraged to enhance and complete one’s own
data to provide the desired functionality. The BBC Music website2 is one visible
example of this approach, combining MusicBrainz and DBPedia with their own data.

In previous work we developed Explorator [1], a model for representing
information processing by users in exploratory tasks, and its associated tool, which

1 http://linkeddata.org
2 http://www.bbc.co.uk/music

101

provides a browser interface supporting this model. Explorator is based on the
metaphor of direct manipulation of information in the interface, with immediate
feedback of user actions. In this demo we present RExplorator3, a significant
extension of Explorator, with new features illustrated in this demo.

2 REXPLORATOR

Consider two simple tasks to be carried out over the “Dogfood” data server4,
containing collected publication information for several conferences related to the
Semantic Web - Finding all publications of a given author and finding co-workers of
a given researcher, and their publications We assume the user has no prior
knowledge about the contents of this repository.

For the first task, the user has to
1. Find a class that represents persons
2. Find the desired person, “a”.
3. Find a property “p” that relates a person to publications,
4. Find all triples of the form <a p ?pub> and collect all objects from these

triples.
In Explorator, this is achieved by first clicking on “Menu”-> All RDF Classes”,

noticing class Person, mousing over it to click on “All Instances”, which reveals a set
of all Persons. Double-clicking on a Person (e.g. “Steffen Staab”), a new box appears
with all details for this resource (i.e., all triples with this resource as subject).
Looking at the details, one notices the property “made”, which relates Person to
Publications. To get all publications by a Person, one may click on the “Selected
Person Details” box, and click on the “S” operand position at the top; click on the
“made” box and click on the “P” operand position at the top, and then clicking on the
“=” (“compute”) operator at the top.

For the second task, the user has to follow a similar set of steps, re-using task 1
once the co-workers have been found.

RExplorator extends Explorator by (we don’t detail all for space reasons)
1. Allowing operations to be parameterized;
2. Allowing the results of a query to be fed as input of another query, thus

forming graphs of interconnected operations;
3. Allowing keeping such graphs as separate workbenches, while enabling

interconnection of graphs across workbenches;

3 Available at http://www.tecweb.inf.puc-rio.br/rexplorator, which includes a demo

video. See also a demo of Explorator - http://blip.tv/play/ AennPpPBIw
4 http://data.semanticweb.org

102

4. Allowing the designer to import previously defined query graphs into the
current workbench;

5. Allowing the designer to define additional operators beyond the set
operations provided;

6. Allowing the designer to define interfaces oriented towards end users,
hiding details and customizing the look-and-feel.

The original Explorator metaphor lets users compose operations incrementally,
seeing the results at each composition step. Each new query takes its operands from
existing query results. In the end, one may regard this set of inter-related operations
as a graph, similar to an Excel spreadsheet. However, the operations are all grounded,
which would be akin to not having any variables in the formulas of the analogous
spreadsheet. Thus, the first generalization made was to allow operations to have its
operands parameterized, and to propagate values trough the graph of operations when
the value of the parameter is changed. This is equivalent to introducing variables in
the expression that denotes the operation.

Consider step 4 in task 1, finding all publications of a Person. In Explorator, this is
achieved by selecting an instance of Person (e.g., “Steffen Staab in box “All
Persons”) in Figure 1, setting it as the subject parameter, selecting the relation
“make” as the property parameter, and clicking on the “=” operator to find all triples

of the form <<url for Steffen Staab> made? o> clicking on the icon in each box,
as shown in Figure 1 reveals the actual operations and their dependencies .

Figure 1 – Query structure and dependencies

The first box, Selected Person Details, represents the query that finds out all
triples with a given Person as subject. Notice that the first position, “S”, has been

103

parameterized, and the current parameter value is (the URI for) Steffen Staab. If we
drag any person from the rightmost box (All Persons) onto the “S” position in the
Selected Person Details box, the value is replaced and the query re-evaluated.

The Publication by Person query (middle box) is defined as taking its “subject”
parameter from the “subject” position of the Selected Person Details query.
Therefore, if a new value is plugged into the “S” position in the Selected Person
Details query, it is automatically propagated to this query, which triggers its
reevaluation.

RExplorator organizes the workspace into workbenches, each representing a task.
A user may save workbenches for later reuse, and share it with other users as well.

The development interface of RExplorator is best suited to allow users to explore
RDF repositories, and requires understanding the RDF model. RExplorator allows
expert users to provide an end-user friendly interface – called the Application
Interface - to solutions found while exploring datasets. This interface is generated by
a combination of views, which are defined using the “views” menu option; generic,
pre-defined views are initially available for reuse. Views make full use of CSS,
which is also defined in a separate view that can be customized to change the look-
and-feel of the generated interface. Figure 2 shows an example of an application
interface.

Figure 2 – User-friendly interface with All Persons and Selected Person Co-Workers.

ACKNOWLEDGMENT. Daniel Schwabe was partially supported by a grant from CNPq.

3 REFERENCES

[1] Araújo F. C. S.; Schwabe D.; Explorator: A tool for exploring RDF data through direct
manipulation, In: Proceedings of the Linked Data on the Web Workshop (LDOW2009),
Madrid, Spain, April 20, 2009, CEUR Workshop Proceedings, ISSN 1613-0073, online
http://CEUR-WS.org/Vol-538/ldow2009_paper2.pdf

104

Generating RDF for Application Testing⋆

Daniel Blum and Sara Cohen
{daniel.blum@mail,sara@cs }.huji.ac.il

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Abstract. Application testing is a critical component of application develop-
ment. Testing of Semantic Web applications requires large RDF datasets, con-
forming to an expected form or schema, and preferably, to an expected data dis-
tribution. Finding such datasets often proves impossible, while generating input
datasets is often cumbersome. The GRR (Generating Random RDF) system is a
convenient, yet powerful, tool for generating random RDF, based ona SPARQL-
like syntax. In this poster and demo, we show how large datasets can be easily
generated using intuitive commands.

1 Introduction

Testing is a critical step in application development. For Semantic Web applications,
testing is a challenge due to both the large volume of input data needed, and the intricate
format that this data must have. While many Semantic Web applications focus on varied
and unexpected types of data, there are also many others thattarget specific domains.
For such applications, to be useful, datasets used should have at least two properties:

1. The data structure should have the expected structure needed for the target applica-
tion (e.g., conform to a specific RDF schema).

2. The data should match the expected data distribution of the target application.

Currently, there are several distinct sources for RDF datasets. First, there aredown-
loadable RDF datasets that can be found on the web, e.g., Barton libraries, UniProt
catalog sequence, and WordNet. RDF Benchmarks, which include both large datasets
and sample queries, have also been developed, e.g., the Lehigh University Benchmark
(LUBM) [4] (which generates data about universities), the SP2Bench Benchmark [7]
(which provides DBLP-style data) and the Berlin SPARQL Benchmark [1] (which is
built around an e-commerce use case). Such downloadable RDFdatasets are usually an
excellent choice when testing the efficiency of anRDF storage system. However, they
will not be suitable for experimentation and analysis of a particular RDF application.
Specifically, since these datasets are built for a single given scenario, they may not have
either of the two specified properties, for the application at hand.

Data generators are another source for datasets. A data generator is a program that
generates data according to user constraints. As such, datagenerators are usually more
flexible than benchmarks. Unfortunately, there are few datagenerators available for

⋆ This work was partially supported by GIF Grant (2201-1880.6/2008).

105

RDF (SIMILE [8], RBench [6]) and none of these programs can produce data that con-
forms to a specific given structure, and thus, again, will nothave the specified properties.

In this demo, we present the GRR (Generating Random RDF) system for generating
RDF that satisfies both desirable properties given above. Thus, GRR is not a benchmark
system, but rather, a system to use for Semantic Web application testing. Using intuitive
data generation commands with aSPARQL-like syntax, GRR can produce data with a
complex graph structure, as well as draw the data values fromdesirable domains. Data
generation commands are translated into a series ofSPARQL queries and update com-
mands which are applied directly to an RDF storage system.1 A video demonstration of
GRR is available online,2 and the system is available upon request.

2 Motivating Example

As a motivating example, we discuss the problem of generating the data described in
the LUBM Benchmark. Note that GRR is not limited to creating benchmark data. In our
demo, we will demonstrate using GRR to generate other types of data, such as FOAF [3]
(Friend of a Friend) datasets, which are used in social network applications.

LUBM [4] is a collection of data describing university classes (i.e., entities), such
as departments, faculty members, students, courses, etc. These classes have a plethora
of properties (i.e., relations) between them, e.g., faculty members work for departments
and head departments, students take courses and are advisedby faculty members, etc.

In order to capture a real-world scenario, LUBM defines interdependencies between
the entities. For example, the number of students in a department is a function of the
number of faculty members. Specifically, LUBM requires there to be a 1:8-14 ratio of
faculty members to undergraduate students. As another example, the cardinality of a
property may be specified, such as each department must have asingle head of depart-
ment (who must be a full professor). Properties may also be required to satisfy addi-
tional constraints, e.g., courses, taught by faculty members, must be pairwise disjoint.

In the next section, we describe the GRR data generation language, and demonstrate
commands for producing LUBM benchmark data. Due to space limitations, we do not
provide all commands used to reproduce LUBM. However, we note that the number of
words needed in all data generation commands (in order to reproduce LUBM), is only
about twice as many as used in the intuitive description of LUBM, provided by [4]!

3 Data Generation Commands

Data is generated by a sequence ofdata generation commands (dg-commands, for
short) c1, . . . , cn, when given as input a (possibly empty) RDF datasetR. The first
commandc1 is evaluated overR, while each consecutive commandci is evaluated over
the output of the previous commandci−1.

The general syntax of a single dg-command appears below. Note that square brack-
ets are used to denote optional portions, and the “*” indicates a component that can
appear any number of times.

1 The Jena Semantic Web Framework for Java [5] is used in our implementation.
2 http://www.cs.huji.ac.il/ ˜ danieb12/

106

(FOR (EACH | sampling-method)
[WITH (GLOBAL DISTINCT | LOCAL DISTINCT | REPEATABLE)]
{list of classes }
[WHERE {list of conditions }]) *

[CREATE i- j {list of classes }]
[CONNECT {list of connections }]

A dg-command contains any number ofFORclauses, and then optionally aCREATE
and/orCONNECTclause. Intuitively, theFORclauses choose portions of the RDF input,
the CREATEclause creates new nodes in the RDF graph, and theCONNECTclause
connects nodes in the RDF graph. We require that at least one among theCREATE
andCONNECTclauses be present in every dg-command. We now describe eachclause,
briefly. (Full language semantics appears in [2]).

– TheFORClause: EachFORclause defines(1) a query which will applied against
the RDF input, as well as(2) a method to choose a subset of the query results. For
(1), the user provides a list of classes whose instances should be chosen (similar to
a SPARQLSELECTclause), as well as any conditions (similar to aSPARQLWHERE
clause). The correspondence toSPARQL is not precise as we allow for certain syn-
tactic shortcuts, which avoid explicit variable use, and make dg-commands more
readable. For (2), the user defines both the method with whichanswers should be
sampled, as well as whether the sampling process is with/without repetition.

– The CREATEClause: TheCREATEclause defines nodes that should be created.
The user provides both a list of RDF classes, and a range determining how many
instances of these classes should be created.3

– TheCONNECTClause: TheCONNECTclause determines the edges that should be
generated in the RDF graph, by providing a list of triples.

Several examples of dg-commands appear below. Explanations follow.

(c1) CREATE 1-5 {ub:Univ }

(c2) FOR EACH {ub:Univ }
CREATE 15-25 {ub:Dept }
CONNECT{ub:Dept ub:subOrg ub:Univ }

(c3) FOR EACH {ub:Faculty, ub:Dept }
WHERE{ub:Faculty ub:worksFor ub:Dept }

CREATE 8-14 {ub:Undergrad }
CONNECT{ub:Undergrad ub:memberOf ub:Dept }

(c4) FOR EACH {ub:Dept }
FOR 1 {ub:FullProf }
WHERE{ub:FullProf ub:worksFor ub:Dept }
CONNECT{ub:FullProf ub:headOf ub:Dept }

3 Dg-commands do not directly define how textual (or other atomic) properties are created and
associated with class instances. This information is provided in a simple auxilliary file, e.g.,
which associates each textual property with a sampling method or dictionary.

107

(c5) FOR 20%-20% {ub:Undergrad, ub:Dept }
WHERE{ub:Undergrad ub:memberOf ub:Dept }

FOR 1 {ub:Prof }
WHERE{ub:Prof ub:memberOf ub:Dept }
CONNECT{ub:Undergrad ub:advisor ub:Prof }

(c6) FOR EACH {ub:Undergrad }
FOR 2-4 WITH LOCAL DISTINCT {ub:UndergradCourse }
CONNECT{ub:Undergrad ub:takeCourse ub:UndergradCourse }

(c7) FOR EACH {foaf:Person ?p1 }
FOR 15-25 {foaf:Person ?p2 } WHERE{FILTER(?p1 != ?p2) }
CONNECT{?p1 foaf:knows ?p2 }

Commandc1 creates between 1 and 5 universities, and commandc2 adds 15–25
departments as suborganizations for each university. Commandc3 iterates over all pairs
of faculty members4 and departments, and adds 8-14 students, per pair to the depart-
ment (therby achieving the required 1:8-14 ratio of facultymembers to undergraduates).
Commandc4 chooses one full professor as the head of each department. Commandc5

adds an advisor for 20% of all undergraduates. Commandc6 assigns 2-4 courses for
each undergraduate. Note the use ofWITH LOCAL DISTINCTwhich ensures that
the set of courses chosen per student does not contain repetition, while allowing differ-
ent students to be assigned the same courses. Finally,c7 demonstrates advanced features
including variables and a filter command, to connect people (in an FOAF RDF dataset)
to one another.

In our poster and demo, we will show how to recreate the LUBM benchmark using
24 dg-commands, of the style seen above. In addition, we willshow how to create
interesting datasets for the FOAF schema. We will also allowthose interested to write
their own dg-commands, which we will evaluate in GRR to create an RDF dataset.

References

1. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. International Journal of Semantic
Web Information Systems 5(2), 1–24 (2009)

2. Blum, D., Cohen, S.: Grr: Generating random RDF. Tech. rep., The Hebrew University of
Jerusalem (2010)

3. The friend of a friend (FOAF) project.http://www.foaf-project.org
4. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Journal

of Web Semantics 3(2-3), 158–182 (2005)
5. Jena–a Semantic Web framework for Java.http://jena.sourceforge.net
6. RBench website.http://139.91.183.30:9090/RDF/RBench/index.html
7. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL performance bench-

mark. In: ICDE. pp. 222–233. Shanghai, China (Mar 2009)
8. Simile website.http://simile.mit.edu/

4 The faculty members were created with an additional dg-command, whichwas omitted due to
lack of space.

108

Semantic-based Mobile Mashup Platform

Zhipeng Peng1, Huajun Chen1, Jinghai Rao2, Ying Liu1,

Lei Wang1, Jian Chen1,

1 College of Computer Science, Zhejiang University,

Hangzhou, 310027, China
{pzp, huajunsir}@zju.edu.cn, {islandsolo, blueabysm, crocus.chen}@gmail.com

2 Nokia Research Center, Beijing Economic and Technological Development Area,

Beijing, 100176, China
{jinghai.rao}@nokia.com

Abstract. Mobile devices contain more personal data such as GPS location,
contacts and music, with which users can create innovative and pragmatic
mashup applications for different areas such as social networking, E-commerce,

and entertainment. We propose a semantic-based mobile mashup platform
which enables users to create mashup applications by simply selecting service
nodes, linking them together and configuring some connection parameters. Our
platform also offers a recommendation mechanism on linkable services by
adding semantic annotation to service description, so that users do not need to
read specifications of web services in order to find out linkable ones. Therefore,
users can focus more on the innovation and practicability of their mashup
applications, which will surely result in the emergence of abundant mobile
mashup applications.

Keywords: Semantic annotation, mobile mashup, mashup recommendation,
web service

1 Introduction

Presently, the number of mobile mashup applications grows rapidly with fast mobile

computing development. Current mobile devices’ multimedia (e.g. Camera and media
playback), sensing (e.g. GPS, Bluetooth, RFID and barcode readers) and

communicating (e.g. GPRS, UMTS, Bluetooth, Wi-Fi) capabilities are ideal sentient

intermediaries with which users can obtain information for mashup applications.

Sentient Graffiti (SG) [1] is one such proposition which offers a platform through

which users can contribute content and create integrated mobile applications with

mixed information from diverse distributed sources. The TELAR mashup platform [2]

is another example which facilitates the creation of adaptive mashups for mobile

devices such as the Nokia Internet Tablets. Xu et al. proposed platform architecture
based on service oriented architecture (SOA) [3], which focused on how to manage

and operate mobile mashup services. Obtaining such mashup applications is not easy

because users have to read each service specification and do plenty of programming

109

work to get what they want. However, most of the mobile mashup users who may

have plenty of novel ideas for mobile mashups are not tech-savvy. Our proposition of

semantic-based mobile mashup platform meets these users’ needs by offering a

service recommendation mechanism and a user interface in which users can construct

and execute resulting mashups. We choose browser-server architecture so that it will

be operating system independent. What users need are simply a mobile device and a
flashlite supported web browser. In this paper we present our mobile mashup platform

and its semantic-based recommendation mechanism.

2 Semantic-based Mobile Mashup Platform

2.1 Semantic-based Recommendation Mechanism

On our platform, users are able to make a mashup application by selecting a few

service nodes and connecting them together. The platform is able to find matched
services and the inter-connections among them, which allows users to easily create

their applications without knowing every single detail about each service. The

recommendation mechanism is implemented by adding semantic annotation to each

input or output parameter, so that all services have a common interface. The

linkability judgment of two services is shown in Fig. 1.

Fig. 1. Since the output parameters (“lat” and “lon”) of operation “getLocation” have the same
semantic annotations (“geo.latitude” and “geo.longitude”) as input parameters (“latitude” and
“longitude”) of operation “addPushpin”, Mobile GPS service is linkable to Virtual Earth
service.

Along with this basic parameter-match recommendation theory, we also include

other criteria to filter and rank recommended services. The first criterion is matching

degree (the numbers of parameters matched) of two operations. Required input

parameters must be met, or the service will be filtered out. After that, with bigger

matching degree, the recommended service receives higher rank. The second criterion
is conditional probability calculation [4]. The bigger probability that the link of

Mobile GPS Service

- getLocation

VirtualEarth Service

- addPushpin

geo.latitude

geo.longitude lon

lat latitude

longitude

outputs inputs semantic annotation

110

recommended service and target service is included by any mashup in repository, the

higher rank the recommended service gets.

Besides the mashup constructing UI, our platform also includes a mashup

execution engine. The execution result is shown in a new page temporarily with a list

view or map view. Moreover, advanced users who expect more complicated functions

can also encapsulate services by conforming to a specified standard by themselves.

2.2 Mashup Constructing UI

The mashup constructing UI is shown in Fig. 2. On the home screen, users can either

execute mashups which are already made by themselves or by others or construct a

new one by following a few steps. Firstly, users select a node from the service list.
Then they will get a list of recommended services and they can add recommended

services to the construction panel. After that, users need to do a little configuration

work for connections between service nodes. Lastly, users can execute the resulting

mashup, and save it if they are satisfied with the result.

(a) (b) (c) (d)

Fig. 2. User interface of our platform: (a) Some icons represent different classes of mashups,
such as location related, or contact related. (b) A list of mashups which are executable. (c) User
interface where users can select service nodes to make a mashup. (d) Configuration panel
where users can get recommended services and configure links between service nodes.

2.3 Mobile Mashup Examples

With our platform, users can get a variety of innovative and pragmatic mashup

applications in different areas such as social networking, E-commerce and

entertainment. In Fig. 3 we show several mashups obtained with our platform

including a Douban1 social mashup, a weather checking mashup, a friends’ location

viewing mashup and a mashup which shows disc information and related purchasing

information for music in the mobile1 device. Users are able to obtain more diverse

mobile mashups by selecting linkable services and constructing a mashup graph.

1 http://www.douban.com/

111

(a) (b) (c) (d)

Fig. 3. Mobile mashup results: (a) Show Douban information of friends in the contact book. (b)
Show weather in major cities. (c) Show friends which are in the contact book on a map. (d)
Show disc and purchasing link information of songs in the mobile device.

3 Conclusion

We have presented a mobile mashup platform with a semantic-based recommendation
mechanism and a mashup execution engine. The recommendation mechanism makes

mashup construction and execution much easier. By following a few simple steps,

users are able to obtain a mashup based on their preferences. For future work, we will

improve the platform to deal with more complicated situations.

4 Acknowledgments

The authors acknowledge the support provided by CCNT Laboratory of Zhejiang

University and Nokia Research Center of Nokia Corporation.

References

1. Brodt, A., Nicklas, D.: The TELAR Mobile Mashup Platform for Nokia Internet Tablets. In:
EDBT 2008: Proceedings of the 11th international conference on Extending database
technology, 2008

2. Lopez de Ipi˜ na D., Vazquez J. I., and Abaitua J.: A context-aware mobile mash-up
plaftorm for ubiquitous web. In: Proc. of 3rd IET Intl. Conf. on Intelligent Environments,
pages 116–123, 2007

3. Huiyang Xu, Meina Song, Hui Chen and Junde Song: Research on SOA based mobile
mashup platform for telecom networks. The Journal of China Universities of Posts and

Telecommunications. Volume 15, Supplement 1, pages 31-36, 2008
4. Huajun Chen, Bin Lu, Yuan Ni, Guotong Xie, Chunying Zhou, Jinhua Mi and Zhaohui Wu:

Mashup by Surfing a Web of Data APIs. In: Proc. of the VLDB Endowment. Volume2,
Issue 2, pages 1602-1605, 2009

112

A SILK Graphical UI for Defeasible Reasoning,

with a Biology Causal Process Example�

Benjamin Grosof1, Mark Burstein2, Mike Dean2, Carl Andersen2, Brett
Benyo2, William Ferguson2, Daniela Inclezan3, and Richard Shapiro2

1 Vulcan Inc., Seattle, Washington, USA, benjaming@vulcan.com
2 Raytheon BBN Technologies, Cambridge, Massachusetts, USA,

{burstein, mdean canderse, bbenyo, wferguson, rshapiro}@bbn.com
3 SRI International, Menlo Park, USA, daniela.inclezan@ttu.edu

Abstract. SILK is an expressive Semantic Web rule language and sys-
tem equipped with scalable reactive higher-order defaults. We present
one of its latest novel features: a graphical user interface (GUI) for knowl-
edge entry, query answering, and justification browsing that supports
user specification and understanding of advanced courteous prioritized
defeasible reasoning. We illustrate the use of the GUI in an example
from college-level biology of modeling and reasoning about hierarchically-
structured causal processes with interfering multiple causes.

1 Introduction to SILK

SILK4 (Semantic Inferencing for Large Knowledge) is an expressive Semantic
Web rule language and system equipped with scalable reactive higher-order de-
faults. The system includes capabilities for reasoning, knowledge interchange,
and user interface (UI). Part of Project Halo5, sponsored by Vulcan Inc., the
SILK research program addresses fundamental knowledge representation (KR)
requirements for scaling the Semantic Web to widely-authored Very Large Knowl-
edge Bases (VLKBs) in business and science that answer questions, proactively
supply info, and reason powerfully. The SILK effort has over 15 contributing
institutions, including Vulcan, Stony Brook University, Raytheon BBN Tech-
nologies, Cycorp, and SRI International.

SILK pushes the frontier of KR by combining expressiveness plus semantics
plus scalability. It targets defeasibility, higher-order, and actions — including to
support reasoning about complex processes that are described in terms of causal-
ity, hierarchical structure, and/or hypothetical scenarios. For example, reasoning
about causal processes is a large portion of first-year college biology, often re-
quiring multi-step causal chains and/or multiple grain sizes of description to
answer a textbook or exam question. Longer-term, SILK targets widely collabo-
rative KA by subject matter experts (SMEs), such as science students/teachers
or business people, not just knowledge engineers (KEs) or programmers.

� This work is part of the SILK project sponsored by Vulcan Inc.
4 http://silk.semwebcentral.org
5 http://projecthalo.com

113

SILK has a new fundamental KR: hyper logic programs, which extends nor-
mal declarative logic programs (LP). Hyper LP is the first to tightly combine
several key advanced expressive features: defaults , with strong negation and pri-
orities, cf. courteous LP [1] with argumentation theories [2]; (quasi) higher-order
syntax, reification, and meta-reasoning, cf. HiLog [3] and Common Logic; and
procedural attachments to external actions (side-effectful), queries (to built-
ins, web sources or services), and events (knowledge update flows), cf. situ-
ated/production LP [1] (and similar to production rules). KR languages sup-
ported for interchange include: SPARQL and RDF(S); SQL and ODBC (e.g.,
Excel spreadsheets); SILK, RIF (-BLD and -SILK), and OWL (-RL); Cyc (most
of its KR and KB); and AURA [4]. AURA is a Project Halo system for question-
answering in first-year college science and currently has a KB with tens of thou-
sands of axioms about biology. AURA largely pre-dates SILK and employs a
frame-based KR that is considerably less expressive than SILK.

Outline and Contributions: A previous version of SILK was presented in
[5]. In the rest of this paper, we present a novel addition to SILK since then: a
graphical user interface (GUI) for KA and querying that treats defeasibility.

2 SILK Graphical User Interface & Defeat Justifications

We have developed a graphical user interface (GUI) to the SILK system for
knowledge entry, query answering, and justification browsing. The GUI is cur-
rently used by KEs and is being extended to support use by subject matter
experts (SMEs). The GUI supports user specification and understanding of ad-
vanced courteous prioritized defeasible reasoning. It is implemented as a plug-in
to the Eclipse Integrated Development Environment (IDE).

The GUI, pictured in Figure 1, offers users a number of capabilities. Entered
SILK statements are syntactically validated and statement components (e.g.,
annotations) are color-coded for clarity. User debugging of rule bases is facili-
tated by automatic tracking of target queries’ results against user changes to
the rules. This also allows what-if explorations. The GUI also offers query result
justification trees (technically, graphs) that can be explored incrementally, by
expanding each tree node to display its children. At each node, the user can
specify particular bindings to filter the portion of the justification tree that is
displayed. Trees of this sort are also available for negative results (i.e., when a
literal cannot be inferred), allowing developers to drill down and identify flaws
in a desired chain of logical reasoning. This display mechanism also supports the
reasoning chains found in courteous defaults by showing defeated ground rule
instances — rules whose heads are not true, despite their bodies being true, due
to conflict with other rules. Figure 1 shows an example of refutation-flavor defeat
of a rule instance (and thus of its head atom A). The rule instance has a candi-
date argument — i.e., the rule’s body is satisfied. But there also is a candidate
counterargument (whose head is neg A) that has a higher-priority rule tag.

114

Fig. 1. SILK GUI: exploring the justification of defeat of a biology process rule

In (ASCII) SILK syntax, a # c means that a is an instance of class c.
Skolems are prefixed by the underscore character (“ ”). A courteous rule label
term, used for prioritization, is called a tag.

Flexible control of selection and layout of items to display is achieved via
running rules that are specified (e.g., by power users) in SILK itself.

To our knowledge, the SILK GUI is only the second justification exploration
GUI for (prioritized) defeasible rules that have (declarative, model-theoretic)
semantics . The first such system was DR-DEVICE [6], which displays defeat
justifications, but with less extensive GUI functionality than SILK provides.
Its Defeasible Logic KR is closely related to the courteous feature of hyper LP
(see [7] for a comparison), but lacks higher-order and several other advanced
expressive features of hyper LP.

3 Example: A Complex Causal Process in Biology

We have developed a novel approach to modeling and reasoning about hierarchically-
structured causal processes, that smoothly handles interference/exceptions be-
tween multiple causes and elegantly treats the “frame problem” (inertia / per-
sistence of causal fluents). It leverages hyper LP’s prioritized defaults. To fully
describe the approach is beyond the scope of this paper, however. Instead, we
illustrate the approach with an example of college-level biology that shows the
SILK GUI’s novel capability to explore justifications in the presence of priori-
tized defeat.

In biology and medicine, a key process is the cell cycle in which a cell grows
and then divides. (Control failure in this process causes cancer.) The cell cycle
is a complex hierarchically-structured process. It consists of two phases (sub-
processes): interphase and mitosis, in that temporal order. Interphase, in turn,

115

consists of three subphases G1, S, and G2, in that order. Mitosis too has several
subphases. Many of the above subphases in turn have sub-subphases, etc. DNA
synthesis occurs during S phase, and indeed begins when S phase begins. This is
the knowledge required to answer the following first-year college exam question6:

A researcher treats cells with a chemical that prevents

DNA synthesis from starting. This treatment traps the cells

in which part of the cell cycle?

Correct answer: G1.

That is, if DNA synthesis does not occur, then S Phase does not occur, and the
cell cycle stops in the preceding phase which is G1.

Figure 1 shows a key intermediate step in SILK’s inferencing — defeat of a
candidate argument that: DNA Synthesis will occur for the question’s focal cell
cycle (Cell Cycle79), as is normal (i.e., “intended”) in the cell cycle’s process’s
cascade of causal phase steps. That argument is refuted because there is a higher-
priority counter argument (itself undefeated) based on the preventive/inhibitory
causal effect of the hypothetical scenario’s chemical treatment.

4 Conclusions

A key direction in current and future SILK work is to increase SME friendliness
of the UI in collaborative KA and querying, using in part controlled natural
language. SILK is now being integrated with other portions of Project Halo,
particularly AURA. We are refining a translation of Cyc biology etc. knowledge
to SILK. See the SILK website for an extended version of this paper.

Acknowledgements: Thanks to the SILK team, esp. Paul V. Haley, Ter-
rance Swift, Michael Kifer, David Gunning, Vinay Chaudhri, Michael Gelfond.

References

1. Grosof, B.N.: Representing E-Commerce Rules via Situated Courteous Logic Pro-
grams in RuleML. Electronic Commerce Research and Applications 3(1) (2004)

2. Wan, H., Grosof, B., Kifer, M., et al.: Logic Programming with Defaults and Argu-
mentation Theories. In: Proc. 25th Intl. Conference on Logic Programming. (2009)

3. Chen, W., Kifer, M., Warren, D.: HiLog: A foundation for higher-order logic pro-
gramming. Journal of Logic Programming 15(3) (February 1993) 187–230

4. Gunning, D., Chaudhri, V.K., et al.: Project Halo Update: Progress Toward Digital
Aristotle. AI Magazine to appear, Fall 2010.

5. Grosof, B.N., Dean, M., Kifer, M.: The SILK System: Scalable and Expressive
Semantic Rules. In: Posters and Demos, 8th Intl. Semantic Web Conf. (2009)

6. Bassiliades, N., et al.: Proof explanation in the DR-DEVICE system. In: Proc. 1st
Intl. Conf. on Web Reasoning and Rule Systems. (2007)

7. Wan, H., Kifer, M., Grosof, B.: Defeasibility in Answer Set Programs via Argu-
mentation Theories. In: Proc. 4th Intl. Conf. on Web Reasoning and Rule Systems.
(2010)

8. Campbell, N.A., Reece, J.B.: Biology. 6th edn. Benjamin Cummings (2002)

6 chapter 12 self-quiz question 15 in [8]

116

Semantics for music researchers:

How country is my country?

Kevin R. Page 1,2, Benjamin Fields 3, Bart J. Nagel 2, Gianni O'Neill 2,
David C. De Roure 1, Tim Crawford 3

1 Oxford e-Research Centre, University of Oxford, UK
2 School of Electronics and Computer Science, University of Southampton, UK

3 Department of Computing, Goldsmiths University of London, UK

Abstract The Linking Open Data cloud contains several music related
datasets that hold great potential for enhancing the process of research
in the �eld of Music Information Retrieval (MIR) and which, in turn,
can be enriched by MIR results.
We demonstrate a system with several related aims: to enable MIR re-
searchers to utilise these datasets through incorporation in their research
systems and work�ows; to publish MIR research output on the Semantic
Web linked to existing datasets (thereby also increasing the size and ap-
plicability of the datasets for use in MIR); and to present MIR research
output, with cross-referencing to other linked data sources, for manipula-
tion and evaluation by researchers and re-use within the wider Semantic
Web.
By way of example we gather and publish RDF describing signal col-
lections derived from the country of an artist. Genre analysis over these
collections and integration of collection and result metadata enables us
to ask: "how country is my country?".

1 Background and motivation

Much of the work of researchers in the �eld of Music Information Retrieval (MIR)
focusses on the algorithmic extraction of information from music. However, there
are many problems associated with the design and implementation of distributed
systems within which such algorithms might be deployed.

We can broadly describe the process an MIR researcher typically follows in
three steps; we also highlight some of the issues and, at an abstract level, how
linked data and semantic web technologies might assist in building a complete
system.

1. Assemble a collection of audio input. To evaluate an algorithm, the re-
searcher must acquire a wide selection of �signal� � typically digital audio
�les � for the algorithm to process. Music recordings are often restricted
from free exchange amongst researchers, either explicitly through copyrights
or implicitly through the high overheads of managing detailed and intri-
cate licensing. Even when audio data is freely available and distributable

117

a di�cult balance must be found to avoid �over-�tting� of algorithms to a
particular set of signals: whilst a widely shared, understood, and re-usable
collection is critical for comparative evaluation, tuning an algorithm to such
a collection during development (knowing it will be the benchmark) is likely
to detrimentally a�ect performance against more randomly selected input
(i.e. real-world tests). It is therefore useful to create and modify large col-
lections of audio data quickly and �exibly which can be shared between
researchers for comparative evaluation. Restrictions on the distribution of
actual audio �les can be accommodated through the separate description of
collections and correctly modelling the relationship between artefacts (e.g.
distinguishing between a work, a performances of the work, recordings of the
performance, and published media of the recording); metadata exchange can
then occur independently and be cross-referenced against any institutional
or other private archive of audio. Linking existing metadata for audio �les
and basing collection generation on this information is desirable for quickly
trialling an algorithm against particular musical facets (e.g. a particular pe-
riod and style derived from the composers).

2. Apply the algorithm to the audio input. There are many MIR systems
which enable an algorithm to be applied to signal. More recently some sys-
tems have begun to adopt practices and tools from the scienti�c work�ow
community, for example the Meandre work�ow enactment system [1]. Any
such system must be able to recognise an input collection and apply the al-
gorithm across it. Where institutionally restricted collections of signal are in
use a system must match local audio �les to any abstract, metadata based,
collection descriptions.

3. Publish and evaluate algorithm output. The MIR community has a 7
year history of comparative evaluation in the MIREX competition; the most
recent (2010) MIREX adopted a Meandre derived framework for executing
the algorithms under test [2]. More generally, evaluation of results requires
a common structure into which analytic output can be published for com-
parison, rather than data structures inherited from the development tool
or environment a researcher was using. As faster computational resources
become more readily available and can be applied to MIR tasks, the op-
portunity to undertake analysis on an ever greater scale brings with it the
associated problems of managing ever greater quantities of result data. Links
from results back to recorded signal (and audio �le artefacts) and captur-
ing provenance are equally important: an single algorithm is not normally
su�cient to make a de�nitive assertion, e.g. to classify a recording as jazz.
For this reason it is important that the representation of results can be used
as input for creating derivative collections of input for further MIR analysis
such that information extracted from multiple algorithms can be combined
and re�ned.

118

2 System overview and �Country/country� example

Employing new RDF encodings for collections and results that utilise existing
ontologies (including the Music Ontology, GeoNames, Provenance Vocabulary,
and OAI-ORE), and by deploying a linked data audio �le repository and services
for publishing collections and results, we present a proof-of-concept system that
addresses the problems outlined in the previous section. While the principles
and design described here can be applied to all MIR systems, for demonstration
purposes we have developed a speci�c use case known as �Country/country�. In
this section we outline the components of the system, which approximately align
to the steps in the previous section (with the addition of a pre-step), detailing
the generic purpose of each service, followed by the speci�c implementation in
Country/country (in italics).

0. An Audio File Repository which serves audio �les and linked data about
the audio �les using HTTP. For our public demonstrator a subset copy
of the free-licensed Jamendo collection1 has been used. Using the Music
Ontology[3], the relationship to the track it is a recording of, and the �de�ni-
tive� URI for that track (as minted by the Jamendo linked data service at
dbtune2) is asserted in the linked data.

1. A Collection Builder web application that enables a user to publish sets
of tracks described using RDF. The backend uses SPARQL to build collec-
tions and takes advantage of links between datasets: e.g. the Jamendo service
incorporates links to geographic locations as de�ned by GeoNames3, so the
Collection Builder can identify all the tracks o�ered by Jamendo recorded
by artists from a speci�c country. An optional second stage of collection
builder takes a collection and �grounds� the constituent tracks against avail-
able recordings of those tracks by posing SPARQL queries to Audio File
Repositories. In the case of Country/country we �ground� a country derived
collection against our Audio File Repository of locally available signal.

2. The Analysis is performed by a NEMA[2] genre classi�cation work�ow:

� We have extended the myExperiment[4] scienti�c collaborative environ-
ment to support the Meandre[1] work�ows used by NEMA.

� myExperiment has also been modi�ed to accept the collections RDF
published in step 1) and marshal the target tracks contained within to
the analysis work�ow.

� Within the (Meandre-based) genre classi�cation work�ow a head-end
component has been written to dereference each track URI passed to the
work�ow and, using the linked data published by the signal repository,
retrieve both the local copy of the audio �le and the reference to the
original Jamendo identi�er. This URI persists through the genre analysis
work�ow until it reaches a new tail-end component where the analysis is
published using RDF � including links back to the Jamendo URI.

1 http://www.jamendo.com/
2 http://dbtune.org/jamendo/
3 http://www.geonames.org/ontology/

119

3. A Results Viewer web application retrieves the collections RDF from 1)
and results RDF from 2), cross-referencing them via the URIs used through-
out the system. The user can identify trends in genre classi�cation within
and between collections. Results can be pooled and compared using existing
and new collections and inform the creation of new sets. To demonstrate
how further links can easily be made to existing datasets and inform deriva-
tive collection generation, relevant associations from other linked data sets
are shown (e.g. artists of the same genre and country from DBpedia and the
BBC for a particular analysed track).

3 Online demonstrator

The Country/country demonstrator system is available at:
http://www.nema.ecs.soton.ac.uk/countrycountry/

Acknowledgements

Many thanks to Stephen Downie and his team at IMIRSEL University of Illinois
for access and source code to their �Son of Blinkie� genre classi�cation work-
�ow and the myExperiment team at the University of Southampton for help
and guidance while developing the Meandre extension. This work was carried
out through the Networked Environment for Musical Analysis (NEMA) project
funded by the Andrew W. Mellon Foundation, and the Structural Analysis of
Large Amounts of Musical Information (SALAMI) project funded by the JISC
Digitisation and e-Content programme as a part of the Digging into Data chal-
lenge.

References

1. X. Llorà, B. Ács, L. Auvil, B. Capitanu, M. Welge, and D. Goldberg, �Meandre:
Semantic-Driven Data-Intensive Flows in the Clouds,� in 4th IEEE International
Conference on eScience, pp. 238�245, Dec. 2008.

2. K. West, A. Kumar, A. Shirk, G. Zhu, J. Downie, A. Ehmann, and M. Bay, �The
Networked Environment for Music Analysis (NEMA),� in 6th IEEE World Congress
on Services, pp. 314�317, July 2010.

3. Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson, �The music ontology,� in Pro-
ceedings of the International Conference on Music Information Retrieval, pp. 417�
422, 2007.

4. C. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman,
M. Borkum, S. Bechhofer, M. Roos, P. Li, et al., �myExperiment: a repository and
social network for the sharing of bioinformatics work�ows,� Nucleic Acids Research,
2010.

120

RDOTE - Transforming Relational Databases
into Semantic Web Data

Konstantinos N. Vavliakis1,2, Theofanis K. Grollios1, and
Pericles A. Mitkas1,2

1Electrical and Computer Engineering Department, Aristotle University of
Thessaloniki, GR541 24, Thessaloniki, Greece

2Informatics and Telematics Institute, CERTH, GR570 01, Thessaloniki, Greece
kvavliak@issel.ee.auth.gr,fgroll@auth.gr,mitkas@eng.auth.gr

Abstract. During the last decade, there has been intense research and
development in creating methodologies and tools able to map Relational
Databases with the Resource Description Framework. Although some
systems have gained wider acceptance in the Semantic Web community,
they either require users to learn a declarative language for encoding
mappings, or have limited expressivity.
Thereupon we present RDOTE, a framework for easily transporting data
residing in Relational Databases into the Semantic Web. RDOTE is
available under GNU/GPL license and provides friendly graphical in-
terfaces, as well as enough expressivity for creating custom RDF dumps.

Keywords: Relational Databases to Ontology Transformation, RDB2RDF,
RDF Dump

1 Introduction

The large volume of data residing in relational databases led to the creation of
systems for instantiating ontology schemata using relational information, with
some, like D2RQ, gaining wider acceptance in the Semantic Web community.
Unfortunately, all these tools require advanced user skills as they are either
built upon complex declarative languages and lack friendly user interfaces or
they provide GUIs with limited expressivity.

We present RDOTE, a system able to map multiple Relational Databases
(RDB) into different ontology schemata and integrate them into a single ontology
file. RDOTE is online1,2 available under the GNU/GPL license and provides
drag ’n drop operations, drop down lists and recommendation mechanisms, that
allow users to define all the necessary mappings between tables/columns and
classes/properties, in order to create domain-specific mappings according to a
selected ontology schema.

The main contribution of RDOTE towards Semantic Web researchers is two-
fold: a) it can transform datasets currently residing in (one or many) Relational

1 http://sourceforge.net/projects/rdote/
2 http://www.youtube.com/watch?v=pk7izhFeuf0

0000000000000000000000000000000000000

0000000000000000000000000000000000000121

2 RDOTE - Transforming Relational Databases into Semantic Web Data

Databases into Semantic Web data through a friendly interface and b) it can
quickly instantiate an ontology schema with real data, allowing easy experimen-
tation with large ontology datasets.

2 Background Information - Relevant Work

Throughout related bibliography, one may find numerous methodologies and sys-
tems for publishing data residing in Relational Databases into the Semantic Web.
D2RQ [1] is the mostly embraced by the Semantic Web Community. D2RQ offers
a powerful declarative language for mapping Relational Databases to ontologies,
nevertheless, no graphical user interfaces are provided. Less prevalent systems,
like RDB2Onto [4] are highly configurable too but they also lack friendly user
interfaces. On the other hand, systems like SquirrelRDF [6] offer a simplistic
approach to publish RDF data from Relational Databases (still absent GUI),
which may not be expressive enough in case of complex databases/mappings.
Dartgrid [2] and ODEMapster plugin for the NeOn Toolkit [5] currently offer a
graphical user interface, but they have limited scope and applicability, as well
as limited expressivity compared to RDOTE. Finally Virtuoso RDF View [3]
comes with a graphical user interface, which is available only for the Virtuoso
database, rather than other popular relational DBMS.

3 RDOTE Functionality

An overview of RDOTE ’s functionality is depicted in Figure 1. RDOTE lies in
the category of Domain Semantics-driven Mapping Generation tools, all map-
pings are formulated via graphical user interfaces and stored in text files. RDOTE
has a generalized application domain and is currently applied on two test cases:
one in the bibliographic domain and one in the art object documentation domain,
available online.

Fig. 1. RDOTE Architecture

0000000000000000000000000000000000000

0000000000000000000000000000000000000122

RDOTE - Relational Databases into the Semantic Web 3

For the complete transformation of a RDB to an ontology, one has to take
the following steps:

1. Connect to the desired RDBMS and load the respective ontology schema:
Users first have to connect to the desired RDBs (MySQL and Oracle sup-
ported) and load an ontology schema containing the TBox of the desired do-
main. RDOTE can load ontology files in various formats (RDF/XML, N3,
N-triples), and/or persistent ontologies. RDOTE ’s GUI depicts the TBox
in a tree representation form, as well as the ABox of the loaded ontology.
RDOTE also presents the tables contained in each connected RDB and the
respective columns.

2. Write SQL queries that select the desired tuples to be processed as an RDF
graph: Each query represents a result set that is used to populate an Ontol-
ogy Class or acts as a dataset of literals for linking instances of a class with a
datatype property. For unambiguous creation of instances, the primary key is
required in the URI, whereas the user selected columns are required for pop-
ulating datatype properties. Thus, along with the user defined SQL query,
RDOTE automatically selects the primary keys that have been defined for
the tables participating in the SQL query.

3. Define renaming options and merging strings in case there are queries con-
taining multiple selected columns: This optional step is responsible for re-
naming result sets, based on regular expression pattern matching. Each tu-
ple matching the defined regular expression will be renamed when used as
a literal. Moreover, this step allows users to define merging strings for SQL
queries that select data from multiple columns.

4. Connect queries defined in Step 2 with ontology classes (Class Mappings):
Next the Class Mappings that are responsible for the creation of all the
ontology instances have to be defined. SQL queries are connected to ontology
classes and in this way for each tuple of a SQL query, an instance of the
respective class is created. In case one wishes to use the actual data instead
of just creating URIs, RDOTE provides the possibility of copying the actual
tuple information into any datatype property of the ontology schema.

5. Define conditional links of Class Mappings with other Class Mappings via
object properties or, in case of datatype properties, with SQL queries: For
each Property Mapping, users can select a Class Mapping, drag ’n drop a
property from the ontology tree and in case of an object property, select
a second Class Mapping, whereas in the case of datatype property, select
a SQL query. Next a join condition between the first Class Mapping and
the second Class Mapping/SQL Query has to be defined, either by the user
or RDOTE, which can propose possible join conditions as calculated by a
greedy graph algorithm traversing the SQL schema. Users can then insert
any other conditional restriction SQL92 supports.

6. Instantiate the ontology schema and store it either in text file format or
in a persistent repository: Finally users can launch RDOTE ’s engine, which
instantiates the loaded ontology schema and creates an RDF dump of the se-
lected relational data which are stored either in text file format (RDF/XML,

0000000000000000000000000000000000000

0000000000000000000000000000000000000123

4 RDOTE - Transforming Relational Databases into Semantic Web Data

N3, N-triples) or in a persistent storage format (MySQL and Oracle). RDOTE
first creates all the instances and then it links them with object properties
or adds literals using datatype properties.

All steps previously described are realized through RDOTE ’s friendly inter-
faces (screenshots are available in RDOTE ’s homepage), while at any step in
the mapping definition process, users can save their project, that is all their
mappings and database/ontology connections, and resume later.

The maximum supported RDF dump size RDOTE can create depends on
the output format and naturally on the numbers of triples. In the case of text
format, this size is also significantly dependent on Java maximum heap size. In
our case, for maximum Java heap size of 1024MB, RDOTE successfully created 2
million triples in RDF/XML-ABBREV format in less than five minutes. Memory
limitations do not exist in the case of persistent storage, but time limitations
begin to emerge. In this case, RDOTE managed to create 10 million triples in
less than five hours.

4 Conclusions - Future Work

RDOTE provides the Semantic Web research community and domain experts
with the necessary means for easily enriching Ontology schemata with the vast
amount of data currently residing in relational databases. It also enables quick
instantiations of new ontology schemata for testing and experimentation. By
allowing easy transportation of legacy data into semantically aware data struc-
tures, RDOTE aspires to bring the Semantic Web vision one step closer.

RDOTE is constantly updated. In the near future we expect to incorporate
an export/import mechanism for D2RQ compliant mapping files, as well as a
query builder graphical user interface together with complementary interfaces
and mechanisms that will facilitate and hasten the mapping creation process
even further. Finally, further evaluation and testing on large datasets is pending.

References

1. Bizer, C., Seaborne, A.: D2rq - treating non-rdf databases as virtual rdf graphs. In:
Poster presented in Internatiotal Semantic Web Conference 2004 (November 2004)

2. Chen, H., Wu, Z.: Dartgrid iii: A semantic grid toolkit for data integration. In: First
International Conference on Semantics, Knowledge and Grid. p. 12. IEEE Computer
Society (2005)

3. Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In: Conference on Social
Semantic Web. LNI, vol. 113, pp. 59–68. GI (2007)

4. Laclavk, M.: Rdb2onto: Relational database data to ontology individual mapping
in: Tools for acquisition, organisation and presenting of information and knowledge.
Tech. rep. (2008)

5. Rodriguez, J.B., Gómez-Pérez, A.: Upgrading relational legacy data to the semantic
web. In: WWW ’06: Proceedings of the 15th international conference on World Wide
Web. pp. 1069–1070. ACM, New York, NY, USA (2006)

6. Steer, D.: Squirrelrdf. Tech. rep., HP (2006)

0000000000000000000000000000000000000

0000000000000000000000000000000000000124

WSML2Reasoner - A Comprehensive Reasoning
Framework for the Semantic Web

Reto Krummenacher, Daniel Winkler, and Adrian Marte

Semantic Technology Institute (STI), University of Innsbruck, Austria
firstname.lastname@sti2.at

1 Introduction

The amount of data on the Internet is rapidly growing. Formal languages are used
to annotate such data in order to make it machine-understandable; i.e., allow
machines to reason about it, to check consistency, to answer queries, or to infer
new facts. Essential for this are formalisms that allow for tractable and efficient
reasoning algorithms. Particular care is demanded in efficiently responding to
the trade-off between expressivity and usefulness.

The updated Web Ontology Language (OWL 2) provides dialects that are
restricted in their semantic expressivity for optimizing the reasoning behavior;
e.g., the OWL 2 EL or OWL 2 RL profiles. Such dialects are very important to
respond to the aforementioned trade-off. Profiles reflect particular requirements
and yield purposeful balance between expressivity and computational complex-
ity. The support for dialects is not only given in OWL 2, but also in the Rule
Interchange Format (RIF) standards. RIF specifies formalisms for the knowl-
edge exchange between different rule systems. The same applies for the WSML
language that provides variants for Description Logics and rule-based reasoning.
The goal remains the same, formalisms that are expressive enough to be useful,
while exhibiting reasoning characteristics that can scale to the size of the Web.
Leveraging this is exactly the objective of the WSML2Reasoner framework.

In Section 2 we present WSML2Reasoner and our reasoners IRIS and Elly.
We show how the Datalog engine IRIS is used as reasoner for RIF-BLD, and
how the ELP reasoner Elly supports the OWL 2 EL and RL profiles. In Section
3 we provide a short example of what shall be shown, amongst other things,
during the demo session, and we conclude with Section 4.1

2 Reasoners for the Semantic Web

The WSML2Reasoner framework serves as entry point for all the supported
OWL, RIF and WSML reasoning.2 It is based on a highly modular architecture
and combines validation, normalization and transformation algorithms for work-
ing with ontology descriptions in WSML. The framework includes two default
reasoning engines termed IRIS and Elly, and two libraries, namely RIF4J and

1 This work is supported by the EU FP7 IPs SOA4All and LarKC.
2 http://tools.sti2.at/wsml2reasoner/

0000000000000000000000000000000000000

0000000000000000000000000000000000000125

2

WSMO4J,3 that provide the object models for RIF-BLD and WSML, respec-
tively. The third-party OWL API yields the data model for the manipulation of
OWL ontologies.4 It adds the reasoner interface that is implemented by Elly
for supporting OWL 2 EL and RL. Figure 1 depicts the relevant software com-
ponents of the WSML2Reasoner framework.

RIF4J WSML2Reasoner OWL API

ELLYIRISWSMO4J

Object Model LP Reasoner DL Reasoner OWL Reasoner

Datalog
Reasoner

Fig. 1. Reasoner architecture and data model components

2.1 WSML2Reasoner and WSML

WSML is a formal language for the specification of ontologies and the descrip-
tion of Semantic Web services [2]. The latest version WSMLv2.0 provides an
alignment of the Logic Programming-based variants WSML-Rule/Flight with
RIF, and an updated semantics for the WSML-DL dialect.

Although WSML2Reasoner is designed to support various reasoners, the de-
fault release is shipped with IRIS (Section 2.2) and Elly (Section 2.3). These
reasoners offer the most complete support for the semantics of WSML, and in-
clude the built-ins defined by RIF-DTB. All together, WSML2Reasoner provides
a comprehensive reasoning infrastructure for the WSML language family.

2.2 IRIS and RIF Dialects

The Datalog engine IRIS provides the core for both WSML2Reasoner and Elly.5

In fact, IRIS was initially developed with the WSML stack in mind. The inte-
gration of RIF4J and WSML2Reasoner — including the translation modules
from RIF rule bases to WSML logical expressions — on top of IRIS realizes the
targeted RIF reasoner.

The RIF Datatypes and Built-Ins document specifies a list of datatypes,
built-in functions and built-in predicates that are expected to be supported by
all RIF dialects [7]. IRIS has been updated to support the full range of built-ins
with the exception of the list-related ones.

3 http://rif4j.sourceforge.net/; http://wsmo4j.sourceforge.net/
4 http://owlapi.sourceforge.net
5 http://www.iris-reasoner.org/

0000000000000000000000000000000000000

0000000000000000000000000000000000000126

3

The expressivity of RIF Core corresponds to Datalog, and due to the very
nature of IRIS, RIF Core is fully captured. The RIF-BLD profile matches, in
terms of expressivity, the language of definite Horn rules with equality and a
standard first-order semantics [1]. IRIS was extended to support the full range
of language constructs in RIF-BLD, including equality in rule conclusions. RIF
Core and RIF-BLD are at the basis of the W3C recommendation on how to
interpret combinations of RIF documents and RDF data, as well as RDFS and
OWL ontologies [3]. Consequently, IRIS fulfills the main prerequisites for serving
as fully-fledged rule-based reasoner for the (Semantic) Web.

2.3 ELLY and the OWL 2 EL and RL Profiles

ELP is a hybrid between Logic Programming and Description Logics (DL) that
combines the tractable DLs EL++ and DLP [4]. These two formalisms yield the
logical foundation for the OWL 2 profiles EL and RL, which are thus fully cap-
tured by the semantics of ELP [5]. Since ELP does not only define the semantics
of the language, but also a tractable reasoning algorithm that translates ELP rule
bases into Datalog, a corresponding extension to IRIS could be implemented.

Elly is a reasoner for entailment and satisfiability checking of ELP rule
bases.6 It includes an object model for ELP and a reasoner based on the trans-
lation to Datalog [8]; as such, Elly is implemented on top of IRIS. As ELP
subsumes the semantics of OWL 2 EL and RL, Elly, in integration with the
parsers, object models and reasoning interfaces of the OWL API, becomes a
fully-fledged OWL 2 EL and RL reasoner.7

3 RIF-BLD Application Scenario

To illustrate how the framework can be leveraged to reason with RIF-BLD rules,
we present a scenario based on one of the use cases discussed in [6]. The aim
of the chosen example “Publishing Rules for Interlinked Metadata” is to enrich
Semantic Web data by application of RIF encoded rules. Table 1 extends the
scenario, such that it uses movie metadata that is published on DBPedia8 and
combines it with RIF rules to capture implicit knowledge; e.g., categorizing black
and white (B/W) movies depending on their release date.

The RIF-BLD reasoner can then be used for entailment checking against or
querying over the specified rule base. For the purpose of this demo, there is a user
interface made public at http://iris.sti2.at/reasoners/rif-reasoner/. For
the modeled scenario, the reasoner returns a variable binding to the movies
“Primer” and “The Gold Rush” when querying for low-budget movies
(?- ?Movie#ex:LowBudgetMovie); the latter is also computed to be a B/W
movie. Note that the example uses an abridged RIF presentation syntax and
omits namespace declarations; the reasoner solely supports RIF-BLD XML Se-
rialization Syntax, a corresponding example is linked from the Web interface.

6 http://elly.sourceforge.net/
7 Elly is listed on http://www.w3.org/2007/OWL/wiki/Implementations.
8 see http://dbpedia.org

0000000000000000000000000000000000000

0000000000000000000000000000000000000127

4

Table 1. Demo Example: Rules for Interlinked Metadata

?Movie#ex:BlackWhiteMovie :-

?Movie#dbo:Film

?Movie[dbp:released -> ?Date]

External(pred:date-less-than(?Date "1930-01-01"^^xs:date))

?Movie#ex:LowBudgetMovie :-

?Movie#dbo:Film

?Movie[dbp:budget -> ?Budget]

External(pred:numeric-less-than(?Budget "5000000"^^xs:float))

ex:pr#dbo:Film ex:pr[

rdfs:label -> "Primer"^^xs:string

dbp:released -> "2004-10-08"^^xs:date

dbp:budget -> "7000.0"^^xs:float]

ex:gr#dbo:Film ex:gr[

rdfs:label -> "The Gold Rush"^^xs:string

dbp:released -> "1925-06-26"^^xs:date

dbp:budget -> "923000.0"^^xs:float]

4 Conclusions

WSML2Reasoner, together with the other presented software components, evolved
to a comprehensive reasoning framework for the (Semantic) Web. Emphasized
in this respect is a strict conformance to existing Web standards, such as RIF,
OWL and in our context WSML too.

With this demonstration, we present the current status of WSML2Reasoner,
and emphasize on the application of IRIS as RIF-BLD reasoner; not excluding
other examples and online demonstrators for Elly and WSML2Reasoner:
– WSML-DL v2.0, http://iris.sti2.at/reasoners/wsml-dl-reasoner/
– WSML-Rule v2.0, http://iris.sti2.at/reasoners/wsml-rule-reasoner/
– Datalog, http://www.iris-reasoner.org/demo

References

1. Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Recommendation (2010)
2. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling Lan-

guage WSML: An Overview. In: 3rd Eur. Semantic Web Conf. pp. 590–604 (2006)
3. de Bruijn, J.: RIF RDF and OWL Compatibility. W3C Recommendation (2010)
4. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable Rules for OWL 2. In: 7th

Int’l Semantic Web Conf. pp. 649–664 (2008)
5. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web

Ontology Language Profiles. W3C Recommendation (2009)
6. Paschke, A., Hirtle, D., Ginsberg, A., Patranjan, P.L., McCabe, F.: RIF Use Cases

and Requirements. W3C Working Draft (2008)
7. Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-Ins 1.0. W3C Recom-

mendation (2010)
8. Winkler, D.: ELLY - An ELP Reasoner. Master Thesis, Semantic Technology Insti-

tute (STI) Innsbruck, University of Innsbruck (2010)

0000000000000000000000000000000000000

0000000000000000000000000000000000000128

Linked data from your pocket:
The Android RDFContentProvider

Jérôme David, Jérôme Euzenat

INRIA & LIG
Grenoble, France

{Jerome.David,Jerome.Euzenat}@inrialpes.fr

Smartphones are becoming main personal information repositories. Unfortunately
this information is stored in independent silos managed by applications. We have seen
that already: in the Palm operating system, application “databases” were only accessible
when the application schemas were known and worked by opening other application
databases.

Our goal is to provide support for applications to deliver their data in RDF. This
would allow applications to exploit this information in a uniform way without know-
ing beforehand application schemas. This would also connect this information to the
semantic web and the web of data through reference from and to device information.
We present a way to do this in a uniform manner within the Android platform. More-
over, we propose to do it along the linked data principles (provide RDF, describe in
ontologies, use URIs, link other sources).

We first consider how the integration of RDF could be further pushed within the
context of the Android platform. We demonstrate its feasibility through a linked data
browser that allows for browsing the phone information.

1 Providing RDF support in Android

Android is built around different kinds of services, one of which being
ContentProvider which exposes some data of an application to other applications.
ContentProviders manage data structures (usually relational tables) and are able to
answer messages of type query, insert, delete and update. A query returns a cursor on a
table of tuples. So they offer a typical database interface:

Cursor query(Uri id, String[] proj, String select, String[] selectArgs, String order)
Uri insert(Uri id, ContentValues colValueList)
int update(Uri id, ContentValues colValueList, String select, String[] selectArgs)
int delete(Uri id, String select, String[] selectArgs)
String getType(Uri id)

This interface uses URIs for identifying the kind of data which is requested:
content://contacts/people/ identifies all people in the contact application and con-
tent://contacts/people/22 identifies the 22nd instance of these1.

Calling a ContentProvider is driven by the kind of content to be manipulated:
the calling application indicates the will to retrieve some content through its type, but
does not control which application will provide it. Android calls a ContentResolver
which further looks into the query (the id) to find a suitable content provider on the

1 Android URIs are not particularly portable, we leave the discussion of this out of this paper.

129

phone which is able to provide the required content. For that purpose, the resolver maps
the query URIs to the declared providers. These providers are declared in application
manifests.

In order to exchange RDF within the Android platform, we need
ContentProviders providing RDF. For that purpose we have developed a new
abstract RDFContentProvider extending ContentProvider. Answers to queries in
an RDFContentProvider could be:

– set of triples, which would correspond to the description of one object and the
attribute values, this is restricted to queries like: tell me what you know about a
particular individual;

– table of tuples, like in ContentProviders or SPARQL which would correspond
to values of variable in a SPARQL-like query

These interfaces can be unified since, the former is the answer to the SPARQL query:

SELECT ?p ?o WHERE content://contacts/people/22 ?p ?o.

The RDFContentProvider follows primarily the same kind of interface as
ContentProvider. The minimal interface for linked data applications is:

– RDFCursor getRdf(Uri id)

The Cursor iterates on a table of subject-object-predicate (or object-predicate) which
are the triples involving the object given as a URI. A more elaborate semantic web
interface could be that of a minimal SPARQL endpoint:

– Uri[] getTypes(Uri id): returns the RDF types of a local URI;
– Uri[] getOntologies(): ontologies used by the applications;
– Uri[] getQueryEntities(): classes and relation that the application can de-

liver;
– Cursor query(SparqlQuery query): returns results tuple;
– Cursor getQueries(): triple patterns that the application can answer.

So far, we have only developed this interface but the three first primitives.

2 Demonstration: linked data browser

We have implemented a prototype of this architecture described in Figure 1. Precisely,
we have implemented:

– RDFContentProvider: the provider interface;
– RDFContentResolver: which can decide to which class to redirect a query;
– Pikoid: a picture annotation application which implements
RDFContentProvider;

– AndroidRDFProvider: an application encapsulating data access to the applica-
tions of the Android platform (Calendar, Contact, Map, etc.);

– RDFBrowser: a simple client for navigating within RDF data provided by these
applications in a generic manner.

2130

RDFBrowser HTTPResolver

RDFContentResolver

Pikoid AndroidRDFProvider

Calendar Map Contact

uri rdf uri
rdf

uri rdf uri rdf

uri

rdf uri

rdf

query

tuplesquery tuplesquery

tuples

Phone
Internet

Fig. 1. The four implemented components and the communication between them. Communica-
tion with the web (dotted) is not implemented at submission time.

In this demonstration, we will show how to quickly annotate a picture with the help
of the standard Android applications (Pikoid), then we will use the RDFBrowser to
navigate through these annotations provided as interrelated RDF statements.

The beauty of linked data is that it is easy to understand how to navigate within
this data through HTTP requests: each request (a URI) returns RDF from which URIs
can be extracted for formulating further requests. The RDF browser acts as a linked
data client except that it works over the Android content provider mechanism instead of
HTTP: it asks triples about a particular URI, displays these and when clicked on, issue
the same URI query. Figure 2 shows the current interface.

3 Conclusion

What we have to demonstrate is only a proof of concept that semantic technologies
could be included uniformly in a portable platform with a minimal overhead. This
would accomplish one integration step further since the seminal work of [1].

There is room for many developments on the basis of the RDFContentProvider
interface, bringing our personal data silos closer to the semantic web. Many issues have
not been considered in this first development, most importantly the connection to the
web. From the Android device to the web, using REST over HTTP to reach (linked)
RDF data is not a real problem. From the web to Android, implementing a HTTP server
which acts as a REST proxy for Android data accessible to our RDFBrowser is not
difficult either. The main issue is the conversion of Android local URIs to HTTP URIs.

The system is available at http://swip.inrialpes.fr as several applica-
tions. It has been tested on the Android emulator and HTC Android 1.6 devices. Spe-
cific developments have been made for this version which would not be necessary in
newer versions of Android. It is currently being tested on other devices.

3131

Fig. 2. The Pikoid application annotates images with metadata stored as RDF. RDFBrowser al-
lows for querying this information to the Pikoid RDFContentProvider interface and displaying it.
The current picture metadata is shown in the second panel (pikoidRDFprovider/60). From there,
it is possible to browse the information available in the address book (people/104) and the calen-
dar (events/3) through the AndroidRDFProvider wrapper. Finally, RDFBrowser also allows for
inspecting available RDFContentProviders and the ontologies they manipulate.

References

1. Walsh, N.: Generalized metadata in your palm. In: Proc. 2nd Extreme markup languages
conference, Montréal (PQ CA) (2002), http://conferences.idealliance.org/
extreme/html/2002/Walsh01/EML2002Walsh01.html

4 Acknowledgements

We thank Yu Yang who has programmed part of this demonstration.

4132

Demo: Enriching Text with RDF/OWL Encoded Senses

Delia Rusu, Tadej Štajner, Lorand Dali, Blaž Fortuna, Dunja Mladenić,

Jožef Stefan Institute, Ljubljana, Slovenia

{delia.rusu, tadej.stajner, lorand.dali, blaz.fortuna, dunja.mladenic}@ijs.si

Abstract. This demo paper describes an extension of the Enrycher text

enhancement system, which annotates words in context, from a text fragment,

with RDF/OWL encoded senses from WordNet and OpenCyc. The extension is

based on a general purpose disambiguation algorithm which takes advantage of

the structure and/or content of knowledge resources, reaching state-of-the-art

performance when compared to other knowledge-lean word sense

disambiguation algorithms.

Keywords: RDF/OWL word sense representation.

1 Introduction

A variety of Semantic Web resources in the Linked Open Data (LOD) cloud can serve

as knowledge bases for identifying word senses; more general, like DBpedia, W3C

WordNet, OpenCyc, or more domain specific like the Gene Ontology, just to name a

few of them. Moreover, these resources complement each other, as they span across

several domains from music to chemistry and biology.

Enrycher [8] is a service-oriented natural language processing and information

extraction framework. It annotates text at various levels, listing: subject – predicate –

object triplets (interesting statements) visually interconnected in a semantic graph

representation, co-referenced named entities linked to DBpedia, Yago and OpenCyc,

keywords and DMOZ categories. In this Demo paper we present an extension of

Enrycher1, relying on a general purpose algorithm which can take advantage of

several Semantic Web resources to disambiguate text. This extension annotates words

in context with RDF/OWL encoded senses from WordNet [1] and OpenCyc2. Given

an input text fragment, every word or collocation (word sequence) will be annotated

with the appropriate sense in context, and linked to the associated RDF resources

defining the sense, in both WordNet and OpenCyc. The motivation behind adding this

extension is to provide richer disambiguated annotations of words that are not named

entities, and to improve the semantic graph quality, by merging nodes that refer to the

same disambiguated concept.

Word sense disambiguation (WSD) is defined as identifying the meaning of words

in a given context, and has become a prerequisite for several Semantic Web specific

1 Demo video: http://marquis.ijs.si/delia/
2 http://sw.opencyc.org/

133

tasks like ontology mapping and reasoning. WSD techniques have been previously

introduced to validate ontology mappings, by analyzing the semantics of the

ontological terms; they exploit ontological context, as well as information provided

by WordNet. Aside from WordNet, another knowledge resource, namely Wikipedia

has been used for building sense tagged corpora, which have further been employed

to train a classifier, obtaining promising results [4]. Wikipedia was also used to

automatically extend WordNet with semantic relations (such as synonymy, antonymy,

hyponymy, etc.) [6]. However, the existing disambiguation systems mainly retrieve

WordNet senses that are not readily usable for Semantic Web applications. Our

extension can be easily integrated in other applications that require WSD as a

preprocessing step, as word senses are labeled with the corresponding disambiguated

RDF/OWL resource. Moreover, we take advantage of ontologies to find word senses,

and in future work we plan to add some domain ontologies that can better

disambiguate domain specific terminology.

The paper is structured as follows: we start by describing the Enrycher extension

integration in Section 2, continue with presenting the disambiguation algorithm in

Section 3 and conclude with a section on future work and the demo presentation.

2 Enrycher Extension Integration

Our RDF/OWL word sense annotation extension of Enrycher relies on the Text

Preprocessing component which performs sentence splitting, tokenization, part-of-

speech tagging and keyword extraction based on a bag-of-words model (see Fig. 1).

Both WordNet 3.0 and OpenCyc are processed offline, in order to extract structure

and content information. By structure we refer to the semantic relations: synonymy,

hypernymy, etc. specific to WordNet, as well as the generalization, specialization, etc.

relations encoded in OpenCyc. The content is given by the WordNet glosses and the

OpenCyc comments, and provides descriptions of the word sense.

Fig. 1. Enrycher components and their dependencies.

Given an input text fragment, every word or collocation will be annotated with the

appropriate sense in context from the aforementioned knowledge resources. If

existent, both RDF resources corresponding to WordNet and OpenCyc will be linked.

The following section elaborates on the proposed general purpose disambiguation

algorithm.

134

3 Word/Collocation Annotation

We have implemented an unsupervised semantic knowledge based word sense

disambiguation algorithm. It relies on the Viterbi algorithm for Hidden Markov

Model (HMM) part-of-speech tagging [2], and an initial version was described in [7].

The Viterbi algorithm is a common decoding algorithm for HMM, which was first

applied to speech and language processing in the context of speech recognition. We

have adapted the algorithm in order to determine, given the senses of words in a

sentence, the best sequence of senses that disambiguates the sentence. We start by

looking for the senses of nouns, verbs, adjectives and adverbs in one of the two

aforementioned knowledge resources. The sequence of observations O = o1o2...oT

will represent the T words we disambiguate, while the set of states Q = q1q2...qN

define the N senses for a given observation. The sequence of observation likelihoods

B=bi(ot) expresses the probability of an observation ot being generated from a state i.

They are obtained by computing the cosine similarity between an ambiguous word

description, as defined by the knowledge resource, and information provided by the

context (at the level of the sentence, paragraph, etc.). The transition probability matrix

A = a11a12…an1…anm is determined by computing the semantic relatedness between

the two senses in state i and j respectively. There have been several relatedness

measures proposed in the literature, some of them relying on the knowledge resource

structure, others on its content. We have implemented four such relatedness measures,

one of which exploiting the resource structure – Lexical Chains, while the others take

the resource content into account – Adapted Lesk, Vector and Vector Pairwise [5].

Fig. 2. Disambiguating the phrase Data mining algorithms using the proposed algorithm.

We explain the algorithm with the aid of the following example in Fig. 2. To

disambiguate the phrase “Data mining algorithms” using WordNet 3.0 as a sense

repository, we consider the senses of all words (the word “mining” having the sense

of “excavating” or “minelaying”), and in addition the sense of the collocation “data

mining” (data processing). We denote the sense part of speech and number in curly

brackets. The edges are labeled by state transitions. The collocation is modeled by

copying the corresponding sense state, and setting the transition between these two

135

states to 1.0. There is equal probability to reach any of the sense states of the first

word from the start state. Once the final state is reach, we back trace to find the states

with the highest associated scores.

We compared our system with others participating in the SemEval 2007 coarse

grained all words English disambiguation task based on WordNet senses, obtaining

precision/recall/F1 measures of 77.3, lower than the most frequent sense baseline of

78.9, but higher than the best unsupervised disambiguation algorithm participating in

the task (SUSSX-FR, based on parsing text and identifying the k nearest neighbors of

each word [3]) – 77.0. We also evaluated OpenCyc using a labor-on-demand

platform, asking people to determine the correct sense for a given word in context,

from a subset of OpenCyc sense definitions, obtaining an average F1 score of 37.55.

4 The Demo and Future Work

The demo will show how the implemented system’s web interface annotates

words/collocations in a given text fragment with RDF/OWL encoded senses from

WordNet and OpenCyc. We are also going to show how to make usage of the system

output programmatically, using the LarKC (the Large Knowledge Collider) platform,

in order to build Semantic Web applications that rely on WSD.

As for the future work, we plan to integrate other Semantic Web resources from

LOD datasets, such as DBpedia, and investigate differences in disambiguation results

when using distinct resources and the potential for combining different resources in

the same task. Additionally, we aim to apply our WSD algorithm to improve the

Enrycher generated semantic graphs.

References

1. Fellbaum, Ch., WordNet: An Electronic Lexical Database. MIT Press (1998)

2. Jurafsky, D., Martin, J. H. Speech and Language Processing: An introduction to natural

language processing, computational linguistics, and speech recognition. Prentice Hall Series

in Artificial Intelligence. (2008).

3. Koeling, R. and D. McCarthy. Sussx: WSD using Automatically Acquired Predominant

Senses. In Proceedings of the 4th SemEval. pp 314--317. Prague (2007).

4. Mihalcea, R., Using Wikipedia for Automatic Word Sense Disambiguation. In Proceedings

of the North American Chapter of the ACL (NAACL), Rochester, NY (2007)

5. Pedersen, T., Patwardhan, S. and Michelizzi, J. WordNet::Similarity - Measuring the

Relatedness of Concepts. In Proceedings of NAACL, pp 38--41, Boston, MA (2004).

6. Ponzetto, S.P., Navigli, R., Knowledge-rich Word Sense Disambiguation Rivaling

Supervised Systems. In Proceedings of the 48th ACL. pp 1522--1531. Uppsala, (2010).

7. Rusu, D., Fortuna, B. Mladenic, D. Improved Semantic Graphs with Word Sense

Disambiguation. Poster. 8th ISWC. Washington, DC (2009).

8. Stajner, T., Rusu, D., Dali, L., Fortuna, B., Mladenic, D., and Grobelnik, M. Enrycher:

Service Oriented Text Enrichment. In Proceedings of the 12th Int. Multiconference

Information Society. pp. 203--206. Ljubljana, (2009).

136

4sr - Scalable Decentralized RDFS Backward
Chained Reasoning

Manuel Salvadores1, Gianluca Correndo1, Steve Harris2,
Nick Gibbins1, and Nigel Shadbolt1

1Electronics and Computer Science,
University of Southampton, Southampton, UK.

{ms8,gc3,nmg,nrs}@ecs.soton.ac.uk
2Garlik Ltd, UK. {steve.harris@garlik.com}

http://4sreasoner.ecs.soton.ac.uk/demo.html

Abstract. This poster paper presents the design and implementation
of an RDFS reasoner based on a backward chaining approach and imple-
mented on a clustered RDF triplestore. The system presented, called 4sr,
uses 4store as base infrastructure. In order to achieve a highly scalable
system we implemented the reasoning at the lowest level of the quad
store, the bind operation. The bind operation in 4sr traverses the quad
store indexes matching or expanding the query variables with awareness
of the RDFS semantics.

1 Introduction

The Semantic Web community is promoting RDF stores (or triple stores) as
the data storage technology for the Web of Data. RDF stores implement some
extra features that make them very attractive for certain type of applications.
For instance, data is not bound to a schema and it can be asserted directly
from RDF sources (e.g. RDF/XML or Turtle files) due to their native support
of Semantic Web data standards. But the most attractive characteristic is the
possibility of implementing an entailment regime. Having entailment regimes in
a triple store allows us to infer new facts, exploiting the semantics of properties
and the information asserted in the knowledge base.

Today, it is still a challenge to query datasets with a few hundred of millions
of triples following the RDFS regime for datasets subject to frequent changes. If
we want semantic databases to handle big volumes of data transactions then we
need to find backward chained approaches that do not add excessive overhead
to the query phase.

4sr1 has been implemented on the 4store [1] RDF database. 4store is an
efficient, scalable and distributed RDF database which gives us a good platform
on which to implement a backward chaining and decentralised approach.

To summarize, the main characteristics of 4sr are:

1 4sr is available from http://4sreasoner.ecs.soton.ac.uk/ under GNU GPL li-
cense

0000000000000000000000000000000000000

0000000000000000000000000000000000000137

2 Lecture Notes in Computer Science: Manuel Salvadores et al.

– Low level RDFS Backward Chained reasoning implementation.
– Duplicate entailment detection and elimination.
– Named graph management.
– Client applications can disable/enable the RDFS entailment regime via pa-

rameters in the HTTP SPARQL endpoint.
– 4sr doesn’t add overhead at the import phase keeping intact 4store’s import

throughput (100kT/s).

2 Background

In the context of distributed techniques, [7] performs Forward Chaining (FC)
parallel reasoning to expand the RDFS closure over hundreds of millions of
triples. [6] pursues a similar goal and using MapReduce computes the RDFS
closure over 865M triples in less than two hours. A continuation of this work has
been presented in [5] providing a parallel solution to compute the OWL Horst
regime.

[3] presented a novel method based on the fact that Semantic Web data
present very skewed distributions among terms. Based on this evidence, the
authors present a FC algorithm that works on top of data flows in a p2p-alike
infrastructure. This approach reported a materialization of RDFS for 200 million
triples in 7.2 minutes on a cluster of 64 nodes.

Obviously, in the last 2-3 years there has been a significant advance on ma-
terialization of closure for both RDFS and OWL languages. However very little
work has been presented on how to actually query vast amounts of data and how
to connect those solutions with SPARQL engines.

3 4sr Design and Implementation

The RDFS inferencing in 4sr is based on two new components that have been
incorporated into 4store’s architecture:

– RDFS Sync: A new processing node to replicate RDFS statements called
RDFS sync. This node gathers all RDFS statements from all the storage
nodes and keeps a synchronized copy of such information accessible to the
bind operation in all the segments. After every import, update, or delete,
this process extracts the new set of RDFS statements in the KB and sends it
to the Storage Nodes. Even for large KBs this synchronization is fast because
RDFS statements tend to be a very small proportion of the dataset. This
node is also responsible for filtering out entailed duplicates.

– bind’: The new bind function matches the quads not just taking into account
the explicit knowledge but also the extensions from the RDFS semantics.

Figure 1 shows in the architecture how bind’ and RDFS Sync interact for a
hypothetical 2 storage-node deployment.

0000000000000000000000000000000000000

0000000000000000000000000000000000000138

4sr - Decentralized RDFS Backward Chained Reasoning 3

Storage Node 0

Processing Node

QE

bind'(M,S,P,O)

RDFS sync

Storage Node 1

bind'(M,S,P,O)

RDFS
statements

RDFS
statements

SPARQLApplicationsApplicationsApplicationsApplications

Data Segment

RDFS Replicated
Segment

Fig. 1. 4s-reasoner architecture

The current version of 4sr implements the RDFS rule entailments related to
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range. These seman-
tics include the rules rdfs2, rdfs3, rdfs5, rdfs7, rdfs9, rdfs11, ext1, ext2, ext3 and
ext4 of the RDFS Rule Entailment Regime (see section 7.3 in [2]).

The bind’ takes a super set of 4 elements < M,S, P,O > to match the
segment quads. The first goal in bind’ is to expand P and O sets so as to broaden
the index coverage. After this, the algorithm iterates over the M,S, P,O patterns
applying not just an explicit match but a match where the members of the quads
are compared taking into account RDFS semantics. Every matched solution with
p or/and o unbound will be expanded according to the RDFS entailment regime.
As a final step, duplicates are detected and eliminated. This approach has been
presented in [4].

This architecture has been implemented in ANSI C 99 using a custom TCP/IP
protocol to communicate Storage Nodes and the RDFS Sync Node. Figure 2 gives
an overview of how the previous phases are implemented.

P & O
solution

expansion

P & O
closured
match

domain & range
when 'p' is rdf:type

RDFS_2&3

seg
M
S
P
O

duplicate
detection

M,S,P,O loops

segment
result

P & O
loop

modification

Fig. 2. Bind’ processing

0000000000000000000000000000000000000

0000000000000000000000000000000000000139

4 Lecture Notes in Computer Science: Manuel Salvadores et al.

4 Evaluation

Due to the lack of space, we refer the committee to [4] where we preliminary
tested 4sr using the Berlin SPARQL Benchmark.

5 Conclusions

In this poster paper we present a backward chained decentralized implemen-
tation of the RDFS entailment. The novelty of our work is to implement such
reasoning in the bind operation of an RDF decentralized database. 4sr offers a
good balance between import throughput and query performance over the RDFS
entailment regime. In that sense, 4sr will support the development of Semantic
Web applications where data can change frequently and RDFS inference is re-
quired. This poster paper will be accompanied with a demo on site similar to
the one available online at:

http://4sreasoner.ecs.soton.ac.uk/demo.html

6 Acknowledgements

This work was supported by the EnAKTing project funded by the Engineering
and Physical Sciences Research Council under contract EP/G008493/1.

References

1. Harris, S., Lamb, N., Shadbol, N.: 4store: The design and implementation of a clus-
tered rdf store. In: Scalable Semantic Web Knowledge Base Systems - SSWS2009.
pp. (p. 94–109) (2009)

2. Hayes, P., McBride, B.: Rdf semantics, w3c recommendation 10 february 2004, http:
//www.w3.org/TR/rdf-mt/

3. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: Distributed inferenc-
ing by speeddating in elastic regions. In: Proceedings of the WWW 2010, Raleigh
NC, USA (2010), http://www.few.vu.nl/~kot/papers/www2010.pdf

4. Salvadores, M., Correndo, G., Omitola, T., Gibbins, N., Harris, S., Shadbolt, N.:
4s-reasoner: Rdfs backward chained reasoning support in 4store. In: Web-scale
Knowledge Representation, Retrieval, and Reasoning (Web-KR3) (September 2010),
http://eprints.ecs.soton.ac.uk/21255/

5. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: Owl reasoning
with webpie: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou,
G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC (1). Lecture Notes in Computer Science, vol. 6088, pp. 213–227. Springer
(2010)

6. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reason-
ing using mapreduce. In: 8th International Semantic Web Conference (ISWC2009)
(October 2009), http://data.semanticweb.org/conference/iswc/2009/paper/

research/374
7. Weaver, J., Hendler, J.A.: Parallel materialization of the finite rdfs closure for hun-

dreds of millions of triples. In: International Semantic Web Conference. pp. 682–697
(2009)

0000000000000000000000000000000000000

0000000000000000000000000000000000000140

 1

RightField: Embedding Ontology Term Selection into

Spreadsheets for the Annotation of Biological Data

Katy Wolstencroft
1
, Matthew Horridge

1
, Stuart Owen

1
, Wolfgang Mueller2,

Finn Bacall1, Jacky Snoep1, Olga Krebs2, Carole Goble1

1 School of Computer Science, University of Manchester, Manchester, M13 9PL, UK

2
 HITS gGmbH, Schloss-Wolfsbrunnenweg 35, Heidelberg, Germany

<given.family@manchester.ac.uk, given.family @h-its.org>

Abstract. RightField is an open source application that provides a mechanism

for embedding ontology annotation support for Life Science data in Microsoft

Excel spreadsheets. Individual cells, columns, or rows can be restricted to

particular ranges of allowed classes or instances from chosen ontologies.

Informaticians, with experience in ontologies and data annotation prepare

RightField-enabled spreadsheets with embedded ontology term selection for use

by a wider community of laboratory scientists. The RightField-enabled

spreadsheet presents selected ontology terms to the users as a simple drop-down

list, enabling scientists to consistently annotate their data without the need to

understand the numerous metadata standards and ontologies available to them.

The spreadsheets are self-contained and remain “vanilla” Excel so that they can

be readily exchanged, processed offline and are usable by regular Excel tooling.

The result is semantic annotation by stealth, with an annotation process that is

less error-prone, more efficient, and more consistent with community standards.

RightField has been developed and deployed for a consortium of some 300

Systems Biologists. RightField is open source under a BSD license and freely

available from http://www.sysmo-db.org/RightField.

Keywords: ontology annotation, biology, metadata standards, spreadsheets

1 Introduction

In the post-genomic era, the quantity and complexity of biological data produced
during standard laboratory projects has increased. New techniques and technologies, in
areas such as transcriptomics and proteomics, enable scientists to produce high
volumes of data in single experiments. In order to compare and reuse this data,
however, rich metadata annotation is also required. The cost of this annotation is high
and it is a time-consuming and undervalued process.

In the biological sciences, guidelines and checklists describing what metadata is
required for the interpretation and reuse of data are emerging. They are often specified
as minimum information models [1] with associated controlled vocabularies or
ontologies that define the terms that should be used to describe these metadata
elements. In some cases, for example, for microarray data, publication submissions are

0000000000000000000000000000000000000

0000000000000000000000000000000000000

141

 2

not accepted unless the accompanying data is compliant with the relevant minimum
information model (for microarrays, this is MIAME, the Minimum Information about a
Microarray Experiment). However, despite this drive to standardization, there are few
tools to help scientists manage this process. RightField was created to lower the barrier
of uptake by providing a mechanism for scientists to produce ontology annotation from
within the software environments they already use.

RightField was developed as part of the SysMO-DB project, which supports a
consortium of more than 300 Systems Biologists with data management and exchange.
SysMO is a pan-European project to study the Systems Biology of Micro-Organisms,
which involves a mixture of high-throughput ‘omics experiments, such as microarray
analysis or proteomics, as well as traditional molecular biology and enzyme reaction
kinetics. In SysMO-DB, data is standardized by providing spreadsheet templates for
different types of experiment to conform to the “Just Enough Results Model” (JERM).
The JERM is the SysMO-DB internal structure that describes what type of experiment
was performed, who performed it, and what was measured. For experiment types with
an established minimum information model, the JERM also complies with this. By
combining JERM templates and embedded ontology terms with RightField we provide
an infrastructure that promotes and encourages compliance and standardization.

2 Data Generation, Annotation and Reuse

RightField was designed to support a community of laboratory scientists with little
experience of metadata management, ontologies or standardization. The primary
objective was to provide an application that would allow consistent annotation without
changing working practices. Understanding the life-cycle of data generation,
annotation and reuse is vital in this process. Capturing experimental metadata at the
time of the experiment increases accuracy and increases the likelihood that the
annotation is provided by the person performing the experiment. Using the same
versions of ontologies for a series of experiments is also vital for accurate
comparisons. RightField was designed to be a spreadsheet annotation tool because
spreadsheets, particularly MS Excel, are ubiquitous in the laboratory science
community for organizing and managing experimental data. Embedding annotation
terms in the spreadsheets ensures that term selection occurs at the time of the
experiment within the application already in use.

RightField is an open-source, cross-platform Java application which uses Apache-
POI for interacting with Microsoft documents. It does not require any special macros,
visual basic code or platform specific libraries to run it. It enables users to upload
Excel spreadsheets along with ontologies from their local file systems, or from the
BioPortal [2] (a repository of biological ontologies available at
http://bioportal.bioontology.org/). RightField supports OWL, OBO and RDFS
ontologies and RDF vocabularies. In the uploaded spreadsheet, individual cells, or
whole columns or rows can be marked with the required ranges of ontology terms. For
example, they could include all subclasses from a chosen class, direct subclasses only,
all individuals, or only direct individuals. Each spreadsheet can be annotated with
terms from multiple ontologies.

0000000000000000000000000000000000000

0000000000000000000000000000000000000

142

 3

Once marked-up and saved, the RightField-enabled spreadsheet contains embedded
worksheets with information concerning the origins and versions of ontologies used in
the annotation. This encapsulation stage is crucial. With everything embedded in the
spreadsheet, scientists do not require any new applications to use it and they can
complete annotation offline should they wish. This also makes the spreadsheets readily
exchangeable and enables a series of experiments to be annotated with the same
versions of the same ontologies even if the live ontologies change during this time.

3 RightField Annotation – A Case Study

A research group is studying the impact of changes in flux for different nutrient
limitation conditions in Saccharomyces cerevisiae. They perform transcriptomics,
metabolomics and proteomics experiments and integrate the results. Each experiment
is high-throughput; generating complex data which needs to be annotated with rich
metadata concerning the experimental conditions, the methods and equipment.

The transcriptomics experiments represent a series which will be compared and
analysed together. For publication, this data must conform to the MIAME standard and
be deposited in a public microarray repository, such as ArrayExpress
(http://www.ebi.ac.uk/microarray-as/ae/) or GEO (http://www.ncbi.nlm.nih.gov/geo/).
ArrayExpress provides a service to auto-generate a MIAME compliant template
suitable for a particular experiment, but this does not include annotation terms for use
in the template. Uploading this auto-generated template into RightField enables an
informatics expert to preset ranges of values for annotation.

Figure 1A shows the RightField annotation tool being used to preset annotation

values from the MGED ontology (http://www.mged.org/) into the auto-generated

MIAME-compliant template, and 1B shows the resulting template with drop-down

lists of ontology annotation terms. The marked-up spreadsheet is distributed to the

experimentalists to standardize the information that can be recorded and the terms that

can be used for annotation. The result is ontology annotation by stealth. The

experimentalists do not require specialist knowledge of the ontology resources used.

4 Discussion

RightField is a tool with light-touch use of semantic web technologies. The novel part

of this work lies in disguising the use of semantics from the end users. Simplicity and

unobtrusive embedding with a widely used application is its strength. To compare

with similar efforts: ISA Creator (http://isatab.sourceforge.net/isacreator.html) is a

bespoke spreadsheet tool designed for experts not end users; the Anzo platform is a

commercial product with similar goals (http://www.cambridgesemantics.com/).

0000000000000000000000000000000000000

0000000000000000000000000000000000000

143

 4

Figure 1 A&B: RightField and a resulting ontology term-embedded spreadsheet

Many experimental biologists have no interest or experience in the use of

ontologies and terminologies, but the data they produce is difficult to interpret or

reuse without a shared understanding that can be gained from the use of common

vocabularies. RightField is the application that bridges this gap. Data can be

annotated accurately and at source by the laboratory scientists. This reduces errors

and it reduces the time it takes to annotate the data to comply with community

standards. Crucially, RightField restricts the choices of annotation terms to a small

and manageable set and to make that set accessible and understandable to the

scientists.

The next steps for SysMO-DB are to develop methods to fully exploit the corpus of

semantically annotated data from RightField Spreadsheets. Compliance with

community ontologies means that we can already use Web Services from the

BioPortal for term lookup and visualization. In addition, we are developing

mechanisms to extract the structured Excel data in RDF to provide further means for

searching across the content of spreadsheets and will allow SysMO data to be

provided as open linked data. Early investigations using XLWrap [3] are promising.

Acknowledgments
This work was funded by the UK’s BBSRC award BBG0102181.

References

1. Taylor, C.F., et al. (2008) Promoting coherent minimum reporting guidelines for biological

and biomedical investigations: the MIBBI project. Nature biotechnology, 26, 889-896.

2. Noy, N.F., et al. (2009) BioPortal: ontologies and integrated data resources at the click of a

mouse. Nucleic acids research, 37, W170-1733

3. Langegger A, Wöß W (2009): XLWrap – Querying and Integrating Arbitrary Spreadsheets

with SPARQL. 8th Intl Semantic Web Conf, Washington D.C. LNCS 5823, Springer, 2009.

0000000000000000000000000000000000000

0000000000000000000000000000000000000

144

A Graphical Evaluation Tool for Semantic Web
Service Matchmaking

Ulrich Lampe, Melanie Siebenhaar, Stefan Schulte, and Ralf Steinmetz

Multimedia Communications Lab (KOM),
Technische Universität Darmstadt, Germany

ulrich.lampe@kom.tu-darmstadt.de

Abstract. Semantic matchmaking – i.e., the task of finding matching
(Web) services based on semantic information – has been a prominent
field of research lately, and a wide range of supporting tools both for
research and practice have been published. However, no suitable solution
for the visualization of matchmaking results exists so far. In this paper,
we present the Matchmaking Visualizer, an application for the visual
representation and analysis of semantic matchmaking results. It allows
for the comparing of matchmaking approaches for semantic Web services
in a fine-grained manner and thus complements existing evaluation suites
that are based on rather coarse-grained information retrieval metrics.

1 Introduction

In the envisioned Internet of Services (IoS), organizations will be able to real-
ize business processes using not only internal (Web) services, but also external
(Web) services from public marketplaces. One prerequisite to this vision is that
functionally equivalent services can be effectively and efficiently identified in
the potentially huge collection of available service offers. This service discovery
process based on functional requirements is referred to as matchmaking. Recent
approaches to matchmaking frequently utilize semantic information in addition
to the purely syntactical service descriptions [1–3], based on the notion of Se-
mantic Web services (SWS) [4].

In current research, the evaluation of matchmaking approaches is mostly
based on standard Information Retrieval (IR) metrics such as precision and re-
call. These metrics are, for instance, employed in the popular Semantic Match-
making Evaluation Environment (SME2) tool1. IR metrics, however, exhibit a
rather coarse-grained representation of matchmaking performance, because the
service rankings are merged into a selected number of (more or less representa-
tive) figures. This type of evaluation provides little insight into the actual match-
ing process. For instance, the similarities that have been assigned to certain pairs
of components in a service, such as operations, and the resulting assignments
can not be assessed in detail. However, this type of information can be beneficial

1 http://projects.semwebcentral.org/projects/sme2/

145

in order to comprehend a matchmaking process in detail. It can also help to an-
alyze required modifications to a (Web) service for actual consumption within,
e.g., a complex business workflow.

In this paper, we present the Matchmaking Visualizer (MV) as a complement
to existing matchmaking evaluation tools. It facilitates the visual representation
and analysis of individual service offers and requests and the respective matching
results. This permits a much more fine-grained evaluation and assessment of
matchmaking engines.

2 Prototype Description

2.1 Representation of Matchmaking Results

A matchmaking result consists of three parts in principle: The description of the
initial (1) service request and (2) service offer, and (3) the collection of matching
results between pairs of components in both services. The latter express the
similarity between individual components in service request and offer, based on
their functional and/or semantic description.

We assume that both service request and offer are represented in the identi-
cal form, namely as a complete service description file. Reflecting the variety of
available service description formats for both WS-* and RESTful services, MV
handles the Web Service Description Language (WSDL)2 in conjunction with
Semantic Annotations for WSDL and XML Schema (SAWSDL)3, Web Ontol-
ogy Language for Services (OWL-S)4, Web Application Description Language
(WADL) [5], and HTML for RESTful Services (hRESTS) [6].

Each individual matching result consists of the qualified names (QNames) of
the two regarded components and a flag that indicates if the two components
have been assigned to each other. The matching result further links to at least one
similarity assessment, which consists of a numerical and textual similarity and a
free-text comment. QNames comprise the namespace of a component as well as
its local name and are unique to each component in a service description. Because
some components, such as individual parameters, may be referenced multiple
times, the QName of any parent of a component may optionally be provided
as well. Both numerical and textual similarity have been included because they
also appear in existing matchmaking approaches. For example, discrete Degrees
of Match are used in [2], whereas [1, 3] apply continuous numerical measures.
The data structure for the representation of matching results is made available
as Java classes. This facilitates compatible external matchmakers generating the
appropriate data at runtime.

2 http://www.w3.org/TR/wsdl, http://www.w3.org/TR/wsdl20/
3 http://www.w3.org/TR/sawsdl/
4 http://www.w3.org/Submission/OWL-S/

146

2.2 Integration of External Matchmakers

Because MV constitutes an (unofficial) complement to SME2, we have decided
to facilitate SME2’s plug-in architecture for the integration of external match-
makers. It requires matchmakers to be provided as a JAR file (optionally with
additional libraries) along with an XML-based description. As does SME2, MV
requires each compatible matchmaker to implement a Java interface class. This
interface, IMatchmaker, specifies one method, matchServices, which conducts
the matchmaking process for a service request and offer file. The locations of
the respective description files are provided as URLs. The matching result is
returned using the Java data structure outlined in the previous section. Alter-
natively, complete matchmaking results may be provided to MV in the form of
XML-based files. This can be useful to matchmakers that do not facilitate MV’s
plug-in architecture, e.g., if they are not implemented in Java.

2.3 Implementation

MV has been implemented in Java using different existing frameworks. For the
visualization of graphs, the Java Universal Network/Graph Framework (JUNG)5

is used. To read semantic service descriptions, we employ Woden4SAWSDL6

and OWL-S API7 to read (SA)WSDL and OWL-S documents respectively. For
the processing of WADL documents, the generic JDOM8 framework is utilized.
hRESTS documents are first converted into an RDF model, using a XSLT
stylesheet by Kopeckỳ9, and subsequently processed using the JENA frame-
work10.

2.4 User Interface

MV provides a platform-independent Graphical User Interface (GUI) based on
the Java Swing framework. A portal site, including a demo video, screenshots,
and additional example resources, is available at:

http://www.kom.tu-darmstadt.de/~lampeu/iswc-2010/

The GUI depicts a service request and service offer in the form of a tree
structure, representing the increasing level of abstraction. The root, i.e., the
whole service, branches into individual leaves, i.e., components, with parameters
constituting the most fine-grained level of abstraction. The level of expansion
for the tree may be globally selected, thus allowing to focus on the level of
abstraction of highest interest. Between all components on the currently selected

5 http://jung.sourceforge.net/
6 http://lsdis.cs.uga.edu/projects/meteor-s/opensource/woden4sawsdl/
7 http://on.cs.unibas.ch/owls-api/index.html
8 http://www.jdom.org/
9 http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt

10 http://jena.sourceforge.net/

147

level, the matching results are visualized in the form of edges. By selecting a
component, the associated source code from the service description file may be
displayed in the GUI. Further, by selecting a connecting edge, details about the
respective matching result can be displayed.

MV allows conducting matchmaking on a selected service request and offer
using any of the plug-in matchmaking engines. Results may also be combined
for direct comparison. That way, users may assess in detail which similarities
have been given to pairs of components and why certain components have been
assigned to each other. Further, an existing XML result file may be loaded or
an individual service may simply be displayed for analysis.

3 Summary

In the work at hand, we presented the Matchmaking Visualizer, a tool for the
visualization of semantic Web service matchmaking results. It complements ex-
isting evaluation tools for semantic matchmakers that rely on rather coarse-
grained information retrieval metrics. Matchmaking Visualizer permits a much
more fine-grained, in-detail analysis of matchmaking results, down to the level of
individual components and offers support for the direct comparison of different
matchmaking approaches. For that matter, the tool is compatible with the plug-
in architecture of the popular SME2 evaluation suite, offering the convenient
integration of external matchmakers.

Acknowledgements. This work is supported in part by E-Finance Lab e. V.,
Frankfurt am Main, Germany (www.efinancelab.de).

References

1. Schulte, S., Lampe, U., Eckert, J., Steinmetz, R.: LOG4SWS.KOM: Self-Adapting
Semantic Web Service Discovery for SAWSDL. In: IEEE 2010 Fourth International
Workshop of Software Engineering for Adaptive Service-Oriented Systems (SEASS
’10), Los Alamitos, CA, USA, IEEE, IEEE Computer Society (Jul 2010)

2. Klusch, M., Kapahnke, P., Zinnikus, I.: Hybrid Adaptive Web Service Selection
with SAWSDL-MX and WSDL-Analyzer. In: The Semantic Web: Research and
Applications, Proceedings of the 6th European Semantic Web Conference (ESWC
2009). Volume 5554 of Lecture Notes in Computer Science., Springer (2009) 550–564

3. Plebani, P., Pernici, B.: URBE: Web Service Retrieval Based on Similarity Eval-
uation. IEEE Transactions on Knowledge and Data Engineering 21(11) (2009)
1629–1642

4. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent
Systems 16(2) (2001) 46–53

5. Hadley, M.: Web Application Description Language (WADL). Sun Microsystems,
Inc. Technical Reports; Vol. SERIES13103; SMLI TR-2006-153 (2006)

6. Kopeckỳ, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for De-
scribing RESTful Web Services. In: 2008 IEEE/WIC/ACM International Confer-
ence on Web Intelligence and Intelligent Agent Technology, IEEE (2008) 619–625

148

RDF On the Go: An RDF Storage and Query
Processor for Mobile Devices

Danh Le-Phuoc, Josiane Xavier Parreira, Vinny Reynolds, and Manfred
Hauswirth

Digital Enterprise Research Institute,
National University of Ireland, Galway

Galway, Ireland
{danh.lephuoc,josiane.parreira,vinny.reynolds,manfred.hauswirth}@deri.org

Abstract. We present RDF On the Go, a full-fledged RDF storage and
SPARQL query processor for mobile devices. Implemented by adapting
the widely used Jena and ARQ Semantic Web Toolkit and query engine,
it uses Berkeley DB for storing the RDF data, R-Trees for indexing
spatial data indexing and a query processor that supports both standard
and spatial queries.
By storing and querying RDF data locally at the user’s mobile device,
RDF On the Go contributes to improving scalability, decreasing trans-
mission costs, and controlling access to user’s personal information. It
also enables the development of a next generation of mobile applications.
RDF On the Go is available for the Android platform and can be down-
loaded at http://rdfonthego.googlecode.com/.

Keywords: RDF storage, SPARQL query processor, mobile devices

1 Introduction

Mobile devices nowadays are equipped with powerful hardware and software,
as well as data connectivity and sensing functionalities such as location and
orientation. At the same time, the Semantic Web has been evolving and becoming
the preferable choice for representing information, with its Resource Description
Framework (RDF) for representing semantic data, and query languages such as
SPARQL.

While currently most of the processing of semantic data is done in central-
ized workstations, there are many advantages in executing this processing on
mobile devices: i) by distributing the computation among the large number of
existing mobile devices, a great level of scalability can be achieved; ii) if the
data generated locally on the mobile device such as the sensors, e-mails, cal-
endar appointments can be queried remotely and only the final results need to
be sent to another machine for further processing, the data transmission costs
can be dramatically reduced; iii) the local processing of user generated data also
contributes to the privacy matter, since raw data no longer need to be shared in
order to be analysed.

Having such RDF processing capability on the mobile device also enables
a new range of applications such as integrating personal information with the

0000000000000000000000000000000000000

0000000000000000000000000000000000000149

2 D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth

Linked data cloud, Semantic Mobile Augmented Reality 1 and Mobile Semantic
Context-based applications.

Although the processing power is on the rise in mobile devices, it is still far
behind workstations, and current implementations of RDF storage and query
processors for standard computers can not be directly ported to mobile devices,
where these resources are still constrained.

While most of the available semantic based mobile applications have to ship
their queries to a remote SPARQL Endpoint, some applications, such as micro-
Jena2, Androjena3 and i-MoCo4, do store and query RDF data locally. However,
they are tailored to specific application scenarios and offer only limited features.

RDF On the Go is the first application to offer a full-fledged RDF stor-
age and SPARQL query processor. It adapts the widely used Jena and ARQ
Semantic Web Toolkit and query engine to the constrained mobile device’s en-
vironment. The RDF data is stored in the B-Trees provided by the lightweight
version of the Berkeley DB for mobile devices5. Indexes are created for faster
data access, where R-trees are used for spatial data indexing, and our lightweight
query processor supports standard and spatial SPARQL queries. RDF On the
Go is available for the Android platform and can be downloaded at http:
//rdfonthego.googlecode.com/.

The paper demonstrates our RDF On the Go system. Section 2 describes the
implementation in more detail and a short demonstration of the system in action
is given in Section 3. Section 4 concludes the paper and provide some thoughts
for future work.

2 Implementation Details

For storage of the data, RDF on The Go uses a lightweight version of the Berke-
ley DB that is suitable for mobile devices, which provides a B-Tree implemen-
tation for accessing the RDF graphs. For each RDF node, the system employs
dictionary encoding [2, 3] where node values are mapped to integer identifiers.
This reduces the space required to store each RDF node, since the encoded
version of the nodes are considerably smaller than the original ones. Moreover,
dictionary encoding also allows faster processing, since integer comparisons are
cheaper. Fast lookups are achieved in a two-step approach: first, each triple node
is stored in multiple ways with different orderings of the triple elements, simi-
lar to [1, 6]. Then indexes are built for every ordering of the triple pattern, as
proposed in [4]. To support spatial data, we also use R-Trees indexes for storing
URIs that have spatial properties. These indexes will output the bindings for
spatial graph patterns which are pipelined to the query execution plan.

Currently we support all standard SPARQL operators except aggregation
and sorting operators, and the following three spatial operators: “nearby”, “within”

1 http://www.w3.org/2010/06/w3car/exploiting_lod_for_ar.pdf
2 http://poseidon.ws.dei.polimi.it/ca/?page_id=59
3 http://code.google.com/p/androjena/
4 http://www.cs.vu.nl/~pmika/swc-2008/i-MoCo-Mobile%20Conference%20Guide-weissEtAl_
challenge08.pdf

5 http://www.oracle.com/technetwork/database/berkeleydb/overview

0000000000000000000000000000000000000

0000000000000000000000000000000000000150

RDF On the Go: An RDF Storage and Query Processor for Mobile Devices 3

and “intersect”. We plan to extend our SPARQL query processor to support most
of the patterns described in [5].

To encourage developers to use RDF On the Go to build their applications,
we have adapted the core APIs of Jena 6 and ARQ7 to the Android environment.
This allows the developers to manipulate RDF graphs in the same way as they
do with the desktop versions of Jena and ARQ . We also reuse some of the Jena
and ARQ packages such as the RDF parser and the SPARQL query parser.

3 Demonstration

In this section we provide a short demonstration of our RDF On the Go system.
The current prototype loads sample RDF data set in the N3 format8 to the
RDF store on the mobile device. For demonstration purposes, the system loads
a dataset that contains all RDF triples from the LinkedGeoData collection9

that are about places in Galway, Ireland. The screenshots in figure 1 show the
prototype running on a HTC Desire mobile device10. Figure 1(a) demonstrates
the support for spatial SPARQL queries. It displays a map overlay containing all
URIs in the dataset that have geo data properties within a particular area. This
constrain is represented by the spatial graph pattern “?uri spatial:within(lat1
lon1 lat2 lon2)”, where lat1, lon1 are the latitude and longitude of the left upper
corner of the area, and lat2, lon2 are the latitude and longitude of the right lower
corner. The spatial query pattern used can also be seen this this figure. Each
URI is rendered as a marker on the map. By clicking on a marker details of the
URI are shown in figure 1(b).

Figure 1(c) shows the interface for standard SPARQL queries. Here we are
asking for the 10 nearest ‘cafes’ or ‘fast food restaurants’ to the current location.
To facilitate entering the query, some common patterns such as OPTIONAL and
UNION and the device’s current location given by the device’s GPS can be added
by selecting the corresponding options from a dropdown menu. The results of
this query are shown in figure 1(d).

RDF On the Go is available for the Android platform, version 2.1 or newer.
The prototype, a video demonstrating the prototype in use, the data collec-
tion used in the demonstration and more information are available at http:
//rdfonthego.googlecode.com/.

4 Conclusion

This paper demonstrates the RDF On the Go system, a full-fledged RDF storage
and SPARQL query processor for building semantic applications on mobile de-
vices. It not only meets the demand of emerging semantic applications on these
devices but also raises many interesting research problems in the areas of data
storage and query processing in the context of mobile environments. In the next

6 http://jena.sourceforge.net/
7 http://jena.sourceforge.net/ARQ/
8 http://www.w3.org/DesignIssues/Notation3
9 http://linkedgeodata.org

10 http://www.htc.com/www/product/desire/overview.html

0000000000000000000000000000000000000

0000000000000000000000000000000000000151

4 D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth

(a) URIs shown on a
map

(b) Details of an URI (c) Example of a
SPARQL query

(d) Query results

Fig. 1. Screenshots of the RDF On the Go prototype.

steps, we will focus on efficiency issues, by building a mobile specific query op-
timizer and more efficient data storage machanism. In context of mobile devices
for example, bandwidth and battery are a crucial elements that need to be taken
into account in future work.

5 Acknowledgements

This work has been supported by the Science Foundation Ireland under Grant
No. SFI/08/CE/I1380 (Lion-2), the European Union under Grant No. FP7-
224342-ICT-2007-2 (PECES) and the Irish Research Council for Science, Engi-
neering and Technology (IRCSET).

References

1. D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web
data management using vertical partitioning. In VLDB, pages 411–422, 2007.

2. J. B. et al. Sesame: An architecture for storing and querying rdf data and schema
information. In Spinning the Semantic Web, 2003.

3. K. W. et al. Efficient RDF storage and retrieval in Jena2. In EXPLOITING
HYPERLINKS 349, pages 35–43, 2003.

4. A. Harth and S. Decker. Optimized index structures for querying rdf from the web.
In LA-WEB, page 71, 2005.

5. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3):1–45, 2009.

6. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic
web data management. VLDB, 1(1):1008–1019, 2008.

0000000000000000000000000000000000000

0000000000000000000000000000000000000152

Using the Annotation Ontology in Semantic Digital
Libraries

L. Jael García Castro1, Olga X. Giraldo2, Alexander García Castro3

1 Universität der Bundeswehr München, Werner-Heinsenberg-Weg 39,
85779 Neubiberg, Germany

w31blega@unibw.de
2 National University of Colombia

Palmira, Valle, Colombia
oxgiraldo@unal.edu.co

3 University of Bremen, Bibliothekstrasse 1,
28359 Bremen, Germany
cagarcia@uni-bremen.de

Abstract. The Living Document Project aims to harness the collective
knowledge within communities in digital libraries, making it possible to
enhance knowledge discovery and dissemination as well as to facilitate
interdisciplinary collaborations amongst readers. Here we present a prototype
that allows users to annotate content within digital libraries; the annotation
schema is built upon the Annotation Ontology; data is available as RDF,
making it possible to publish it as linked data and use SPARQL and SWRL for
querying, reasoning, and processing. Our demo illustrates how a social tagging
system could be used within the context of digital libraries in life sciences so
that users are able to better organize, share, and discover knowledge embedded
in research articles. Availability: http://www.biotea.ws/videos/ld_ao/ld_ao.html

Keywords: Social semantic web, digital libraries, Web 3.0

1 Introduction

Semantic Digital Libraries (SDL) make extensive use of meta-data in order to
support information retrieval and classification tasks. Within the context of SDLs,
ontologies can be used to: (i) organize bibliographic descriptions, (ii) represent and
expose document contents, and (iii) share knowledge amongst users [1]. There have
been some efforts aiming to make use of ontologies and Semantic Web technology in
digital libraries; for instance, JeromeDL (http://www.jeromedl.org) allows users to
semantically annotate books, papers, and resources [2]. The Bricks project
(http://www.brickscommunity.org/) aims to integrate existing digital resources into a
shared digital memory; it relies on OWL-DL in order to support, organize and
manage meta-data [1]. Digital libraries within the biomedical domain store
information related to methods, biomaterial, research statements, hypotheses, results,

153

etc. Although the information is in the digital library, retrieving papers addressing the
same topic and for which similar biomaterial has been used is not a trivial task [3].
Ontologies have shown to be useful for supporting the semantic annotation of
scientific papers [4] –and thereby facilitating information retrieval tasks. However, as
ontologies are often incomplete users should be able to provide additional metadata
[3, 5]. Collaborative social tagging and annotation systems have recently gained
attention in the research community [6, 7]; partly because of their rapid and
spontaneous growth and partly because of the need for structuring and classifying
information. Collaborative social tagging is considered exemplary of the WEB2.0
phenomena because such sites use the Internet to “harness” the collective intelligence.
It has been observed that several users can tag a resource; tags used for individual
resources tend to stabilize overtime [8]. Our implementation uses the Annotation
Ontology (AO) [9] for supporting the automatic and manual annotation of research
articles. Annotations may be rooted in existing ontologies or provided by users; we
are supporting the tagging of atomic components within papers –e.g. words, tables,
figures. The content of the paper and the corresponding tags are being presented as
linked data, this facilitates the interoperability between the paper and external
resources –e.g. databases, repositories for experimental data, etc. Our approach aims
to facilitate sharing, linking, and integrating knowledge across digital libraries and
online resources. It also aims to support concept-based collaboration.

2 Enhancing Digital Libraries with the Annotation Ontology

The AO is built upon the Annotea Project (http://www.w3.org/2001/Annotea/); it is
also compatible with Newman’s (http://www.holygoat.co.uk/projects/tags/), MOAT
[7] , and SKOS (http://www.w3.org/2004/02/skos/) ontologies. The AO supports free
and semantic annotation over the paper; it facilitates tagging the paper as a whole as
well as portions of it, i.e. atomic annotation. It also provides facilities for curation,
provenance, authoring and versioning. Annotations are not limit to tags but also
include notes, comments, erratum, etc.

Our prototype, the LD, makes it possible for users to annotate papers as well as
specific sections of them, e.g. words, sentences, images, tables, etc. It also
interoperates with automatic annotation tools such as Whatizit (http://www.ebi.ac.uk/
webservices/whatizit). Annotations are used to improve search and retrieval of papers;
it also makes possible to find related papers and researchers. Within the LD, the AO is
used to represent the network of concepts and related resources derived from the
annotations; in this sense, the AO applied to papers plays a similar role to that played
by FOAF in human-centric social networks. The LD facilitates discovering links and
improving interaction across papers and researchers.

An atomic annotation is shown in Fig. 1. The document is internally represented by
an XML as it is the format used by the publisher; however RDF is also possible. The
annotated elements are identified by using XPointer technology (http://www.w3.org/
TR/WD-xptr). The provenance is based on FOAF ontology while tagging reuses
Newman’s and MOAT ontology. The annotation states a related meaning for the term

154

“partial sequence on psy promoter” to the GeneBank
(http://www.ncbi.nlm.nih.gov/genbank/) term AB005238, since the meaning is linked
to a well established ontology, the type of the annotation is Qualifier.

Fig. 1. LD and AO in action

The search & retrieval module is based on that one usually provided by digital
libraries; it uses clouds of annotations and annotators to facilitate navigation and
filtering. Once a paper is selected, the annotation module allows users to identify
annotations on the paper, using different colors for different types of annotations, i.e.
manual and automatic annotations, and also to distinguish amongst categories, i.e.
species, proteins, genes, etc. It also allows users to manage their annotations and to
link them to external resources. Additional information on automatic annotations is
provided: links to specialized sources such as UniProt (http://www.uniprot.org). The
contextual reading module allows easily navigating across the paper by jumping
from one annotation to other. The linked open data module allows exporting
annotations as RDF, making it possible to use query and reasoning languages such as
SPARQL and SWRL. An overview of the LD modules is showed in Fig. 2.

3 Final Remarks

“Less is more” illustrates the collaboration dynamic that embodies the Long Tail
(http://en.wikipedia.org/wiki/Long_Tail) principle within the Social Web; a huge
number of people providing relatively small contributions that collectively are
substantial and significant. Current available metadata in digital libraries is not
enough as to support quires such as “retrieve papers for which microarrays have been
used in liver mice”. By making it possible for ontologies and free-provided terms to
live together within the scaffold granted by the AO executing such complex queries is
possible. It also facilitates the enrichment of the available metadata. In addition,
presenting the paper as RDF allows going beyond the PDF without compromising the
business model most publishers have –selling access to the full content of the
document. The LD approach offers an environment in which researchers harness the

155

collective intelligence as they are building networks based on similar reading
practices. Our future work includes: i) enhancing meta-data on authors and co-
authors, ii) allowing users to organize networks, use social consensus mechanisms,
and create relationships between annotations, and iii) better orchestrating the LD with
existing biomedical ontologies, e.g. improving the user interface for large ontologies.

Fig. 2. LD: Modules and Characteristics

References

1. Kruk, S., Haslhofer, B., Piotr, P., Westerski, A., Woroniecki, T.: The Role of Ontologies in
Semantic Digital Libraries. European Networked Knowledge Organization Systems
(NKOS) Workshop, Spain (2006)

2. Kruk, S., Woroniecki, T., Gzella, A., Dabrowski, M.: JeromeDL -a Semantic Digital
Library. International Semantic Web Conference -Semantic Web Challenge, Korea (2007)

3. Garcia-Castro, A., Labarga, A., Garcia, L., Giraldo, O., Montaña, C., Bateman, J.A.:
Semantic Web and Social Web heading towards Living Documents in the Life Sciences.
Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 155-162

4. Shotton, D., Portwin, K., Klyne, G., Miles, A.: Adventures in semantic publishing: exemplar
semantic enhancement of a research article. PLoS Computational Biology 5 (2009)

5. Pafilis, E., O'Donoghue, S.I., Jensen, L.J., Horn, H., Kuhn, M., Brown, N.P., Schneider, R.:
Reflect: augmented browsing for the life scientist. Nat Biotech 27 (2009) 508-510

6. Kim, H.-L., Scerri, S., Breslin, J., Decker, S., Kim, H.-G.: The State of the Art in Tag
Ontologies: A Semantic Model for Tagging and Folksonomies. International Conference on
Dublin Core and Metadata Applications, Germany (2008)

7. Passant, A., Laublet, P.: Meaning Of A Tag: A Collaborative Approach to Bridge the Gap
Between Tagging and Linked Data. International World Wide Web Conference - Linked
Data on the Web Workshop, China (2008)

8. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of
Information Science 32 (2006) 198-208

9. Ciccarese, P., Ocaña, M., Das, S., Clark, T.P.a.B.-o.: AO: An Open Annotation Ontology for
Science on the Web. Bio-ontologies, USA (2010)

156

Towards Linked Data Services

Sebastian Speiser and Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany
lastname@kit.edu

Abstract. Large amounts of data reside in sources which are not web-
accessible. Wrappers – small software programs that provide uniform
access to data – are often used to transform legacy data sources for use on
the Semantic Web. Wrappers, as well as links between data from wrapped
sources and data that already exists on the Web, are typically created
in an ad-hoc fashion. We propose a principled approach to integrating
data-providing services with Linked Data. Linked Data Services (LIDS)
can be used in various application scenarios to provide uniform access to
legacy data and enable automatic interlinkage with existing data sets.

1 Introduction

The trend towards publishing data on the Web is gaining momentum, particu-
larly spurred by the Linking Open Data (LOD) project1 and several government
initiatives publishing public sector data. Data publishers often use Linked Data
principles2 which leverage established Web standards such as Uniform Resource
Identifiers (URIs), the Hypertext Transfer Protocol (HTTP) and the Resource
Description Framework (RDF)3.

Web services are often used to access frequently changing data sets or data
which is computed based on supplied input parameters. Wrappers that provide
uniform access to services have been created, e.g., in form of the book mashup
[1] which returns RDF about books based on Amazon’s API, or twitter2foaf4,
which provides access to the follower network of a given user based on Twitter’s
API. These are useful examples of exposing data from services in a common
protocol (HTTP) and data format (RDF).

A lot of data – even data that is already accessible via a uniform access
mechanism – still exists in form of unconnected data islands; interlinkage between
data on the current Linked Data Web is low. Using ad-hoc wrappers, interlinkage
has to be done manually or by service-specific algorithms. Users have to manually
associate existing URIs with URIs from wrappers. For example, to establish a
link between a person instance (e.g., described using the FOAF vocabulary5)
and her Twitter account, one has to hard-code the relation between an existing

1 http://linkeddata.org/
2 http://www.w3.org/DesignIssues/LinkedData
3 http://www.w3.org/TR/rdf-concepts/
4 http://twitter2foaf.appspot.com/
5 http://xmlns.com/foaf/0.1/

157

URI and the person’s Twitter wrapper URI, which is created by appending the
username to http://twitter2foaf.appspot.com/id/.

Legacy data should be published so that automated integration and processing is
possible, which requires:

– uniform interfaces to all services and data sources, so that data can be easily
accessed and integrated; and

– formal service descriptions, so that links between data from different sources can
be established automatically.

We present preliminary work on such an approach to create what we call LInked
Data Services (LIDS). Using LIDS, vast amounts of idle data can be brought to the Se-
mantic Web via a standardised method for creating Linked Data interfaces to services.
LIDS, in addition, enable (semi-)automatic service discovery and integration.

2 Scenario

Consider an investor who wants to assess the outlook of a potential investment target.
The investor could vet the company by navigating an integrated dataset containing
basic company data, key personnel, competitors, job openings, IP portfolio and previous
VC investments in the company. All required information is available on the Web, but
with three major drawbacks: i) data is accessible via several incompatible protocols ii)
data is encoded in various character encodings and syntaxes and iii) data is sparsely
interlinked.

Consider a description of a company office (e.g. #deu-karlsruhe-), which contains
latitude and longitude attributes (e.g. 48.996 and 8.463), and a GeoNames service
that finds nearby places described in Wikipedia6. Calling the service with the given
latitude/longitude returns:

<geonames> <entry>

<title>Turmbergbahn</title>

<summary>The Turmbergbahn is a funicular railway near

Karlsruhe in Germany...</summary>

<wikipediaUrl>http://en.wikipedia.org/wiki/Turmbergbahn</wikipediaUrl>

...

</entry>

<entry>

<title>Durlach</title>

<summary>Durlach is a borough of the German city of Karlsruhe..</summary>

...

</geonames>

Based on the available data one could establish a foaf:based_near connection between
#deu-karlsruhe- and http://dbpedia.org/resource/Turmbergbahn, however, that
step would require specialised code.

6 http://ws.geonames.org/findNearbyWikipedia

158

3 Linked Data Services

In the following we describe the LIDS approach using an example. We focus on data-
providing services, which return data that is related in a specific way to the given
parameters. We extend that notion for Linked Data Services as follows:

A Linked Data Service (LIDS) provides HTTP URIs for entities representing ser-
vice inputs that encode parameters as key-value pairs in the query string. Dereferencing
the URI via HTTP GET returns an RDF description of the service input entity, its
relation to the service output and the output data itself. Both input and output of a
LIDS are formally described using SPARQL.

For example, a LIDS wrapper for the exemplary GeoNames service is available
at http://geowrap.openlids.org/findNearbyWikipedia. Input parameters are en-
coded in the query string of the service URI, e.g. http://geowrap.openlids.org/

findNearbyWikipedia?lat=48.996&lng=8.463. To establish an “non-information” URI
we add a localname to derive the entity URI, e.g. http://geowrap.openlids.org/

findNearbyWikipedia?lat=48.996&lng=8.463#point. Looking up the entity returns
a “non-information” URI denoting the input point and the relation to URIs of nearby
places from Wikipedia (we substitute Wikipedia URIs with those from DBpedia7):

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dbp: <http://dbpedia.org/resource/> .

<http://geowrap...Wikipedia?lat=48.996&lng=8.643#point>

foaf:based_near dbp:Turmbergbahn ;

foaf:based_near dbp:Durlach .

A LIDS returning a URI with the input parameter allows for adding additional
descriptions to that URI; e.g., we could use the owl:sameAs property to establish
equivalence between http://geowrap.openlids.org/findNearbyWikipedia?lat=48.

996&lng=8.463#point and #deu-karlsruhe-.

We propose a simple vocabulary for LIDS8 that defines a class for LIDS and a
description property relating a LIDS to a SPARQL query describing the service. The
LIDS description of the geowrap service is as follows:

CONSTRUCT { ?point foaf:based_near ?feature . }

FROM <http://geowrap.openlids.org/findNearbyWikipedia>

WHERE {

?point geo:lat ?lat .

?point geo:long ?lng .

}

The use of unsafe variables and the meaning of the FROM clause are not completely
adhering to the SPARQL standard, but have their intuitive meaning. The FROM clause
encodes the base URI of the service. Please note the user of unsafe variables (here:
?feature), which are bound by the service during execution. The variable appearing
in both CONSTRUCT and WHERE clause (here: ?point) denotes the input entity
and is used for building entity URIs.

7 http://dbpedia.org/
8 http://openlids.org/vocab

159

4 Related Work

In contrast to our proposal, early Web service description formalisms, such as WSDL,
do not model the relation between input and output data, which leaves space for am-
biguities. General Semantic Web Services approaches include OWL-S9 and WSMO [4]
still lack practical applications, which can be partially explained by their complexity
and their use of formalisms that are not familiar to all Semantic Web users. Seman-
tic descriptions of stateless services (e.g. [3, 2, 5]) define service functionality in terms
of input and output conditions, however, employ proprietary description formalisms
and/or static definition of inputs and outputs. Our approach is more flexible and bet-
ter integrates with the Linked Data principles.

5 Conclusions and Future Work

We have presented preliminary work on an approach to integrating data services with
Linked Data. A uniform access method – compatible to Linked Data principles – in
combination with a lightweight service description, enables the creation of LInked Data
Services (LIDS). LIDS have formal, yet lightweight and flexible descriptions based on
SPARQL, a language which is familiar to many Semantic Web users and developers.

LIDS can be used in a number of scenarios. In the future, we plan to develop and
study algorithms that automatically enrich existing Linked Data with links to LIDS,
which can happen in different settings, e.g.:
– processing of static RDF data, inserting links to LIDS, and storing the result;
– dynamically adding links to LIDS to the result of a Linked Data endpoint;
– locally augmenting retrieved data with data from LIDS in a data browser;
– using data from LIDS during SPARQL query processing.

For a formal treatment of LIDS, more example services and up-to-date information
visit http://openlids.org/.

References

1. C. Bizer, R. Cyganiak, and T. Gauss. The RDF Book Mashup: From Web APIs to
a Web of Data. In Workshop on Scripting for the Semantic Web, at ESWC, 2007.

2. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding
Semantic Matching of Stateless Services. AAAI06, pages 1319–1324, 2006.

3. K. Iqbal, M. L. Sbodio, V. Peristeras, and G. Giuliani. Semantic Service Discovery
using SAWSDL and SPARQL. In International Conference on Semantics, Knowl-
edge and Grid, 2008.

4. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web service modeling ontology. Applied Ontol-
ogy, 1(1):77–106, 2005.

5. W.-f. Zhao and J.-l. Chen. Toward Automatic Discovery and Invocation of
Information-Providing Web Services. In Asian Semantic Web Conference, 2006.

9 http://www.w3.org/Submission/OWL-S/

160

SPARQL Views:
A Visual SPARQL Query Builder for Drupal

Lin Clark

Digital Enterprise Research Institute, National University of Ireland, Galway
lin.clark@deri.org

Abstract. Publishing Linked Data on the Web has become much easier
with tools such as Drupal. However, consuming that data and presenting
it in a meaningful way is still difficult for both Web developers and
for Semantic Web practitioners. We demonstrate a module for Drupal
which supports visual query building for SPARQL queries and enables
meaningful displays of the query result.

Keywords: User Interfaces, End-user Programming, CMS

1 Introduction

Integrating Semantic Web technologies into mainstream Content Management
Systems (CMSs) has been established as a way to increase adoption of the Se-
mantic Web [3][2]. One example of incorporating these technologies in a main-
stream system is the RDF in Drupal 7 core initiative, which enables over 300,000
sites1 in joining the Semantic Web by exposing the content’s structure as RDF.

While previous work in Drupal has made it easy for site administrators to
publish RDF, modules that enable sites to consume RDF still require knowl-
edge of SPARQL2. Because most Web developers do not meet this knowledge
requirement, in practice the data is only directly accessible for Semantic Web
practitioners. This means that one of the greatest potential benefits of RDF, the
potential for data integration between sites, goes untapped for many sites.

Conversely, many Semantic Web practitioners do not have a full understand-
ing of Web application development, which limits the displays they can create of
the queried data. Where displays on the data are created, it is often by developing
bespoke systems that cannot be reused by other Semantic Web practitioners.

We believe it is possible to design tools that support both the average Web
developer and the Semantic Web practitioner’s differing needs. We demonstrate
a tool that supports drag-and-drop, visual query building over RDF data and
that enables quick, easy, reusable presentation of that data.

1 Drupal core usage statistics from http://drupal.org/project/usage/drupal
2 Modules include SPARQL, http://drupal.org/project/sparql, and RDF SPARQL

Proxy, http://drupal.org/project/rdfproxy

0000000000000000000000000000000000000

0000000000000000000000000000000000000161

2 Lin Clark

2 Use Case

For illustration of the tool and its usefulness, we imagine a research institute Web
site such as http://deri.ie/. The site includes pages for researcher profiles. A
researcher’s profile page pulls the researcher’s publication list from an dataset
such as DBLP3. The profiles will be set up and administered by a Webmaster
who is unfamiliar with SPARQL, but knows a small amount of PHP and is
comfortable with HTML.

We walk through this use case in a video demonstration available at http:

//lin-clark.com/iswc. We give an analysis of the challenges faced in building
such a Web site and our solutions to those challenges below.

3 Usability Challenges in Query Building

3.1 Figuring out where to start

Inexperienced users are overwhelmed when given too many interaction options
or, even worse, when given a blank slate where they must enter a command
language like SPARQL [5].

Interaction strategy—To assist users in finding where to start, we initially
offer one single point of interaction. We make the assumption that most queries
are centered around predicates, and we use the drag-and-drop predicate list as
the first means of interaction. We then animate the addition of subject and
object to that predicate in order to guide the user to the next step, using the
strategy of sequential affordance[4].

3.2 Figuring out which predicates to use in the query

When accessing an arbitrary endpoint, end users have little support in under-
standing what data is contained in the dataset and how it is linked.

Interaction strategy—The endpoint is queried to determine which predi-
cates are used in the dataset. Only predicates that are present in the dataset are
displayed. An autocomplete search box allows the user to filter to appropriate
terms.

3.3 Declaring prefix mappings

Declaring prefix mappings requires knowledge of both syntax and of standards
and inexperienced users can have a hard time finding the appropriate namespace
for a vocabulary.

Interaction strategy—The prefix declaration is automatically generated
for the user from the predicates that are used. If a namespace mapping is not
available in the system (which uses prefix.cc as it’s source), then the full URI is
used in the predicate display and the query.

3 http://dblp.l3s.de/d2r/sparql

0000000000000000000000000000000000000

0000000000000000000000000000000000000162

SPARQL Views: A Visual SPARQL Query Builder for Drupal 3

3.4 Understanding the logical structure of queries

While conjunction and disjunction based logic is ubiquitous in everyday life and
is thus intuitive to a large degree, the syntax of SPARQL obscures that logic for
the inexperienced user.

Interaction strategy—Where SPARQL syntax requires mental computa-
tion of the logic, visual representation of queries allows perceptual inference of
the underlying logic[1]. We provide a visualization which makes the triple based
logical patterns clear and offers affordances that reflect the possibilities of the
graph structure. We currently only support basic conjunctive queries as these
are the easiest to conceptualize[6], but are looking at ways to visually express
other patterns.

4 Usability Challenges in Result Display

4.1 Displaying results in multiple display formats

SPARQL results are not useful in their raw format, but need to have tailored
displays in order for the pattern of information within the data to be communi-
cated. Semantic Web practitioners often create bespoke systems for this display,
leading to duplication of effort within the Semantic Web community.

Interaction strategy—We integrated the query building tool with a widely
deployed Drupal module, Views. This module offers a pluggable system for dis-
playing query results. Switching from an HTML table view, to a Google API
chart view, to a JavaScript Exhibit of the data is easy to do through the Views
user interface. Because SV is integrated with this pluggable system, any style
and display plugins that the Drupal community develops to display various kinds
of data can also style SPARQL results.

4.2 Using context to rewrite the query

Information is most useful if it is tailored to the page where it is displayed. For
instance, in the use case above, when a visitor visits a faculty member’s profile,
the query should return only publications authored by that faculty member.

Interaction strategy—We provide support for Drupal’s Token API. This
allows users to easily register tokens—small placeholder variables—and use these
in their queries. The token is then evaluated at page load, so context, such as
which user’s profile is being viewed, can be assessed when creating the query.

5 Future Work

5.1 Predicate Preprocessing and Ranking

We currently use a DISTINCT query to get the predicates from a dataset. For
certain endpoints, such as the one at http://dbpedia.org/sparql, this query

0000000000000000000000000000000000000

0000000000000000000000000000000000000163

4 Lin Clark

will timeout and not return results. We plan to create a Web service that can
extract predicates from crawls preprocess the predicates for different endpoints.
This service could provide additional data, such as the predicate definition and
a ranking based on predicate usage within the dataset.

5.2 Dataset Selection

A barrier we have not addressed in the current work is the selection of appro-
priate datasets. We plan to create tools to guide users in finding an appropriate
dataset.

5.3 Federated Queries

Currently, there can only be one endpoint or dataset defined per view. However,
one of the most exciting potentials of the Semantic Web is to mix data from
multiple sources and we plan to explore how this can be supported in SV.

5.4 Evaluation

We believe that it is possible to support and encourage the user’s increasing
understanding of SPARQL by lowering the barrier to entry and focusing on
learnability. We plan to evaluate this assertion, to see whether interaction with
SPARQL Views increases the acceptance of SPARQL and the understanding of
the syntax itself, enabling users to incrementally improve their understanding of
the query language.

Acknowledgments. This work was funded by Google Summer of Code, LOD
Around-The-Clock (LATC) ICT-256975, and by Science Foundation Ireland un-
der Grant No. SFI/08/CE/I1380 (Lion-2). Thank you to Drupal contributors
Daniel Wehner and Laura Scott for their guidance and feedback.

References

1. Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and Carlo Batini. Visual
query systems for databases: A survey, 1995.

2. Stéphane Corlosquet, Renaud Delbru, Tim Clark, Axel Polleres, and Stefan Decker.
Produce and consume linked data with drupal! In The Semantic Web - ISWC 2009,
volume 5823 of Lecture Notes in Computer Science, pages 763–778. Springer Berlin
/ Heidelberg, 2009.

3. Markus Krötzsch, Denny Vrandečić, and Max Völkel. Semantic mediawiki. In The
Semantic Web - ISWC 2006, volume 4273 of Lecture Notes in Computer Science,
pages 935–942. Springer Berlin / Heidelberg, 2006.

4. Joanna Mcgrenere. Affordances: Clarifying and evolving a concept. In Proceedings
of Graphics Interface 2000, pages 179–186, 2000.

5. Donald A. Norman. The Design of Everyday Things. Basic Books, New York, 2002.
6. Vladimir M. Sloutsky and Yevgeniya Goldvarg. Mental representation of logical

connectives. The Quarterly Journal of Experimental Psychology, 57A(4):636–665,
2004.

0000000000000000000000000000000000000

0000000000000000000000000000000000000164

The Polish interface for Linked Open Data

Aleksander Pohl

Computational Linguistics Department,
Jagiellonian University, Cracow, Poland

aleksander.pohl@uj.edu.pl
http://klon.wzks.uj.edu.pl/cycdemo

Abstract. This paper describes an application which aims at produc-
ing Polish descriptions for the data available as Linked Open Data, the
MusicBrainz knowledge base contents in particular.

1 Introduction
It is trivial to say that the natural language is the most natural way of conveying
information for people. No matter how many formal, unambiguous languages
given person knows, when it comes to quick transfer of semantic content, natural
language is always the best option. This fact is re�ected in the recommendations
for the user interface designers. For example one of the Nielsen's [2] usability
heuristics1 is: The system should speak the users' language, with words, phrases
and concepts familiar to the user, rather than system-oriented terms.

This observation stays in a contrast to the fact, that Linked (Open) Data2,
which seems to be the most visible part of the Semantic Web, is usually presented
in a form re�ecting the structure of RDF triples3. And even if the content is
available in a more human-readable format4, it still looks table-like and in most
cases it is only available in English.

As a result, it is hard to imagine, that a person would prefer the strict and
organized information from DBpedia (who reads abstracts in several languages?)
over the same information found in Wikipedia. Obviously this is not an argument
against the Semantic Web, or Linked (Open) Data in particular, this is only an
observation, which shows, that the way the semantic data is presented to the
(non-English speaking) end users could be improved.

2 The Idea
The general idea of our approach is as follows: provide an Internet service, which
allows for translation of the data available as RDF triples into natural language
1 http://www.useit.com/papers/heuristic/heuristic_list.html
2 For reference see: http://linkeddata.org
3 See examples in DBpedia: http://dbpedia.org/page/Cher and Citeseer
http://citeseer.rkbexplorer.com/description/resource-CS107764.

4 See examples in OpenCalais http://d.opencalais.com/er/company/
ralg-tr1r/9e3f6c34-aa6b-3a3b-b221-a07aa7933633.html and MusicBrainz
http://musicbrainz.org/artist/bfcc6d75-a6a5-4bc6-8282-47aec8531818.html

0000000000000000000000000000000000000

0000000000000000000000000000000000000165

2

descriptions. In the basic scenario, the system should be able to translate subject-
predicate-object structures, such as http://example.com/John foaf:nick
�Johnny1�5 into �John's nickname is �Johnny1��. In more sophisticated scenar-
ios, it should allow for embedding links, pictures, videos, etc. thus should be
able to translate predicates such as foaf:homepage or foaf:img. And in the
most advanced scenario, it should be able to produce descriptions for complex
structures, such as series of events, assuring that the chronology is correct, the
mentions of people and places are not replicated too often, and so on.

The value added by such a system comes form the fact, that whenever the de-
veloper of some Linked (Open) Data base uses an ontology which is known to the
system, he doesn't have to write the RDF-to-NL module, since, if the meaning
of the predicates used is well-de�ned, their natural language paraphrases should
stay intact. In fact � this solution is not bound to Linked (Open) Data. With
some modi�cations it might be used in any application with natural language
(probably multilingual) interface, provided that its data structures were mapped
to the above-mentioned ontology.

3 The Problems

In the case of the basic scenario, the paraphrase based on simple templates con-
nected with particular predicates and �lled with the labels of the resources or
the actual values (like numbers) seems to be easily achievable. Similar approach
is used in many applications with multilingual interface � when the application
is localized, the templates are translated and they are �lled with the data in-
dependently of the language (e.g. in Gmail there is a message at the bottom of
the page: �Obecnie u»ywasz 8 MB (0%) z 7500 MB.� � �You are currently using
8MB (0%) of your 7500MB.�).

In fact, this solution is not as good, as it seems, at least for in�ectional
languages in general and Polish in particular. The �rst and most problematic
issue is the necessity to accommodate the gender of the subject with the verb.
Thus even for the simplest sentence to be fully sound, the information required
is not directly present in the RDF triple. If we consider the fact, available in
the MusicBrainz knowledge base, that Cher was born on the 20th of May 1946,
we have to know that Cher is a women, to properly construct the sentence
�Cher urodziªa si¦ 20 maja 1946 roku�. The same fact about Michael Jackson
is paraphrased as �Michael Jackson urodziª si¦ 29 sierpnia 1958 roku�. So the
template has to be adjusted with respect to the gender of the subject, but
MusicBrainz doesn't contain the necessary information.

Another problem tightly connected with in�ectional nature of Polish, is the
in�ection of numerals. In English, when some application is localized, usually
there is only room for two word forms: singular and plural and the in�ectional
scheme is trivial (e.g. �There is one track on the CD/There are several tracks on
the CD.�). But in Polish numerals in�uence the case of the subordinate nominal
5 See http://xmlns.com/foaf/spec/ for the de�nitions of the properties.

0000000000000000000000000000000000000

0000000000000000000000000000000000000166

3

phrase and the gender of the nominal phrase in�uences the form of the numeral as
well. The (partial) scheme is as follows: �1(jedno) krzesªo� (one chair) � �2(dwa)
krzesªa� � �5(pi¦¢) krzeseª � � �12(dwana±cie) krzeseª � � �22(dwadzie±cia dwa)
krzesªa� � �25(dwadzie±cia pi¦¢) krzeseª �; �1(jedna) ±cie»ka� (one track) � . . .
The scheme is further complicated, when the numeral phrase is an argument of
a verb, like in the sentence �Przysªuchiwaªem si¦ 1(jednej) ±cie»ce� (I listened
to 1 track).

4 The Partial Solution

We argue that the most reasonable solution for the above mentioned problems (as
well others connected with RDF-to-NL translation) is the implementation of the
logic-to-NL translation system for a general ontology. Such an ontology should
distinguish men from women (distinction not always present in domain-speci�c
ontologies, like Music Ontology6) and other things. It should also contain many
other concepts and relations, for the logic-to-NL system to be at least partially
complete. Being a part of Linked Open Data is also necessary. Such a system
would be a �rm base for the RDF-to-NL translation application.

We think that the Cyc ontology [1] is the best candidate. First of all � it has
a logic-to-English translation module, so providing the English paraphrases for
RDF triples should be easy. It is a general ontology, with very broad coverage
(in terms of concepts � several hundreds of thousands and relations � more than
20 thousands) and provides a Semantic Web end-point7. It is also well connected
with DBpedia and some other elements of Linked Open Data.

Still Cyc contains only the English lexicon, that is the mapping between
concepts and English words. In our previous research we created an algorithm
for mapping of Cyc concepts to Polish one-segment expressions [4]. This re-
search is further carried out and the results will be presented on the Interna-
tional Multiconference on Computer Science and Information Technology in the
Computational Linguistic � Applications track8. The important fact about the
constructed Polish lexicon is that, it is based on the Polish in�ectional dictio-
nary described in [3]. This means that the information necessary for accurate
paraphrases accommodating common nouns and verbs as well as numerals and
common nouns will be available in it.

Still the in�ectional dictionary doesn't contain most of the proper names
which are so common in knowledge bases and as a result the accommodation of
subject and verb has to be carried out di�erently9. This is the case where the
Semantic Web plays its part � the information which is so easily available for peo-
ple, namely the gender of a person, might be deduced by the system from Linked
Open Data and the Cyc ontology. First of all the concepts representing men and
6 http://musicontology.com/ � the ontology used in MusicBrainz
7 http://sw.opencyc.org/
8 http://www.imcsit.org/pg/358/281
9 The in�ection of unknown proper names is not covered in this research. Thus the
paraphrase is not accurate if the proper name occurs at the argument position.

0000000000000000000000000000000000000

0000000000000000000000000000000000000167

4

women should be identi�ed in Cyc (it is #$MaleHuman and #$FemaleHuman re-
spectively). Then the categories of the object should be looked up in the source
knowledge base. If any of it is a specialization10 of one of the above mentioned
classes, the gender could be determined. If not, the same procedure should be
applied for the knowledge bases containing synonyms of the object in question.
The procedure would stop if any knowledge base allowed for determining the
gender or certain threshold (timeout, number of visited knowledge bases, etc.)
were reached.

For example Cher, whose MusicBrainz address is http://dbtune.org/
musicbrainz/resource/artist/bfcc6d75a6a5-4bc6-8282-47aec8531818, is
linked to the DBpedia resource http://dbpedia.org/page/Cher, where one of
her OpenCyc types is http://sw.opencyc.org/2008/06/10/concept/
Mx4rvVjW5ZwpEbGdrcN5Y29ycA (female person) which directly indicates, that
she is a woman.

5 The Application
An application was build which creates Polish paraphrases for portion of the
knowledge available in the MusicBrainz knowledge base. It is available under
the URL: http://klon.wzks.uj.edu.pl/cycdemo and is integrated with the
tool used for mapping Cyc symbols to Polish words and expressions. The actual
functionality is available when the user clicks the �search� (szukaj) button and
selects the �Sparql� engine. When he enters the name of an artist or an album
(case sensitive), the resources found in the base are presented11. If he clicks the
white button on the right of the resource, he will see the table with properties
describing the resource. The information is presented systematically, but it is
not easy to understand. If the user clicks the yellow button, he will see the
Polish paraphrase of the data. Not all the data which is available in the base is
presented, but the text is much more appealing and intelligible.

References
1. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Commu-

nications of the ACM 38(11), 33�38 (1995)
2. Nielsen, J.: Usability Inspection Methods, chap. Heuristic Evaluation, pp. 25�62.

John Wiley & Sons (1994)
3. Pisarek, P.: Sªowniki komputerowe i automatyczna ekstrakcja informacji z tekstu,

chap. Sªownik �eksyjny, pp. 37�68. Uczelniane Wydawnictwo Naukowo-Dydaktyczne
AGH (2009)

4. Pohl, A.: Automatic Construction of the Polish Nominal Lexicon for the OpenCyc
Ontology. In: Recent Advances in Intelligent Information Systems (2009)

10 The equivalence of the classes in given knwoledge base and Cyc might be established
via the http://sameas.org service.

11 The query takes much time, since it consists of many sub-queries to the Semantic
Web end-points.

0000000000000000000000000000000000000

0000000000000000000000000000000000000168

HANNE - A Holistic Application for
Navigational Knowledge Engineering

Sebastian Hellmann, Jörg Unbehauen, Jens Lehmann

AKSW Research Group, http://aksw.org, Universität Leipzig, Germany
lastname@informatik.uni-leipzig.de

Abstract. Although research towards the reduction of the knowledge
acquisition bottleneck in ontology engineering is advancing, a central is-
sue remains unsolved: Light-weight processes for collaborative knowledge
engineering by a massive user base. In this demo, we present HANNE, a
holistic application that implements all necessary prerequisites for Nav-
igational Knowledge Engineering and thus reduces the complexity of
creating expressive knowledge by disguising it as navigation. HANNE
enables users and domain experts to navigate over knowledge bases by
selecting examples. From these examples, formal OWL class expressions
are created and refined by a scalable Iterative Machine Learning ap-
proach. When saved by users, these class expressions form an expressive
OWL ontology, which can be exploited in numerous ways: as navigation
suggestions for users, as a hierarchy for browsing, as input for a team of
ontology editors.

1 Introduction

Over the past years, structured data has become widely available. Still, the re-
trieval of dedicated knowledge for given applications or research questions out of
these data sources remains a tedious process. A domain expert might have a very
precise idea of the concepts she would like to retrieve from a knowledge source.
Yet, she faces a number of challenges when trying to retrieve corresponding
examples out of a particular data set.

Due to their sheer size, users of these knowledge bases can hardly know which
identifiers are used and are available for the construction of queries. Furthermore,
domain experts might not be able to express their queries in a structured form
at all, but they often have a very precise imagination what kind of results they
would like to retrieve. A historian, for example, searching in DBpedia [2] for
ancient Greek law philosophers influenced by Plato can easily name some exam-
ples and if presented a selection of prospective results she will be able to quickly
identify false results. However, she might not be able to efficiently construct a
formal query adhering to the large DBpedia knowledge base a priori.

The construction of queries asking for objects of a certain kind contained
in an ontology, such as in the previous example, can be understood as a class
construction problem: We are searching for a class expression which subsumes

169

exactly those objects adhering to our informal query (e.g. ancient Greek law
philosophers influenced by Plato 1).

In recent years, several methods have been proposed for constructing ontol-
ogy classes by means of Machine Learning techniques from positive and negative
examples (see [3] for an overview). Due to their dependency on reasoning meth-
ods, these techniques are tailored for small and medium size knowledge bases
and cannot be directly applied to large knowledge bases. The scalability of the
algorithms is ensured, however, by reasoning only over ”interesting parts” of a
knowledge base for a given task [1]. As a result users of large knowledge bases are
empowered to construct queries by iteratively providing positive and negative
examples to be contained in the prospective result set.

In this paper, we present HANNE - a Holistic Application for Navigational
kNowledge Engineering. HANNE allows for the extraction of formal definitions of
user-defined concepts and the corresponding examples out of arbitrary and pos-
sibly large RDF data sets. Based on initial examples given by the user, HANNE
learns a formal OWL Class Expression of the concept that the user is interested
in. This expression is converted into a SPARQL query2 and passed to a triple
store database with reasoning capabilities. The results are gathered and pre-
sented to the user to choose more examples, to refine the query, and to improve
the formal definition at will.

Our tool, available online at http://hanne.aksw.org, addresses and circum-
vents the barriers to the acquisition of knowledge out of data sets: (1) it does
not need any deployment and provides a user interface in a familiar surrounding,
the browser, (2) the meaning of the identifiers used in the knowledge source is
made explicit by the tool, and, finally, (3) the application uses OWL; the results
are thus represented in a readable, portable and sustainable way.

2 Example Usage

At the time of writing, the DBpedia ontology class http://dbpedia.org/ontology/
Country contained 2505 instances, including all current countries as well as all
historic countries, most of which ceased to exist nowadays.

On April 27th, 2010, there has been a discussion on the DBpedia mailing
list3 on how to retrieve (via SPARQL) a list of current countries only, as the
coverage of the OWL class was obviously too imprecise (or its definition was too
broad). One suggested solution4 by a DBpedia expert was to manually include
a filter for dbo:dissolutionYear5 within the SPARQL query.

1 technically we mean OWL class expressions such as AncientGreekPhilosopher and
influencedBy value Plato in Manchester OWL Syntax http://www.w3.org/TR/

owl2-manchester-syntax/
2 http://www.w3.org/TR/rdf-sparql-query/
3 http://www.mail-archive.com/dbpedia-discussion@lists.sourceforge.net/

msg01652.html
4 http://www.mail-archive.com/dbpedia-discussion@lists.sourceforge.net/

msg01658.html
5 http://prefix.cc/dbo

170

Fig. 1. Screenshot of the left and middle part of http://hanne.aksw.org: Real
countries in DBpedia. (The right part containing a list of stored concepts and
additional features is omitted for a larger image and readability)

Although, the request (originally posted by a DBpedia user) was answered,
two shortcomings remain: 1. The answer was not recorded or documented in a
sustainable way (e.g. incorporated as OWL class within the ontology) 2. The
process of finding the answer was very tedious for the user. He had to wait
several days and required the help of an ontology expert that was familiar with
the existing vocabulary.

In the following, we will explain step by step, how an OWL class (named e.g.
Real Country) can be created without hardly any effort and previous knowledge
with HANNE. On the left side of Figure 1, a full text search over the DBpedia
data set can be conducted. This represents the entry point, as initial examples
have to be chosen to bootstrap the learning process. In our case, a user could
start by searching for “Germany”. From the search result, she picks Germany as
a positive example and East Germany, West Germany, Nazi Germany as neg-
atives. After she has pressed the learn button (middle, above given examples)
a formal OWL definition (in Manchester OWL Syntax) is presented in the top
middle (Learned Concept) in this case http://www.opengis.net/gml/ Feature and
dbp:sovereigntyType some Thing . She now has two options on how to proceed:
1. if she finds the learned concept adequate, she can label (e.g. Real Country),
comment (Countries, which are officially accepted and still exist) and save it to
export a complete list of instances 2. Alternatively, she can retrieve instances
matching the learned OWL class, which are then displayed on the left side Clas-
sified Instances. These instances can be further evaluated and more positive and
negative examples can be chosen to iterate the process. In our case, a total of 261

171

instances adhere to the class definition, a quite accurate list (manually checked,
including some cases, such as the Azores or the Isles of Man, which are arguable).

3 Overview of the Application

The application6 realizes a holistic approach to Navigational Knowledge Engi-
neering, as it combines navigational features with knowledge engineering capa-
bilities. It is implemented in Java based on the Google Web Toolkit7 and is
made up of highly configurable and extensible Spring components, so that it can
be customized and tailored for certain data sets. The default implementation of
the component interfaces is held generic and works on arbitrary SPARQL end-
points with RDFS-Reasoning capabalities8. The full text search (Figure 1 left
side) is based on a configurable SPARQL template engine. For learning OWL
class expressions, DL-Learner9[3] is used. [1] describes the underlying technique
of machine learning on large knowledge bases and contains performance mea-
surements (especially on DBpedia) with acceptable speed for a web scenario.

To help users understand the meaning of learned class expression, labels
and comments are displayed in a tooltip, when hovering over a named class
or property. Advanced users or ontology editors can also manually alter the
class expression by selecting suggested classes, which are either more special or
more general than the currently learned example. Whenever the learned class
expression changes an additional reasoner is queried and shows related concepts
from the formerly saved class expressions, which are either sub-, super-, or sibling
classes. All saved classes can be browsed and loaded by all users to further refine
searches. If all classes are exported in bulk, they form a class hierarchy, which can
be utilized as additional schema for browsing or as input for a team of ontology
engineers.

At the time of writing, we configured the Web demo for DBpedia and a
Linguistic data set, but plan to increase the number of available knowledge
bases.

References

1. Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL class de-
scriptions on very large knowledge bases. IJSWIS, 5(2):25–48, 2009.

2. Jens Lehmann, Chris Bizer, Georgi Kobilarov, Sren Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. DBpedia - a crystallization point for the web
of data. Journal of Web Semantics, 7(3):154–165, 2009.

3. Jens Lehmann and Pascal Hitzler. Concept learning in description logics using
refinement operators. Machine Learning journal, 78(1-2):203–250, 2010.

6 source code available at http://nlp2rdf.googlecode.com
7 http://code.google.com/webtoolkit
8 our local mirror of DBpedia used in the demo is Virtuoso based http://virtuoso.

openlinksw.com/
9 http://dllearner.org

172

Automated Mapping Generation for Converting
Databases into Linked Data

Simeon Polfliet Ryutaro Ichise

Ensimag engineering school Principles of Informatics Research Division

Grenoble Institute of Technology (INPG) National Institute of Informatics

Grenoble, France Tokyo, Japan

simeon.polfliet@ensimag.imag.fr ichise@nii.ac.jp

Abstract. Most of the data on the Web is stored in relational databases.
In order to make the Semantic Web grow we need to provide easy-to-use
tools to convert those databases into linked data, so that even people
with little knowledge of the semantic web can use them. Some programs
able to convert relational databases into RDF files have been developed,
but the user still has to link manually the database attribute names
to existing ontology properties and this generated “linked data” is not
actually linked with external relevant data. We propose here a method
to associate automatically attribute names to existing ontology entities
in order to complete the automation of the conversion of databases. We
also present a way - rather basic, but with low error rate - to add links
automatically to relevant data from other data sets.

Keywords: Database, Linked Data, Semantic Integration, Semantic Web

1 Introduction

Even though significant research and development efforts have been made, the achieve-
ment of the vision of the Semantic Web remains remote. The amount of data on the
Semantic Web remains marginal in comparison with the traditional Web. The impor-
tance of revealing relational data and making it available as RDF and as Linked Data[1]
has been already acknowledged. Most notably, Virtuoso RDF views[4] and D2RQ[2]
are production-ready tools for generating RDF representations from relational database
contents. But the main restriction to their deployment is the complexity of generating
a mapping, which is the last non-automated part of these programs.

In this paper, we will present a method to generate automatically the mapping
between attribute names and existing ontology entities, completed with a method to
add links automatically to external data. Then, we will present the application of this
method on relational databases applied on the D2RQ Mapping system and the D2R
Server[3], and the tests and results on different kind of relational databases.

A presentation of our software AuReLi (Automatic Relational Database to Linked
Data Converter) can be found at http://ri-www.nii.ac.jp/AuReLi/

2 Method

In ontology matching, there are three types of methods to compare two entities: string-
based, structure-based and knowledge-based methods. In the present problem, there

0000000000000000000000000000000000000

0000000000000000000000000000000000000173

2 Automated Mapping Generation for Converting Databases into Linked Data

is on one side a database and on the other side we have several ontology descriptions.
Thus, structure-based method are not relevant here. We are seeking to compare the
name of an attribute in a database with the name of an ontology property. These
names can be composed by one or several words: the first step is to split the name into
a set of words in order to compare the words of each set. The success of the matching
depends on the correctness of the word decomposition. The words composing names
of ontology properties and of attributes in a database are usually either separated by
special characters, for instance product_name, or by a change of case, e.g. ProductName.
As sometimes it is not the case, we completed this simple splitting method with a
method based on the presence of the words in a dictionary such as the WordNet
dictionary1 used here. After doing the previous splitting, it is necessary to check if
the resulting words exist in the dictionary. If that is not the case, then we try to
split it into words that are in the dictionary. However, because it is possible that
the word is not in the dictionary but some part of it is, we will only keep the result
if all the decomposed parts are present in the dictionary. With this method, even
productname will be correctly split. The second step is to compare the resulting set of
words of the attribute name with the sets of words of all the ontology entities, and then
return the best match. In order to compare the words, we use string-based similarity
measures2, especially Jaro-Winkler, and WordNet similarity measures3: Lin[5] and Wu
and Palmer[6] measures. We use WordNet measures if the words exist in the WordNet
dictionary, otherwise we use the string-based ones.

Once the mapping is done, in order to have true linked data, we want to add links
to relevant data. The idea is to make a SPARQL query on a given data set. If you know
the target data and its ontology entities, you can specifically build SPARQL queries
for this data set to get links. But here, in a more general setting, we do not have this
information. However, there is a property common to most of the data sets: rdfs:label.
Even better, this property is especially good because it is usually at the same time
short and clearly defining the data. Therefore, if the rdfs:label property was correctly
set on your data, the SPARQL query based on this property should not return wrong
links and has good chances to find a result if there is a related data in the target data
set.

3 Implementation

We produced a reusable Java library and used the D2RQ Map and the D2R Server[3]
as a basis to implement and test our method. A Java graphical user interface was
produced for the mapping generation, in order to simplify its use as much as possible.
First, the user has to define the parameters to connect to the relational database, and
to give to the program the ontology descriptions he wants to use, as shown in Fig. 1.
We already provide some of the most common generic ontology descriptions along with
some more specialized ones, but the user can add any other ontology by providing a
file with its OWL definition. Then, the program generates the mapping of the table
and attribute names with the ontology entities. It presents the resulting mapping to

1 Princeton University: WordNet, Version 3.0:
http://wordnet.princeton.edu/wordnet/download/

2 S. Chapman: SimMetrics Java library:
http://www.dcs.shef.ac.uk/~sam/simmetrics.html

3 D. Hope: Java WordNet::Similarity:
http://www.cogs.susx.ac.uk/users/drh21/

0000000000000000000000000000000000000

0000000000000000000000000000000000000174

Automated Mapping Generation for Converting Databases into Linked Data 3

Fig. 1. Mapping generation graphical interface

the user so that he can check and make changes if necessary. It also allows the user to
choose which attributes to use as labels for the rdfs:label property.

The D2R Server was also modified to add links automatically in the generated data.
If the feature is activated, it makes a SPARQL query on DBpedia for each request of
the user and add the link to the data if there was a result. We used DBpedia because
it is currently one of the biggest and the most general linked database.

4 Test and Results

Five databases from different sources, with different size and about different topics were
used for the tests: Northwind4, World and Sakila5, Automobile6, World Development
Indicator7

There are approximately three hundred attributes in those five databases: after
a manual check of the mappings, 79,66% of the attributes were correctly mapped.
The wrong mappings are explained by the fact that some attributes were too spe-
cific and consequently could not match any existing ontology property in the ontology
descriptions used in the experiment. Another limit is the use of acronyms or short
abbreviations, which did not produce a correct mapping either. The generation time
was around one minute for each database. The mapping generated automatically can
be seen in Fig. 2 for the World database. On the left and the middle are the table
names and the attribute names, on the right are the matched ontology entities. We
can observe for instance that the attribute GNPOld do not have good corresponding
property and thus is mapped with foaf:OnlineAccount which is obviously irrelevant.
But on the other hand, Percentage becomes dbpedia:part, which is quite good since a
percentage is a part of something. This matching is due to WordNet because it would
not have been found by a string-based similarity measure.

For the server, the use of the feature to automatically add links is slightly slowing
down each request of the user because it needs the answer of the SPARQL query. It

4 Example database for the Microsoft SQL Server:
http://www.microsoft.com/downloads/details.aspx?FamilyID=

06616212-0356-46a0-8da2-eebc53a68034
5 Two example database from the MySQL website:
http://dev.mysql.com/doc/index-other.html

6 Data set from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets.html

7 database from the World Bank Data Catalog:
http://data.worldbank.org/data-catalog

0000000000000000000000000000000000000

0000000000000000000000000000000000000175

4 Automated Mapping Generation for Converting Databases into Linked Data

Fig. 2. Mapping generation result for the World database

becomes problematic if the external data set is slow or do not answer to the query. The
results on the rdfs:label property on DBpedia are usually good, providing the labels in
the mapping are correct. The principal case where the added links are wrong is in the
case of homonyms, e.g. cities such as London, England and London, Canada.

5 Conclusion

The automatic mapping generation is a difficult problem which renders almost impossi-
ble the automatic production of a 100% correct mapping. Nevertheless, even if the user
still needs some knowledge of the Semantic Web, we managed to simplify the process
with a user-friendly interface where the user only has to check the correctness of the
proposed mapping. The automatic addition of links in the generated RDF is simple
and functional, and can easily be extended to add a greater variety of links.

References

1. T. Berners-Lee. Design issues: Linked data, 2006.
http://www.w3.org/DesignIssues/LinkedData.html

2. C. Bizer and A. Seaborne. D2RQ - treating non-RDF databases as virtual RDF
graphs. In ISWC2004 (posters), November 2004.

3. C. Bizer and R. Cyganiak: D2R Server, Version 0.7
http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

4. O. Erling and I. Mikhailov. RDF support in the Virtuoso DBMS. In Proceedings of
the 1st Conference on Social Semantic Web, volume P-113 of GI-Edition - Lecture
Notes in Informatics (LNI), ISSN 1617-5468. Bonner Kollen Verlag, September 2007.

5. Lin, D. An information-theoretic definition of similarity. In Proceedings of the In-
ternational Conference on Machine Learning, 1998

6. Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd Annual Meeting
of the Association for Computational Linguistics, 133-138, 1994

0000000000000000000000000000000000000

0000000000000000000000000000000000000176

Avalanche: Putting the Spirit of the Web back
into Semantic Web Querying

Cosmin Basca and Abraham Bernstein

DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
{lastname}@ifi.uzh.ch

Abstract. Traditionally Semantic Web applications either included a
web crawler or relied on external services to gain access to the Web of
Data. Recent efforts, have enabled applications to query the entire Se-
mantic Web for up-to-date results. Such approaches are based on either
centralized indexing of semantically annotated metadata or link traversal
and URI dereferencing as in the case of Linked Open Data. They pose a
number of limiting assumptions, thus breaking the openness principle of
the Web. In this demo we present a novel technique called Avalanche,
designed to allow a data surfer to query the Semantic Web transpar-
ently. The technique makes no prior assumptions about data distribu-
tion. Specifically, Avalanche can perform “live” queries over the Web
of Data. First, it gets on-line statistical information about the data dis-
tribution, as well as bandwidth availability. Then, it plans and executes
the query in a distributed manner trying to quickly provide first answers.

1 Introduction

With the rapid growth of the Web of Data, unexplored avenues for application
development are emerging. While some application designs include a Seman-
tic Web (SW) data crawler, others rely on services that facilitate access to the
Web of Data (WoD) either through the SPARQL protocol or various API’s (i.e.
Sindice or Swoogle). As the mass of data continues to grow – currently LOD [2]
accounts for 4.7 billion triples – the scalability factor will give raise to a new set
of challenges. Marginally addressed today is the question: How to query the Web
of Data on-demand, without hindering the flexible openness principle of the Web
– seen as the ability to query independent un-cooperative semantic databases,
not controlling their distribution, their availability or having to adhere to fixed
publishing guidelines (i.e. LOD). Currently, some approaches maintain a global
index over all SW data, striving to deliver up-to date results. They become
expensive as the quantity of data grows and demand rises. Derived from tra-
ditional distributed database systems, they offer high performance, but break
the flexibility and openness principle by assuming perfect knowledge about par-
ticipating data. Instance level federation (i.e. subjects are distributed to hosts
according to a known scheme) as in the case of SemWIQ [5] relaxes the central-
ization constraints by increasing the flexibility of the system while still holding
some constraints over data distribution. As proposed by Hartig et al. [4] other

177

approaches are based on the principle of link traversal and URI dereferencing.
These algorithms are driven by LOD principles, offering high flexibility at the
cost of potentially expensive query processing (due to network latency) and the
impossibility to issue certain types of queries as pointed out by the authors.

This demo proposes to address the issue of preserving the openness and
flexibility of WoD while being able to query it “live”. Our motivation lies in the
belief that such flexibility is paramount for future development of the Semantic
Web – as it was for the WWW. Considering the Web’s uncontrollable nature,
Avalanche [1] strives to find the first K results as fast as possible.

2 Avalanche — System Design and Implementation

The system consists of six major components working together in a parallelized
pipeline: the Avalanche endpoints Web Directory or Search Engine, the Statis-
tics Requester, the Plan Generator, Plan Executor instances, Plan Materializer
instances and the Query Stopper component as seen in Figure 1.

Fig. 1. The Avalanche execution pipeline

The algorithm is comprised of two steps: the Query Preprocessing step and
the parallel Query Execution step. During Query Preprocessing, participating
hosts are selected via means of a lightweight endpoint-schema inverted index.
Ontological prefix (the shorthand notation of the schema – i.e. foaf) and schema
invariants (i.e. predicates, classes, labels, etc) are appropriate candidate entries
to index. After query parsing, this information is immediately available and used
to quickly trim down the number of potential endpoints. Further all selected
Avalanche endpoints are queried for unbounded variables instance counts.

Query Execution follows: first the query is broken down into the superset of
all molecules, where a molecule is a subgraph of the overall query graph. A
combination of minimally overlapping molecules, covering the query graph, is
referred to as a solution. Binding all molecules in a given solution to physical
hosts that may resolve them, transforms a solution into a plan. It is the Plan
Generator’s job to issue plans for execution, as soon as assembled. An emergent
challenge from preserving the openness of the query process and the flexibility of
semantic data publishing, is denoted by the exponential complexity class of the
plan composition space. It is thus crucially important to issue “good” plans first
(plans that aid in finding the answers fast) while pruning and stopping undesired
plans as soon as possible. To this end, the molecule space is trimmed empirically
and plans are generated ordered given their objective function. The objective of a
plan is represented as the ratio between the utility (number of results produced)

178

and the cost of execution (time spent to execute subqueries, distributed joins
and bandwidth consumption). Consider for example the following query over
RDF data describing publications:

SELECT ?name ?title WHERE {

?paper akt:has-author ?author; akt:has-author ?jim; akt:has-title ?title.

?author akt:full-name ?name. ?jim akt:full-name "James A. Hendler". }

Avlanache’s goal is to return the list of all authors that wrote papers with
“James A. Hendler” (bound variable) and their titles, given that the required
data is spread with an unknown distribution over several independent hosts.

At a given moment during the execution of a plan, a Plan Executor may
find itself in the following state: molecule M1 (see Figure 2) was reported to be
highly selective on host A, while the remainder of the query (molecule M2) is a
low selectivity molecule on host B. Given that bandwidth and latency cost can
be high, partial results 1 are not sent to one central site to be joined. Instead
we start the execution with the highly selective molecule M1 (host A) and then
filter results on host B by sending over results from host A as in Figure 2.

Fig. 2. Distributed Join and Update operations for a Simple Plan

Similarly the Plan Materializer, materializes out-of-order finished plans, by
merging partial results and fetching their actual string representations. Since
we have no control over the distribution and availability of RDF data and data
providers (SPARQL endpoints), getting a complete answer to the query is an
unreasonable assumption. Instead the Query Stopper monitors for the following
stopping conditions: a global timeout, a first K results policy – all execution
stops as soon as K (unique) results are returned to the caller – and finally, to
avoid waiting for the timeout when the number of results is � K we measure
relative result-saturation (i.e. we stop at 90% saturation).

The cost of expensive distributed n-way joins can be reduced via bloom-
joins [6]. We extend the objective function with a qualitative join estimation, as
described in [3] and since constructing bloom filters for large sets is expensive, we
only consider the highly selective triple patterns (a threshold set empirically).
1 It is important to note that to execute plans, hosts will need to share a common

id space – a given in Semantic Web via URIs. Naturally, using RDF strings can
be prohibitively expensive. To limit bandwidth requirements we, chose to employ a
single global id space in the form of the SHA family of hash functions on the URIs.

179

3 Preliminary Evaluation

To demonstrate the Avalanche algorithm and evaluate its performance we
conducted a preliminary evaluation on the combined IEEE, ACM and DBLP
LOD datasets, totaling 35 million triples. We distributed the datasets over a
five-node cluster, splitting by dataset and chronological order (i.e. ACM articles
till 2003 on host A). Each machine had 2GB RAM and an Intel Core 2 Duo
E8500 @ 3.16GHz. Avalanche was able to successfully execute query plans
and retrieve many up-to-date results without having any prior knowledge of the
data distribution. Furthermore, we observed that different objective functions
have a significant influence on the outcome and should play a critical role when
deployed on the Semantic Web. The demo2 will mirror this setup and let people
pose arbitrary queries live.

4 Conclusion

In order to preserve the openness of the Web of Data, one has to make shallow
or no prior assumptions to data distribution and availability. Also given the
uncontrollable nature of the Web, a first K results policy makes sense. For this
purpose we developed and present Avalanche a novel approach for querying the
Web of Data that: (1) makes no assumptions about data distribution, availability,
or partitioning, (2) provides up-to-date results, and (3) is flexible as it makes no
assumption about the structure of participating triple stores. To our knowledge,
Avalanche 3 is the first Semantic Web query system that makes no assumptions
about the data distribution whatsoever. Whilst, it is a first prototype with a
number of drawbacks it represents a first important step towards bringing the
spirit of the Web back to triple-stores — a major condition to fulfill the vision
of a truly global and open Semantic Web.

References

1. C. Basca and A. Bernstein. Avalanche: Putting the Spirit of the Web back into
Semantic Web Querying. In Proceedings of the 6th International Workshop on
Scalable Semantic Web Knowledge Base Systems, November 2010.

2. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - The story so far. International
Journal on Semantic Web and Information Systems (IJSWIS), 2009.

3. A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher. Network applications
of bloom filters: A survey. In Internet Mathematics, pages 636–646, 2002.

4. O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL queries over the Web
of linked data. In 8th International Semantic Web Conference (ISWC), 2009.

5. A. Langegger, W. Wöß, and M. Blöchl. A Semantic Web middleware for virtual
data integration on the web. In 5th European Semantic Web Conference, 2008.

6. S. Ramesh, O. Papapetrou, and W. Siberski. Optimizing distributed joins with
bloom filters. In ICDCIT ’08: Proceedings of the 5th International Conference on
Distributed Computing and Internet Technology, 2009.

2 Video available at: http://www.ifi.uzh.ch/ddis/fileadmin/basca/avalanche-demo.mov
3 This work was partially supported by the Swiss National Science Foundation under

contract number 200021-118000

180

Displaying email-related contextual information
using Contextify

Gregor Leban, Marko Grobelnik

Jožef Stefan Institute, Ljubljana, Slovenia
gregor.leban@ijs.si, marko.grobelnik@ijs.si

Abstract. Contextify is a tool for maximizing user productivity by
showing email-related contextual information. The contextual informa-
tion is determined based on the currently selected email and includes
related emails, people, attachments and web links. This content is dis-
played in a sidebar in Microsoft Outlook and in a special dialog that can
display an extended context.

Keywords: email, optimization, productivity, visualization

1 Introduction

Despite the popularity of numerous web services, emails still play a crucial role
in todays information exchange. It is very common for people to receive tens or
even hundreds of emails per day. In this sea of information it is often difficult to
stay organized and to find the right information when one needs it.

To help people perform mail-related tasks faster and with greater ease we de-
veloped Contextify. Contextify is an add-on for Microsoft Outlook. Its goal is to
maximize users productivity by unobtrusively finding and showing the relevant
contextual information for the currently selected email. The main functions of
the add-on are displayed in two windows which will be described next.

2 Contextify sidebar

One way how Contextify displays the relevant contextual information is in a
sidebar of Microsoft Outlook. The goal of the sidebar is to show important
information related to the sender of an email being currently selected and shown
within Outlook. This information is mainly gathered from past emails from this
person but also from various online services such as Facebook, LinkedIn and
Twitter.

An example of the sidebar is shown in Figure 1. The top of the sidebar
displays the person’s photo together with the relevant personal information col-
lected from Outlook contacts and online social services (e.g. Facebook, LinkedIn).
Other contextual information is organized into several tabs. In the first tab we
show the list of recent emails from this person together with several email details
(Figure 1.a). For emails that are a part of a thread, the whole thread can be

0000000000000000000000000000000000000

0000000000000000000000000000000000000181

2 Gregor Leban, Marko Grobelnik

(a) (b) (c)

Fig. 1. Information displayed in different tabs of the Contextify sidebar. The Email tab
(a) shows recent emails from the selected contact, the Attachments tab (b) shows the
exchanged files, and the People tab (c) shows the people included in the conversations.

brought into view by clicking on the email. Below the list of emails there is also
a tag cloud of keywords that best describe the content of these emails. The sec-
ond tab displays the list of exchanged attachments together with various details
(Figure 1.b). Attachments that were exchanged several times, probably because
being updated, are grouped together. They can be opened by clicking on the
filename. The third tab lists the people who are participating in these emails
(Figure 1.c) while the fourth tab displays the web links that were exchanged in
the emails. The sidebar also provides searching capabilities where the context is
determined based on the search terms and not the sender of the selected email.
The found search terms are also highlighted for easier recognition. In the fu-
ture we’ll add a tab with a summary with persons appearance on various social
services.

3 Contextify dialog

An expanded context for the selected email can be displayed in the Contextify
dialog. The goal of the dialog is to provide a visual display of the contextual infor-
mation together with additional highlighting and filtering options. The context
in this dialog consists of those emails where the participants (the sender and
all the recipients) sufficiently match the participants in the currently selected
email. The context is defined here as all emails sent to a similar social group.

0000000000000000000000000000000000000

0000000000000000000000000000000000000182

Displaying email-related contextual information using Contextify 3

Fig. 2. Contextify dialog displays an expanded version of the context.

Such a definition of a context helps the user to see emails that are related to a
particular aspect of his/her life.

An example of this dialog is shown in Figure 2. All emails that belong to the
context are grouped into threads and displayed in the top left part of the dialog.
Below the topic of each thread is a list of keywords that best describe the content
of the thread. The bottom left part of the dialog shows a visualization of email
activity for the computed context over time – each bar shows the number of
emails that were received in a particular time period. By selecting or unselecting
specific bars the users can display only emails from a specific time period. The
right side of the dialog shows the social network for the participants in the
context. There is a directed edge between persons A and B if there is at least
one email sent from A to B. The font size for nodes depends on how often the
person is present in the emails this helps quickly identifying the most relevant
participants. Selecting a person in the graph also highlights emails sent by this
person in the list of emails.

4 Contact management

Accessing and modifying information about contacts can be done in the Con-
tact management dialog. Here, we can manually group different email addresses
that represent the same person. In this way, when showing contextual informa-
tion, emails from all person’s email addresses will be displayed. By clicking the
”Import contact information” button additional information about contacts can

0000000000000000000000000000000000000

0000000000000000000000000000000000000183

4 Gregor Leban, Marko Grobelnik

Fig. 3. Contact management dialog displays information about the contacts collected
from emails. Additional information about the contacts can be imported from social
web-services such as Facebook and LinkedIn.

be automatically imported from Facebook, LinkedIn and Outlook contacts. The
”Cleanup contacts” button provides a fast way to tidy-up contact names and to
merge contacts which are likely to represent the same person. An example of the
Contact management dialog is shown in Figure 3.

5 Conclusion and future work

The goal of Contextify is to determine and show the relevant contextual infor-
mation that should help the user to more efficiently perform his email-related
tasks. We are currently working on text-mining algorithms to provide additional
functionality such as email summarization, automatic categorization of emails
into folders, improved extraction of information from email contents and more
advanced contact management.

A video demonstration of the add-on can be seen at
http://www.youtube.com/watch?v=hYpxhUvYM10 (lower resolution) and at
http://www.screencast.com/t/ODg5MzM1YWEt (higher resolution).

6 Acknowledgements

This work was supported by the Slovenian Research Agency, the European Social
Fund, the IST Programme of the EC under PASCAL2 (IST-NoE-216886) and
ACTIVE (IST-2008-215040).

0000000000000000000000000000000000000

0000000000000000000000000000000000000184

KiWi - A Platform for building
Semantic Social Media Applications

Thomas Kurz, Sebastian Schaffert, Tobias Bürger, Stephanie Stroka, Rolf Sint,
Mihai Radulescu and Szabolcs Grünwald

Salzburg Research Forschungsgesellschaft
Jakob Haringer Str. 5/3, 5020 Salzburg, Austria
firstname.lastname@salzburgresearch.at

Abstract. The combination of semantic technologies and social soft-
ware has become more and more popular in the last few years as can be
seen by the emergence of Semantic Wikis or the popularity of vocabular-
ies such as FOAF or SIOC. The KiWi project is based upon these prin-
ciples and offers features required for Social Media applications such as
versioning, (semantic) tagging, rich text editing, easy linking, rating and
commenting, as well as advanced ”smart” services such as recommenda-
tion, rule-based reasoning, information extraction, intelligent search and
querying, a sophisticated social reputation system, vocabulary manage-
ment, and rich visualization. KiWi can be used both, as a platform for
building custom Semantic Media applications, and as a Semantic Social
Index, integrating content and data from a variety of different sources,
e.g. Wikis, blogs and content management systems in an enterprise inter-
net. Third-party applications can access the KiWi System using simple-
to-use web services. The demo presents the whole functionality of the
Open Source development platform KiWi in its final version within one
integrated project management scenario. Furthermore it shows differ-
ent KiWi-based Social Media projects to illustrate its various fields of
application.

1 Introduction

Wikis are Web-based applications which allow all users to edit content online. In
the same sense, the term ”Wiki” refers to a new philosophy of working with web
content with the principles of everyone contributing, ease of use, easy linking
of information, versioning and web-based media. Semantic Wikis (e.g. Semantic
MediaWiki1 or IkeWiki2), which have been developed in the research commu-
nity in the last years [1,2], combine this philosophy with the intelligence and
methods of the Semantic Web. This philosophy holds for other applications as
well: Most other social software systems such as blogs, photo sharing sites or so-
cial networking platforms share the same basic principles. To leverage on these
principles and the power of semantic technologies, the EU-funded project KiWi

1 Semantic MediaWiki: http://semantic-mediawiki.org
2 IkeWiki: http://ikewiki.salzburgresearch.at

0000000000000000000000000000000000000

0000000000000000000000000000000000000185

2

(Knowledge in a Wiki) builds a generic framework for Semantic Social Media.
The demo presents a number of KiWi-based applications (e.g., an artwork por-
tal, an idea management application, a community-based news portal etc.) and
demonstrates the added value of the KIWI framework for these applications.

2 The KIWI Framework

The KIWI framework follows a service oriented architecture3 with a small core
and an extension mechanism for developing application-specific actions and pro-
gram logic on top of it. The core services are usable from any extension and
generic jQuery widgets communicating over RESTfull webservices and thus its
functionality can easily be reused or adapted by application developers. The
KiWi core involves a fully versioned triplestore, a full text and metadata search
index (based on Apache SOLR4) and services to manage content, users and com-
ponents.
KiWi follows the resource concept, meaning that everything such as a wiki page,
person, tag, ontology class, etc. is a resource itself, a so called ContentItem. A
ContentItem can be extended with RDF Relations via a facading mechanism to
fulfill specific requirements. The system uses popular ontologies such as FOAF,
HGTags, IPTC Newscodes and it is possible to import self-created ontologies as
well. The KiWi framework builds heavily on Java Enterprise Edition5 (Java EE
5) and JBoss Seam6 (currently version 2.1).

3 Enabling Technologies

3.1 Information Extraction

As described in [3], KiWi combines semantic annotations directly with the text
content of the ContentItems and provides advanced user interfaces supporting
the annotation process with the help of suggestions coming from an information
extraction component. The service uses natural language processing and machine
learning algorithms to provide suggestions for annotations.

3.2 Reasoning

KiWi offers a rule-based inconsistency tolerant reasoning that can be explained
to users and that also allows for efficient knowledge base updates by the means
of reason maintenance, as described in [4]. The reasoner is able to run programs
implemented in sKWRL, a simple KiWi rule language.

3 Link to KiWi Architecture:
http://www.kiwi-community.eu/display/DOC/KiWi+Architecture

4 Apache SOLR: http://lucene.apache.org/solr/
5 Java Enterprise Edition:
http://www.oracle.com/technetwork/java/javaee/overview/index.html

6 JBoss Seam:http://seamframework.org/

0000000000000000000000000000000000000

0000000000000000000000000000000000000186

3

3.3 Semantic Search

KiWi includes two search engines, both based on a SOLR search index. The
first one allows searching on text and RDF metadata as well as facetting on
authors, tags, types, RDF literal properties and RDF object properties. Fur-
thermore it is possible to personalize search. The second search engine is able to
interpret KWQL queries [5]. KWQL is a rule-based query language based on a
label-keyword query paradigm. KWQL allows rich combined queries of full text,
document structure, and informal to formal semantic annotations. In addition
KiWi provides visKWQL[6], a visual interface for the KWQL language aimed at
supporting users in the query construction process.

3.4 Personalization

In KiWi there are several recommender services that use personal activities
to enhance content recommendations. As described in [7], the recommenders
use traditional tag-based retrieval, external factors such as tag popularity, tag
representativeness and the affinity between users and tags. It is also possible
to personalize the search by using users personal tagcloud and users personal
interests extracted from his or her published content.

3.5 Content Versatility

As described in [8], every piece of information is a combination of human-
readable content and associated meta-data, and the same piece of information
can be presented to the user in many different forms, even in parallel: as a wiki
page, as a blog post, as a comment to a blog, as a photo, or even in a bubble
in a map-based application. The decision how the information is displayed is
taken based on the context of the content and the user. This is what we call
”Content Versatility”. In the demo we will show the same content (a meeting in
our case) in the KiWi wiki application as well as in TagIt, a KiWi-based appli-
cation for map based content retrieval. We will also show that different services
(e.g. search services) and widgets (e.g. recommender widgets) can be reused by
different applications.

4 Demo Outline

Since the last demonstration at European Semantic Web Conference 2009, the
project has made considerable progress, which will be presented in this demo.
It shows the exploitation of the KiWi system within a project management sce-
nario in which the system is used by a company as a Semantic Wiki to handle
its project management. The Wiki is used to manage users, project pages, meet-
ings, meeting minutes, ideas etc. The storyline followed in the demo defines a
simple workflow, i.e., how a project can be collaboratively created, structured
and edited in KiWi using its enabling technologies. Furthermore it shows how

0000000000000000000000000000000000000

0000000000000000000000000000000000000187

4

existing content can versatilely be searched, integrated and displayed. To demon-
strate the ability to implement different types of applications on top of KiWi as
framework a number of other KiWi-based applications will be presented.

5 Conclusion

The potential of KiWi for building semantic social applications has been demon-
strated in several projects that build upon its framework. This includes the idea
management software Ideator[9] or the artwork portal ArtAround7. Further in-
formation about the KiWi project as well as source code and developer support
can be found at http://www.kiwi-community.eu and the showcase of the cur-
rent KiWi version at http://showcase.kiwi-project.eu.

Acknowledgements The research leading to these results is part of the project
”KiWi - Knowledge in a Wiki” and has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007–2013) under grant agree-
ment No. 211932. The authors would like to express their gratitude to all other
KiWi developers, particularly Klara Weiand, Fred Durao, Jakub Kotowski and
Marek Schmidt.

References

1. Völkel, M., Schaffert, S., eds.: 1st Workshop ”From Wiki to Seman-
tics”(SemWiki’06) – colocated with ESWC’06, Budva, Montenegro, 2006.

2. Lange, C., Reutelshöfer, J., Schaffert, S., Skaf–Molli, H., eds.: Fifth Workshop
”Semantic Wikis – Linking Data and People” (SemWiki’10) – colocated with
ESWC’10,Hersonissos, Crete, Greece, 2010.

3. Schmidt, M., Smrž, P.: Annotation component for a Semantic Wiki, Fifth Workshop
”Semantic Wikis – Linking Data and People”, Hersonissos, Greece, 2010

4. Kotowski, J. and Bry, F.: A Perfect Match for Reasoning, Explanation, and Reason
Maintenance: OWL 2 RL and Semantic Wikis, Fifth Workshop ”Semantic Wikis –
Linking Data and People”, Hersonissos, Greece, 2010.

5. Bry, F., Weiand, K.: Flavors of KWQL, a Keyword Query Language for a Semantic
Wiki, Proceedings of the 36th Conference on Current Trends in Theory and Practice
of Computer Science, Czech Republic, 2010.

6. Hartl, A., Weiland, K., Bry, F.: visKQWL, a visual renderer for a semantic web
query language, Proceedings of the 19th international conference on World wide
web (demo), North Carolina, USA, 2010.

7. Durao, F., Dolog, P.: Analysis of Tag-Based Recommendation Performance for a
Semantic Wiki, Fourth Workshop ”Semantic Wikis – Linking Data and People”,
Hersonissos, Greece, 2009.

8. Schaffert, S., Eder, J., Grünwald, S., Kurz, T., Radulescu, M.: KiWi - A Platform
for Semantic Social Software, Demo on 6th European Semantic Web Conference,
Hersonissos, Greece, 2009.

9. Sint, R., Markus, M., Schaffert, S., Kurz, T.: Ideator - a collaborative enterprise idea
management tool powered by KiWi, Fifth Workshop ”Semantic Wikis – Linking
Data and People”, Hersonissos, Greece, 2010

7 ArtAround: www.artaround.at

0000000000000000000000000000000000000

0000000000000000000000000000000000000188

Enterprise Data Classification Using Semantic
Web Technologies

David Ben-David1, Tamar Domany2, and Abigail Tarem2

1 Technion – Israel Institute of Technology, Haifa 32000, Israel,
davidbd@cs.technion.ac.il

2 IBM Research – Haifa, University Campus, Haifa 31905, Israel,
{tamar,abigailt}@il.ibm.com

Abstract. Organizations today collect and store large amounts of data
in various formats and locations, however they are sometimes required to
locate all instances of a certain type of data. Data classification enables
efficient retrieval of information when needed. This work presents a ref-
erence implementation for enterprise data classification using Semantic
Web technologies. We demonstrate automatic discovery and classifica-
tion of Personally Identifiable Information (PII) in relational databases,
using a classification model in RDF/OWL describing the elements to
discover and classify. At the end of the process the results are also stored
in RDF, enabling simple navigation between the input model and the
findings in different databases.

Recorded demo link: https://www.research.ibm.com/haifa/info/demos/
piidiscovery_full.htm

Keywords: Semantic Techniques, RDF, Classification, modeling, NeON,
RelationalOWL

1 Introduction

Organizations today collect and store large amounts of data in various formats
and locations. When an organization is required to meet certain legal or regula-
tory requirements, for instance to comply with regulations or perform discovery
during civil litigation, it needs to find all the places where the required data is lo-
cated. Data discovery and classification is about finding and marking enterprise
data in a way that enables quick and efficient retrieval of the relevant informa-
tion when needed. Most existing approaches either require re-classification of the
data each time the organization’s policies change, can only be applied to a single
data type or format, or only identify predefined sets of known fields.

In this work we demonstrate the concept of enterprise data classification us-
ing Semantic Web technologies described in [2]. The goal of the solution is to
provide organizations with a tool that automatically locates and annotates valu-
able information, provides manageable results and enables quick and easy access

189

to the data when needed. For example, if in order to comply with a privacy reg-
ulation an organization is required to mask all Social Security Numbers (SSN),
all the occurrences of SSN must be found.

This reference implementation demonstrates the automatic discovery and
classification of Personally Identifiable Information (PII) stored in relational
databases. The classification process starts with creating a model described using
the Resource Description Framework (RDF), containing the entities to discover
and classify as well as additional information that can help the discovery process
(e.g., type and format); this is referred to as a classification model. In this demo
we used a model representing PII, but any model that follows the meta-model
described in [2] can be used. The result of the classification process is a set of
RDF triples linking between entities in the classification model and locations
in the data stores, in this case database tables and columns. Using RDF to
define the classification model makes it easy to expand, merge and combine
existing models and generate new models for different purposes. The fact that the
classification results are also represented in RDF that follow the same shema as
the classification model, enables us to unify the results from different classifiers,
navigate easily between the model entities and the data sources (thanks of the
use of URIs), annotate, reason, and query the classified data, and more. The
classification process is composed of four stages:

1. Creating or loading an existing classification model.
2. Importing database schemas.
3. Discovering and classifying the data according to the classification model,

using SPARQL and various classification algorithms.
4. Representing the results in a way that allows navigation between the classi-

fication model and the specific columns where the information was found.

A high-level view of this process is depicted in Figure 1.

Fig. 1. The classification process

190

2 Implementation

Our reference implementation is based on the NeOn toolkit [4], an open-source,
Eclipse-based ontology engineering environment. In addition we used the Eclipse
Data Tools Platform (DTP)[1] to define connections with local and remote
databases. We chose RelationalOWL [5] as the basis to create an RDF rep-
resentation of the database metadata. We also used the Jena framework [3] to
access and query the different RDF representations. To those we added a set
of “home-made” plug-ins that perform the discovery and integrate between the
different components in the system. The discovery component uses the syllabi-
fying techniques described in [2], as well as type checking. Future extensions are
planned to include additional linguistic techniques (such as stemming) and the
use of sample content to verify the data’s format.

Using our classification tool users can create projects, build and edit models,
import existing models (in both cases, the models are validated against the meta-
model) and import or create database metadata RDF representations. Users can
perform the discovery process on any combination of models and databases. The
results, as well as the models and database metadata, can be viewed in both a
hierarchical view and a graph view, as depicted in Figure 2. Figure 2 shows part
of the discovery results (in this case - all table columns in which a first name
was discovered).

Fig. 2. A partial view of the discovery results in the NeOn-based tool

For the purpose of this demonstration, we execute our classification on two
externally available databases: one representing employee records in an organi-
zation (taken from the sample database created by the DB2 R© software installa-
tion) and the other representing medical records of patients (taken from ”Avitek
Medical Records Development Tutorials” by BEA Systems, Inc. 3).

3 http://download.oracle.com/docs/cd/E13222_01/wls/docs100/medrec_

tutorials/index.html

191

As noted previously, we use RDF to represent the discovery results, making
it possible to navigate from any node in the result back to both the classification
field in the model, and to the data field (column) in the database representation.
This easy navigation allows verifying the classification results, refining them
(adding or removing triples), and enriching the model so it is more accurate in
subsequent runs.

3 Summary

In this demonstration we exhibited the main advantages of our approach. By
combining different discovery techniques and extracting most of the search logic
to external files, we created a highly flexible and adaptable solution. Using RDF
to represent both the ontologies and the results maximizes the modularity and
extensibility of the classification input and facilitates easy navigation between
the results, the models and the data sources. The ontology can thus serve as
a centralized point to manage all valuable information in the organization and
enables easy location of all related pieces of data in one click. In addition, all
of the information created and used by the system (models, metadata RDF
representations, results) can be exposed to existing and evolving Semantic Web
tools, such as semantic query languages, reasoning engines and rule languages.

References

1. Eclipse Data Tools Platform (DTP) Project. data sheet, http://www.eclipse.org/
datatools/

2. Ben-David, D., Domany, T., Tarem, A.: Enterprise Data Classification using Se-
mantic Web Technologies. In: ISWC (2010)

3. Carroll, J.J., Dickinson, I., Dollin, C., Seaborne, D.R.A., Wilkinson, K.: Jena: Imple-
menting the Semantic Web Recommendations. Tech. rep., HP Laboratories (2003),
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf

4. Holger, P.H., Studer, L.R., Tran, T.: The NeOn Ontology Engineering Toolkit.
In: ISWC (2009), http://www.aifb.uni-karlsruhe.de/WBS/pha/publications/

neon-toolkit.pdf

5. de Laborda, C.P., Conrad, S.: RelationalOWL: a data and schema representation
format based on OWL. In: Conferences in Research and Practice in Information
Technology. pp. 89–96 (2005)

192

The eCloudManager Intelligence Edition

Semantic Technologies for Enterprise Cloud Management

Peter Haase, Tobias Mathäß, Michael Schmidt,
Andreas Eberhart, Ulrich Walther

fluid Operations, D-69190 Walldorf, Germany
firstname.lastname@fluidops.com

Abstract. Enterprise clouds apply the paradigm of cloud computing
to enterprise IT infrastructures, with the goal of providing easy, flexi-
ble, and scalable access to both computing resources and IT services.
Realizing the vision of the fully automated enterprise cloud involves ad-
dressing a range of technological challenges. In this demonstration, we
show how semantic technologies can help to address the challenges re-
lated to intelligent information management in enterprise clouds. In par-
ticular, we address the topics of data integration, collaborative documen-
tation and annotation and intelligent information access and analytics
and demonstrate solutions that are implemented in the newest addition
to our eCloudManager product suite: The Intelligence Edition.

1 Introduction

Cloud computing has emerged as a model in support of “everything-as-a-service”
(XaaS). Cloud services have three distinct characteristics that differentiate them
from traditional hosting. First, they are sold on demand, typically by the minute
or the hour; second, they are elastic – users can have as much or as little of a
service as they want at any given time; and third, cloud services are fully man-
aged by the provider [3]. While the paradigm of cloud computing is best known
from so called public clouds, its promises have also caused significant interest
in the context of running enterprise IT infrastructures as private clouds [2]. A
private cloud is a network or a data center that supplies hosted services to a lim-
ited number of people, e.g. as an enterprise cloud. Like public clouds, enterprise
clouds provide easy, scalable access to computing resources and IT services.

Realizing the vision of the fully automated data center – the enterprise cloud
– involves addressing a range of technological challenges, touching the areas of
infrastructure management, virtualization technologies, but also distributed and
service-oriented computing. In our conference paper [1], we have described the
challenges related to intelligent information management in enterprise clouds and
discussed how semantic technologies can help to address them. In particular, we
have addressed the topics of data integration, documentation and annotation,
and intelligent information access and analytics. Summarizing the main contri-
butions, our RDF-based approach to data integration allows us to deal with the
highly heterogeneous and changing set of resources encountered in enterprise

193

data centers. Semantic wikis provide an end-user oriented interface for creat-
ing structured and unstructured annotations, supporting the main use cases for
documentation and knowlegde management, seamlessly integrating automati-
cally obtained data with user-generated content. This data can be searched, ex-
plored, and analyzed without system boundaries, supported by state-of-the-art
techniques of semantics-based information access.

This demonstration complements the conference paper with a live demo of
the implementation of our solution in the eCloudManager Intelligence Edition1.
In the remainder, we present a brief solution overview of the eCloudManager,
followed by a description of the demonstration scenario.

2 Solution Overview

The eCloudManager Product Suite is a Java-based software solution that is
targeted at the management of enterprise cloud environments. The eCloudMan-
ager’s overall architecture is depicted in Figure 1. The bottom of the figure shows
the two dimensions of information relevant to the eCloudManager, namely Data
Center Resources and Business Resources. The data center resources are divided
along the IT stack into (i) a Hardware Layer that consists of physical storage,
network and compute infrastructure, (ii) a Virtualization Layer built on top of
the hardware layer that is made up of hypervisors with appropriate management
capabilities, and finally (iii) the Application Layer built on top of the virtual-
ization layer, comprising applications on top of the virtualized resources. These
data center resources are complemented by associated business resources, like
customer data, hardware catalogs, or related project information.

Built on top of this infrastructure, the eCloudManager comes with four com-
plementary editions for Infrastructure Management, Virtual Landscape Manage-
ment, and Self-Service. In the demonstration, we will focus on the features of
the fourth edition, namely the Intelligence Edition, which makes use of innova-
tive semantic technologies to integrate available resources into a semantic store,
investigate this data, and collaboratively interact with the integrated data.

At the bottom of the Intelligence Edition is the Data Integration Layer, which
relies on the concept of so-called data providers that extract data from a physical
or logical resource, convert it into RDF and integrate the resulting RDF data
into the central repository. The central repository where the provider data is
stored is settled in the Data Management Layer. Technically, it is realized as a
Sesame triple store that adheres to a predefined (yet extendable) OWL ontology.
In addition to the repository, the layer provides components for search and intel-
ligent, semantics-based information access. A central component in this layer are
also semantic wiki pages that are associated with the resources in the repository;
they offer an entry point to the eCloudManager users, allowing to add new and
complement existing information. The uppermost layer in the Intelligence Edi-
tion is the Presentation Layer. Located on top of the Data Management Layer, it

1 The product including additional material such as screencams is available at http:

//fluidops.com/eCM_INT.html

194

Wiki
Pages

EMC Storage
Provider

Virtual Center
Provider

JMX
Provider

Rel. DB
Provider

D
a

ta
 I

n
te

g
ra

ti
o

n

La
ye

r
D

a
ta

 M
a

n
a

g
em

en
t

La
ye

r
P

re
se

n
ta

ti
o

n

La
ye

r

… …

Visualization
Widgets

Navigation
Widgets

Collaboration
Widgets

Se
ar

ch
 &

In

fo
rm

at
io

n
 A

cc
es

s

In
fr

as
tr

u
ct

u
re

 M
an

ag
e

m
e

n
t

V
ir

tu
al

 L
an

d
sc

ap
e

 M
an

ag
e

m
e

n
t

 S
e

lf
-S

e
rv

ic
e

Virtualization Layer

Network Computing Resources

Hardware Layer

Application Layer

VLM

VL VL

User-generated content Provider content

Intelligence Edition

D
a

ta
 C

en
te

r
R

es
o

u
rc

es

B
u

si
n

es
s

R
es

o
u

rc
es

Customer
Database

C
o

lla
b

o
ra

ti
o

n

Su
p

p
o

rt

…

B
ro

w
se

r
Fr

o
n

te
n

d

VL

VLM

VLM

Netw.-Att.
 Storage

Semantic Data Store

Keyword and Structure Indices

Fig. 1. eCloudManager Architecture

comes with a predefined set of widgets with varying functional focus, e.g. offering
support to display wiki pages, visualize the underlying data using charts, navi-
gate through the underlying RDF graph, and collaboratively annotate resources
using both semantic annotations as well as free-text documentation.

3 Demonstration Scenario

We now give a brief overview of the demonstration, in which we show how
the Intelligence Edition addresses the challenges in the administration of a real
enterprise cloud. It is structure along the main features of the system.

Data Integration. Being able to automate data center operations via low
level APIs is the prerequisite for achieving the vision of a fully automated enter-
prise cloud. Many layers play a role in this picture and one is faced with a large
set of provider APIs ranging from storage to application levels. In the demo,
we will show an enterprise cloud with heterogeneous multi-vendor resources.
We show how we use RDF as a data model for integrating semantically het-
erogeneous information to obtain a unified view on the entire data center, both
horizontally – across different product versions and vendors – and vertically –
across storage, compute units, network, operating systems, and applications.

Collaborative Documentation and Annotation. In order to have a com-
plete picture, organizational and business aspects need to be added to the tech-
nical data. Consider the following examples: The decision whether to place a

195

Fig. 2. Visual exploration of query results in the Intelligence Edition

workload on a redundant cluster with highly available storage is strongly af-
fected by the service level the system needs to meet, data center planning tools
must take expiring warranties of components into account, and having a rela-
tively mild punishment for SLA violations may lead a cloud operator to take a
chance and place workloads on less reliable infrastructure. In the demonstration,
we will show how administrators can extend the data fed from infrastructure
providers by documenting and annotating the respective items. The administra-
tor can e.g attach best practices for error handling to storage resources, connect
infrastructure level resources with project and customer information etc.

Intelligent Information Access and Analytics. Efficient management
of a data center requires providing data center managers with the information
they need to make intelligent, timely and precise decisions. We will demonstrate
specific information needs, including the generation of reports about status and
utilization of data center resources over time, the visualization of key perfor-
mance metrics in dashboards, the search for specific resources etc. Many of these
information needs require multi-dimensional queries that span across both IT-
related and business aspects, and therefore cannot be answered by a single data
source alone. As an example, Figure 2 shows an intermediate step in the visual
exploration process for customers with gold service level who are affected by the
failure of a storage filer. Similar in spirit, we will demonstrate different queries
and result visualizations that overcome the borders of data sources.

References

1. Peter Haase, Tobias Mathäß, Michael Schmidt, Andreas Eberhart, and Ulrich
Walther. Semantic technologies for enterprise cloud management. In ISWC, 2010.

2. Borja Sotomayor, Rubén S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet Computing,
13(5):14–22, 2009.

3. Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break
in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, 2009.

196

WebProtégé: Supporting the Creation of ICD-11

Sean M. Falconer, Tania Tudorache, Csongor Nyulas, Natalya F. Noy, Mark A.
Musen

Stanford Center for Biomedical Informatics Research, Stanford University, US
{sfalc , tudorache, nyulas, noy, musen}@stanford.edu

Abstract. WebProtégé is a highly customizable Web interface for brows-
ing and editing ontologies, which provides support for collaboration. We
have created a customized version to support the World Health Orga-
nization with the collaborative development of the 11th revision of the
International Classification of Diseases (ICD-11). Our demo will present
this customized version and focus on how content creation and collabo-
ration is being supported in WebProtégé for the development of ICD-11.

1 Introduction

The International Classification of Diseases (ICD) is a public global standard
that organizes and classifies information about diseases and related health prob-
lems [4]. Health officials use ICD in all United Nations member countries to
compile basic health statistics, to monitor health-related spending, and to in-
form policy makers. In the United States, use of the ICD is also a requirement
for all medical billing. ICD has therefore a major impact on many aspects of
health care all over the world.

In 2007, the WHO initiated the 11th revision of ICD. Several ambitious goals
were set for this version (details in [2]). One such goal is to allow the ICD to
become a multi-purpose classification for a much larger number of usages. Pre-
vious versions of ICD were strictly classification hierarchies used for statistical
purposes. To meet the new revision goals, ICD-11 will use OWL to create a
rich formal representation. Another key difference between ICD-11 and previ-
ous versions is that the development process of ICD-11 will use a Web-based
open process powered by collaboration and social features. That is, similar to
Wikipedia, the WHO hopes that a large number of medical experts will con-
tribute to the content of ICD-11.

Our group has been working closely with the WHO to provide the technical
support for these ambitious goals. We have created a customized version of
WebProtégé specifically designed to support the ICD authoring process. In [2],
we discuss in detail the use of Semantic Web technologies for the revision of
ICD. Our demo will showcase features of the customized WebProtégé such as
content creation and collaboration. For the remainder of this paper, we present
the architecture and highlight features of the user interface.

197

Protégé BioPortalWebProtégé

WebProtégé Server Side

Collaboration
Services

UI Configuration
Services

BioPortal
Services

ICD
Services

Collaboration Framework
Change

Tracking API
Notes
API

Ontology
Access API

Workflow User
Management Access Policies

Ontology Repository

UMLS
Mappings

ICD Umbrella

SNOMED
Mappings

ICD Content
Model

ICD

IND
Mappings

ICD
ChAO

Java /
RMI

REST callsservlets

Java / RMI

interacts with
imports

Fig. 1. An architecture diagram of WebProtégé used in the ICD context. WebProtégé
front-end uses the services in the WebProtégé server side to display information to
the user. The WebProtégé server side and the desktop client Protégé connect to the
Collaboration Framework to access the ontology and the collaboration services. The
Ontology Repository stores the ontologies available to the clients.

2 WebProtégé— Authoring Platform for ICD-11
WebProtégé is a pluggable and extensible platform for authoring ontologies. The
tool was designed such that it could be customized for each project according
to its own requirements. This is particularly important for the ICD revision
project, as it is still in its infancy, many fundamental issues and requirements
are undefined. Our tools need to be adaptable on the fly when changes are made
to the content model, user-interface requirements, and workflow. In the following
sections, we briefly describe the architecture and highlight some of the features
of the user interface.

2.1 Architecture

Figure 1 shows a high level architecture diagram and the interaction of the
software components for the customized version of WebProtégé. The core func-
tionality of the application is supported by the Protégé server, which provides
access to the ontology content, such as retrieving and changing classes, prop-
erties and individuals in the ontology. The ontologies that the server accesses
are stored in a database on the server side. The Collaboration Framework [3]
provides the collaboration and ontology access services: Ontology Access API,
Notes and Discussions API, and Change Tracking API.

Both WebProtégé and the “traditional” Protégé desktop client can connect
through the Collaboration Framework to interact with the ontology. Support
for importing terms from existing terminologies was one of the requirements
for the ICD-11 revision. In order to search external biomedical terminologies
and to import terms from these terminologies, WebProtégé accesses BioPortal,
a repository of about 200 biomedical ontologies and terminologies [1]. BioPortal
provides REST service access that enables search across different ontologies and
access to information about specific terms.

198

Fig. 2. The ICD authoring tool using WebProtégé. Each tab contains one or more
panels, called portlets that can be arranged by drag-n-drop. The left hand-side portlet
shows the disease class hierarchy of the ICD ontology. The right panel shows the uses
(linearizations) of the selected disease in the tree, in this case Tuberculosis.

2.2 The WebProtégé User Interface

WebProtégé is a web portal, inspired by other portals, such as myYahoo or
iGoogle. Our vision is to enable users to build a custom user interface by com-
bining existing components in a form that is appropriate for their project. The
user interface is composed of tabs, either predefined ones or user-defined. A new
tab is an empty container in which users can add and arrange by drag-n-dropping
portlets. A portlet is a user interface component that provides some functional-
ity. For example, the Class tree portlet displays the class hierarchy in an ontology
and has support for class level operations (create and delete class, move class in
hierarchy, etc.). WebProtégé is extensible and has a plugin infrastructure.

For the ICD-11 revision project, we had to take into consideration that most
of the ICD editors are domain experts, mainly medical doctors, who do not have
backgrounds in ontology engineering. We configured the customized version of
WebProtégé to use simple Web-based entry forms with fields that correspond to
the attributes of the ICD content model. We have tried to ensure that the user
interface does not look like an ontology editing environment, but is a customized
experience for the domain experts.

The customized WebProtégé user interface is shown in Figure 2. The user
interface is organized in a series of tabs: MyICD, ICD Content, Category Notes
and Discussion, Reviews, Change History and Manage Hierarchy tab. Each tab
presents a certain piece of functionality to the user.

The main functionality of WebProtégé is the support for browsing and editing
ontologies on the Web. Editing support is available in the ICD Content tab.

199

Medical experts from all over the world are using the system to edit ICD-11
simultaneously. Each change by an editor is immediately committed and visible
to other editors of ICD-11.

Another key piece of functionality is collaborative support. This is critical
in such a large distributed project. Editors can use WebProtégé to add notes to
classes, properties, and individuals in the ontology. This allows authors to raise
questions and discuss different issues that arise during editing. The WHO plans
to use a peer review process to ensure quality of the ICD content model. In
the current version, WebProtégé supports a prototypical implementation of this
feature. A user with appropriate permissions can request the review of a disease
description.

WebProtégé uses a declarative user interface where the user interface com-
ponents and layout is specified in an XML configuration file. The configuration
can be changed on the fly, allowing the interface to be updated without re-
compiling or re-deploying the application. This feature provides great flexibility
for customizing WebProtégé.

3 Summary

We have briefly presented a customization of WebProtégé, a web-based tool for
distributed collaborative development of ontologies. The WHO is using WebProtégé
as the primary development environment for ICD-11. Developers of other ter-
minologies within the WHO Family of International Classifications (WHO-FIC)
are beginning to use WebProtégé as well. In the demo session, we will demon-
strate the main features and benefits of WebProtégé, specifically how to create
and edit the ICD content model, how to create notes and discussion threads,
and import terms from Bioportal.

References
1. N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet,

D. L. Rubin, M.-A. Storey, C. G. Chute, and M. A. Musen. Bioportal: ontologies
and integrated data resources at the click of a mouse. Nucleic Acids Research,
10.1093/nar/gkp440, 2009.

2. T. Tudorache, S. Falconer, C. Nyulas, and M. A. Musen. Will semantic web technolo-
gies work for the development of icd-11? In International Semantic Web Conference
(ISWC2010), 2010.

3. T. Tudorache, N. F. Noy, and M. A. Musen. Supporting collaborative ontology
development in Protégé. In Seventh International Semantic Web Conference, ISWC
2008, Karlsruhe, Germany, 2008.

4. WHO. International classification of diseases, manual of the international statistical
classification of diseases, injuries and causes of death: 10th revision. Technical
report, 1993.

200

Building Linked Data Applications with Fusion:
A Visual Interface for Exploration and Mapping

Samur Araujo1, Geert-Jan Houben1, Daniel Schwabe2, Jan Hidders1

1Delft University of Technology, PO Box 5031, 2600 GA Delft, the Netherlands
2PUC-Rio, Rua Marques de Sao Vicente, 225, Rio de Janeiro, Brazil

{s.f.cardosodearaujo, g.j.p.m.houben, a.j.h.hidders}@tudelft.nl

dschwabe@inf.puc-rio.br

Abstract. Building applications over Linked Data often requires a mapping
between the application model and the ontology underlying the source dataset
in the Linked Data cloud. Explicitly formulating these mappings demands a
comprehensive understanding of the underlying schemas (RDF ontologies) of
the source and target datasets. This task can be supported by integrating the
process of schema exploration into the mapping process and help the
application designer with finding the implicit relationships that she wants to
map. This demo describes Fusion - a framework for closing the gap between the
application model and the underlying ontologies in the Linked Data cloud.
Fusion simplifies the definition of mappings by providing a visual user
interface that integrates the exploratory process and the mapping process. Its
architecture allows the creation of new applications through the extension of
existing Linked Data sources with additional data.

Keywords: semantic web, data interaction, data management, RDF mapping,
Linked Data

1 Introduction

Nowadays, the Linked Data1 cloud provides a new environment for building
applications where many datasets are available for consumption. Although data in this
cloud is ready to use, applications over the Linked Data cloud have currently an
intrinsic characteristic: they consume RDF2 data “as is”, since designers do not have
write permission over the data in the cloud which would enable them to change the
data in any way. This fact raises an important issue concerning the development of
applications over Linked Data: how to fill the gap between the ontology associated
with the application model and the ontology used to represent the underlying data
from the Linked Data cloud? The main benefit of mapping these two models is that

1 Linked Data - http://linkeddata.org/
2 http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

201

Linked Data can then be accessed through properties defined in the application model,
which is more convenient for the designer, consequently simplifying considerably the
development and maintenance of the application.

This demo presents Fusion [1], a lightweight framework to support application
designers in building applications over Linked Data. It supports designers in mapping
the ontology of the used Linked Data sources to their application model by integrating
the process of exploration of the target schema with the task of expressing a mapping
rule itself. Fusion features a visual user interface that guides the designer in the
process of specifying a mapping rule. It uses a standard RDF query language and
allows Linked Data to be accessed using properties defined in the application model,
consequently simplifying the use of Linked Data in a specific context.

2 Architecture Overview

The main aim of Fusion is to help the designer in discovering relationships in RDF
graphs that exist in the Linked Data cloud and specifying rules for the derivation of
new properties for these relationships. Fusion’s architecture provides a complete
environment to specify and execute a derivation rule. An overview of Fusion’s
architecture is shown in Fig. 1. The Fusion server engine is responsible for executing
the derivation rule itself. During the process of executing a rule, it queries a source
endpoint in the Linked Data, processes the results, and produces a set of new triples
that will be added to the Fusion repository. Any RDF data store can be used as a
Fusion repository. Currently, Fusion implements adapters for Sesame6 and Virtuoso7
data stores, although other adapters can be easily added to its architecture. All derived
triples in Fusion contain as subject a resource whose URI belongs to the queried
dataset, so the derived data is intrinsically interlinked with the Linked Data cloud. For
this reason, a query over a federation of endpoints that includes the Fusion repository
endpoint will allow the designer to have a view over the Linked Data that also
includes the properties defined in her application model.

Fig. 1 – Fusion’s architecture overview.

 Fusion is implemented in Ruby on Rails8 as a web application. It uses the
ActiveRDF9 API that allows an RDF graph to be accessed in the object-oriented

6 http://www.openrdf.org/
7 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
8 http://rubyonrails.org/
9 http://www.activerdf.org/

202

paradigm. By using this API the properties of an RDF resource can be accessed as an
attribute of its corresponding Ruby10 object. This architecture allows the designer to
write complex functions for computing a new datatype property value using the full
power of the Ruby language, which cannot be achieved simply by using the SPARQL
language.

Derivation rules could be executed on demand, by any rule engine associated to
the databases in the federation. However, even if theoretically possible, executing
inference rules, or even instantiating a virtual view, over the Linked Data is still an
open problem, since it raises many performance issues. Indeed, querying data that is
already materialized is always faster than querying data that needs to be processed at
runtime. Fusion avoids this problem by materializing the result of the rules as new
triples in the Fusion repository when the derivation rules are defined.

3 Example of Use

This section presents a scenario that illustrates the use of Fusion to create an
application by extending Linked Data sources with additional properties. Suppose that
the designer wants to establish the relationship between US senators and the US state
that they represent. Therefore she needs to construct a derivation rule that will find
and define such a correspondence between politicians and states in the GovTrack.Us’s
Linked Data. In the first step in the process, the designer provides an example of two
resources in GovTrack.Us that she knows in advance that are actually related, for
instance, the politician Christopher Bond and the state of Missouri. Also, she needs to
declare the GovTrack.Us endpoint to be queried and the maximum depth of the path.
As the result of this first step, Fusion shows all the paths that connect these two
example resources satisfying the maximum path length. This result is shown in Fig. 2.
In this example, the paths found have a maximum length of 3.

Fig. 2 – Fusion’s interface showing the discovered paths.

10 http://www.ruby-lang.org/en/

203

In this view, the designer can now look for the path that has the intended
semantics. Note that with this view the tool assists the designer in this discovery
process, since she does not need to query the schema manually in order to find these
paths. The first path shown in Fig. 2 indicates that the politician Christopher Bond has
a role as senator representing the state Missouri, and in our example case the designer
can now infer that this is an instance of the path that she is looking for. After this
conclusion, the designer chooses that instance to be the template for the rule.

Fig. 3 – Generalizing the path for the property isSenatorOf in GovTrack.Us.

In the next step, shown in Fig. 3, the designer will define the derivation rule itself,
which means that she visually formulates a query, which generalizes the selected path
from the first step into a query that selects the elements to be connected through the
property isSenatorOf. To complete this operation she also needs to define the graph
where the derived triples will be stored and a specific URI to be used as the predicate
of the new triples, which in this example will be the URI
http://example.org/isSenatorOf. Note that in this example 3 nodes were generalized
such that only paths between resources of the RDF type Politician and RDF type
State that contain an intermediate node that is part of the United States Senate will be
considered during the derivation process. Consequently, Fusion will derive the new
property isSenatorOf for all instances of the class Politician that are connected to an
instance of the class State through the designated path. The whole process ends with
Fusion adding new triples to Fusion repository.

References

1. Araujo S., Houben G., Schwabe D., Hidders J. Fusion – Visually Exploring and
Eliciting Relationships in Linked Data. In Proceedings of the 9th International
Semantic Web Conference (ISWC2010). Shanghai, China. Nov 07-11, 2010.

204

STEREO: a SaT-based tool for an optimal
solution of the sERvice selEctiOn problem

Daniel Izquierdo, Maŕıa-Esther Vidal, and Blai Bonet

Departamento de Computación
Universidad Simón Boĺıvar
Caracas 89000, Venezuela

{idaniel,mvidal,bonet}@ldc.usb.ve

Abstract. We present STEREO, a system that offers an expressive for-
malism and implements techniques firmly grounded on logic to solve the
Service Selection Problem (SSP). STEREO adopts the Local-As-View
approach (LAV) to represent services’ functionality as views on ontol-
ogy concepts, while user requests are expressed as conjunctive queries on
these concepts. Additionally, users can describe their preferences, which
are used to rank the solutions. We discuss the LAV formulation of SSP;
then, we illustrate the encoding of SSP as a logical theory whose mod-
els are in correspondence with the problem solutions, and in presence of
preferences, the best models are in correspondence with the best-ranked
solutions. We demonstrate STEREO and the properties of modern SAT
solvers that provide an efficient and scalable solution to SSP.

1 Introduction

Nowadays, several annotation tools like the one proposed by Ambite et al. [1],
are able to label and convert existing Web data sources into Semantic Web
Services. Once this tremendous amount of services becomes available, users will
more than ever require approaches to precisely express their selection needs and
to effectively identify the services that best meet their requirements. To achieve
this goal, we developed STEREO, a system that offers an expressive formalism
for describing Web services and user requests, and implements a logic-based
solution to efficiently select the services that best meet the user requirements.
The STEREO formalism and techniques have been reported in [4].

STEREO is tailored to constantly changing Web service datasets and a rel-
atively stable set of ontology concepts. STEREO adopts the recent approach of
Ambite et al. [1] that describes services as views on ontology concepts following
the LAV approach that is widely used in integration systems [5]. Thus, every
time a service changes or a new one becomes available, only a tiny fraction of
the mappings must be updated. Additionally, STEREO models user requests
as conjunctive queries on the ontology concepts and casts SSP as the problem
of rewriting a query in terms of a set of views, the so-called Query Rewriting
Problem (QRP). Thus, STEREO exploits existing scalable and efficient tech-
niques that have been proposed in the data integration area [2, 5]. Furthermore,

205

Encoder Service
RewritingsFinder Decoder

CNF
Theory

Models

Ontology
reasoner

IS=<D,S,M>

Service Views

www.aa.com
www.united.com

Catalog

User
Request
R=<Q,P>

Fig. 1. The STEREO Architecture

STEREO offers a simple yet expressive language for preferences and supports
users’ preferences and constraints on the set of the selected services to satisfy
a given request. These preferences and constraints further refine and rank the
set of valid rewritings of the posed query, in a way that the best solutions to
SSP corresponds to the best-ranked valid rewritings of the corresponding QRP.
STEREO constructs a propositional logical theory that captures the features
associated with SSPs; each model of the theory encodes a valid combination
of services, and these models are ordered by their rank and the best-ranked
models are the models with minimum rank. Knowledge encoded in the ontology
is used to extend the rules in the logical theory to permit the cover of ontol-
ogy symbols in the query with symbols in the views according to subsumption
relationships represented in the ontology. We demonstrate the benefits of the
approach and show the following key issues: the expressiveness by modeling a
real-world domain; the scalability by demonstrating how STEREO is able to
enumerate realistic instances of SSP in a few seconds; and finally, the perfor-
mance by enumerating in the same logical theory, the optimal models based
on different cost/rewards of the users’ preferences. The demo is published at
http://stereo.ldc.usb.ve/STEREO.

2 STEREO Architecture

The STEREO architecture is comprised of a Catalog of service descriptions,
an Ontology Reasoner, the Encoder, the best model Finder, and the Decoder.
Figure 1 depicts the overall architecture. An instance of SSP consists of an
integration framework IS and a user request R. Formally, IS is a tuple 〈D,S,M〉
where D is an ontology1, S is the set of services, and M is the set of LAV
mappings. R is a tuple 〈Q,P 〉 where Q is a conjunctive query on the ontology
relational symbols and a set of preferences P . The STEREO Catalog is populated
with the integration system components. We developed an Ontology Reasoner to
compute the transitive closure of the subsumption relationships, and the Encoder
module makes use of this information in conjunction with the LAV mappings,
constant symbols, and users’ preferences to encode an input instance of SSP

1 An ontology is comprised of a set of relational and constant symbols from which log-
ical formulas can be constructed, and a collection of axioms describing the ontology.

206

as a CNF theory. STEREO uses c2d (http://reasoning.cs.ucla.edu/c2d)
to compute all the best-ranked models of the CNF theory in a certain normal
form called deterministic and decomposable negation normal form (d-DNNF)
[3]; however, off-the-shelf SAT solvers can be also used. The Finder computes
a best model by enumerating the models and it can reuse the same d-DNNF
for different cost/rewards associated with the preferences to calculate the best
service rewritings. The Decoder translates the model(s) into the input instance.

3 Demonstration of Use Cases

We illustrate our approach on a simple travel domain that contains information
about flight and train trips between cities and information about which cities
are in the US. The ontology is comprised of the predicates trip, flight, train and
uscity. The first predicate relates cities (x, y) if there is a direct trip either by
plane or train between them. The flight predicate relates (x, y, t) whenever there
is a direct flight from x to y operated by airline t, and similarly for train, and
uscity indicates if a given city is or not a US city. The ontology axioms capture
two subsumption relations:

flight(x, y, t) v trip(x, y). train(x, y, t) v trip(x, y).

For the services, we assume the following type of data sources:

– nat-flight(x, y, t) relates two US cities that are connected by a direct flight,
– one-way-flight(x, y) relates two cities that are connected by a one-way flight,
– nat-train(x, y) relates US cities that are connected by a direct train,
– to-pa(x) tells if there is a direct flight from x to Paris operated by American,
– from-la(x) tells if there is a direct flight from LA to x operated by United.

Based on the ontology concepts the services are described using LAV views:

nat-flight(x, y) :− flight(x, y, t), uscity(x), uscity(y) .

one-way-flight(x, y) :− flight(x, y, t) .

nat-train(x, y) :− train(x, y, t), uscity(x), uscity(y) .

to-pa(x) :− flight(x,Paris,AA) .

from-la(x) :− flight(LA, x,UA) .

Consider a user that needs to select the services able to retrieve one-stop
round trips from a US city x to any city y in the world, and the user prefers
flying than traveling by train. This request is represented as follows:

Q(x, y) :− uscity(x), trip(x, u), trip(u, y), trip(y, v), trip(v, x) .

This preference is modeled by assigning a high reward to the symbol flight.
Any rewriting of the ontology predicates in terms of the services defined by these
predicates, implements the request. In addition, rewritings comprised of services

207

defined by the symbol flight will have higher scores than those with services
defined by the symbol train. Thus, this rewriting is valid and highly ranked:

I(x,Paris) :− nat-flight(x, u), to-pa(u), one-way-flight(Paris, v), nat-flight(v, x) .

But, the following rewriting is not a valid solution because it maps the query
variable y into two different constants Paris and LA that denote different cities:

I ′(x, y) :− nat-flight(x, u), to-pa(u), from-la(v), nat-flight(v, x) .

Using this travel domain, we consider the following scenarios:

– We run STEREO in three different benchmarks. We start with a benchmark
of queries with 2 to 5 sub-goals and sets of 10 to 100 services; we show that
the sets of 100 airlines with 5-stop flights can be compiled in 328 secs, the best
model can be computed in 0.29 secs, and the enumeration of all models in
0.47 secs. We add a second service for each airline and show that STEREO
behavior remains similar. Finally, we try services with multiple sub-goals
which are randomly generated and show that the compilation time does not
grow monotonically with the number of views. The time to find the best
model is 0.46 secs while the enumeration of all models is about 17 hours.

– We test the system with ontologies of different sizes and show reusability
by assigning different cost/reward to the preferences; we also demonstrate
that the same d-DNNF can be used to compute the best model, while the
execution time remains almost the same.

4 Conclusions

We present a logical-based approach that relies on the LAV formalization to
solve SSP; the approach is expressive, efficient and scalable. We illustrate the
formalization of service functionalities in terms of simple conjunctive rules. In
addition, we demonstrate a propositional logic-based formalization of SSP in-
stances, and different scenarios where the properties STEREO can be observed
by users. We show how the approach can be applied to real-sized problems, while
the whole approach is only possible when the compilation of the CNF theory
into d-DNNF succeeds.

References

1. J. L. Ambite, S. Darbha, A. Goel, C. A. Knoblock, K. Lerman, R. Parundekar, and
T. A. Russ. Automatically constructing semantic web services from online sources.
In ISWC, pages 17–32, 2009.

2. Y. Arvelo, B. Bonet, and M.-E. Vidal. Compilation of query-rewriting problems
into tractable fragments of propositional logic. In AAAI, 2006.

3. A. Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.
4. D. Izquierdo, M.-E. Vidal, and B. Bonet. An expressive and efficient solution to the

service selection problem. In ISWC-To Appear, 2010.
5. R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries

using views. VLDB J., 10(2-3):182–198, 2001.

208

The Catalogus Professorum Lipsiensis – Semantics-based
Collaboration and Exploration for Historians

Thomas Riechert*, Ulf Morgenstern+, Sören Auer*, Sebastian Tramp*, and Michael
Martin*

* AKSW, Institut für Informatik, Universität Leipzig, Pf 100920, 04009 Leipzig
{lastname}@informatik.uni-leipzig.de, http://aksw.org

+ Historisches Seminar, Universität Leipzig, Pf 100920, 04009 Leipzig
{lastname}@uni-leipzig.de, http://www.uni-leipzig.de/histsem

1 Introduction

The World Wide Web (WWW), as an ubiquitous medium for publication and exchange,
already significantly influenced the way how historians work: the availability of public
catalogs and bibliographies enable efficient research of relevant content for a certain
investigation; the increasing digitization of works from historical archives and libraries,
in addition, enables historians to directly access historical sources remotely. The ca-
pabilities of the WWW as a medium for collaboration, however, are only starting to
be explored. Many historical questions are only answerable by combining information
from different sources, from different researchers and organizations. Furthermore, after
analyzing original sources, the derived information is often more comprehensive than
can be captured by simple keyword indexing.

In [3] we report about the application of an adaptive, semantics-based knowledge
engineering approach for the development of a prosopographical knowledge base. In
this demonstration we will showcase the comprehensive prosopographical knowledge
base and its potential for applications. In prosopographical research, historians analyze
common characteristics of historical groups by studying statistically relevant quantities
of individual biographies. Untraceable periods of biographies can be determined on the
basis of such accomplished analyses in combination with statistically examinations as
well as patterns of relationships between individuals and their activities. In our case,
researchers from the Historical Seminar at the University of Leipzig aimed at creating a
prosopographical knowledge base about the life and work of professors in the 600 years
history of University of Leipzig ranging from the year 1409 till 2009 - the Catalogus
Professorum Lipsiensis (CPL).

2 Architectural Overview

The system architecture of CPL comprises a combination of different applications,
which interact using standardized interfaces as illustrated in Figure 1. We divided the
architecture into two separated zones (public and protected zone) due to technical con-
straints and in order to prevent security problems.

209

general
web user

experienced
web user

content editor
(Project Team)

SPARQL
Endpoint

HTML GUI

[stable]

OntoWiki

Persistency Layer

SPARQL
Endpoint

HTML GUI
[experimental]

OntoWiki

Persistency Layer

HTML GUI
[stable]

CPL Frontend

Persistency Layer

OCPY
TOWEL

co
nfi

gu
re

co
nfigure

query, search

add, edit, maintain

getData

query, search

browse, annotate, discuss

backup Model

 synchronize
Model Data (SPARUL)

 synchronize
 Model Data (SPARUL)

browse, search

Linked Data

Linked Data

Partial RDF export

Full RDF export

[protected zone]

[public zone]

Fig. 1: Architectural overview about the project platforms

The semantic data wiki OntoWiki [1] located in the protected layer uses the Catalo-
gus Professorum Model1 (CPM), which comprises several ontologies and vocabularies
for structuring the prosopographical information. The project team is working collab-
oratively and spatially distributed (e.g. in archives or libraries) to collect, structure and
validate information about persons and institutions relevant to this knowledge domain.

For general web users the catalog is integrated in the public website of the Uni-
versity of Leipzig2. A simplified user interface consisting of plain HTML and Linked
Data3 resources is generated nightly from the knowledge base. The historians are able
to interact with CPL via an experimental version4 of OntoWiki. The version of the cata-
log available there is synchronized with the protected OntoWiki installation, transforms
the exported data considering any linked knowledge bases and imports the changed data
into this experimental installation. The project platform is usable for humans accessing
web interfaces for reading or editing data. OntoWiki also provides a number of generic
access interfaces, which include SPARQL and Linked Data endpoint and a Semantic
Pingback server. On top of these generic access interfaces application specific access
interfaces are deployed. These are described in more detail in the remainder and will be
presented in the demonstration.

1 Available at: http://catalogus-professorum.org/cpm/
2 http://www.uni-leipzig.de/unigeschichte/professorenkatalog/
3 http://www.w3.org/DesignIssues/LinkedData.html
4 http://catalogus-professorum.org/

210

Fig. 2: Visual Query Builder.

3 Public CPL website and Linked Data

CPL is not just a tool for historians, but aims to showcase the results of historic research
to the wider general public. For that purpose a special public website was created. The
user interface of the public website is geared towards simplicity. The knowledge base
can be explored by epochs, faculties, functions of professors (i.e. rector or dean) or
alphabetically. Professors of the day are automatically selected based on important days
in the life of a professor (i.e. birth or death). Furthermore, the public website comprises
a full-text search, which searches within all literals stored in the CPL knowledge base.

Using OntoWiki’s build-in endpoint functionality CPL is immediately available as
Linked Data. Within the Linking Open Data effort, hundreds of data sets have already
been connected to each other via owl:sameAs links. By interlinking CPL with other
related datasets, we aim at establishing CPL as a linked data crystallization point for
academic prosopographical knowledge.

4 Visual Query Builder.

OntoWiki also serves as a SPARQL endpoint, however, it quickly turned out that for-
mulating SPARQL queries is too tedious for the historian domain experts. In order
to simplify the creation of queries for the historians, we developed the Visual Query
Builder5 (VQB) as an OntoWiki extension, which is implemented in JavaScript and
communicates with the triple store using the SPARQL language and protocol. VQB
allows to visually create queries to the stored knowledge base and supports domain
experts with an intuitive visual representation of query and data. Developed queries
can be stored and added via drag-and-drop to the current query. This enables the reuse
of existing queries as building blocks for more complex ones. VQB also supports the
set-based browsing paradigm by visualizing different connectives, such as join, union,

5 http://aksw.org/Projects/OntoWiki/Extension/VQB

211

Fig. 3: Visualization of relationships in RelFinder.

intersection, difference between queries. The incremental query building is facilitated
by displaying results already during query creation. The VQB user interface is visual-
ized in Figure 2. The user interface can be adjusted by scaling or deactivating unused
panels.

5 Relationship Finder.

An important aspect of historical investigations is the search for relationships be-
tween different persons or entities of interest. An application supporting such inves-
tigations within RDF knowledge knowledge bases is RelFinder6 [2]. With the help of
RelFinder relationships between individual entities can be easily discovered and visu-
alized. Figure 3, for example, visualizes the relationship between the entities Schücking
and München7. In this example, three connections were found and visualized as paths
through the knowledge base. RelFinder is a generic tool and can be used in conjunction
with arbitrary SPARQL endpoints.

References

1. Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki – A Tool for Social, Se-
mantic Collaboration. In Proceedings of the 5th International Semantic Web Conference,
ISWC2006, Athens, GA, USA, 2006.

2. Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo Stegemann.
RelFinder: revealing relationships in RDF knowledge bases. In Proceedings of the 4th In-
ternational Conference on Semantic and Digital Media Technologies, 5887 of LNCS, pages
182–187. Springer, 2009.

3. Thomas Riechert, Ulf Morgenstern, Sören Auer, Sebastian Tramp, and Michael Martin.
Knowledge engineering for historians on the example of the catalogus professorum lipsien-
sis. In Proceedings of the 9th International Semantic Web Conference, ISWC2010, Shanghai,
China, 2010.

6 Online at: http://relfinder.semanticweb.org
7 More interesting relationships obtained from RelFinder are listed at: http:
//catalogus-professorum.org/tools/relfinder

212

