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Abstract. Performance is the most critical aspect towards achieving high 
scalability of Semantic Web reasoning applications, and considerably limits the 
application areas of them. There is still a deep mismatch between the 
requirements for reasoning on a Web scale and performance of the existing 
reasoning engines. The performance limitation can be considerably reduced by 
utilizing such large-scale e-Infrastructures as LarKC - the Large Knowledge 
Collider - an experimental platform for massive distributed incomplete 
reasoning, which offers several innovative approaches removing the scalability 
barriers, in particularly, by enabling transparent access to HPC systems. 
Efficient utilization of such resources is facilitated by means of parallelization 
being the major element for accomplishing performance and scalability of 
semantic applications. Here we discuss application of some emerging 
parallelization strategies and show the benefits obtained by using such systems 
as LarKC. 
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1   Introduction 

Current Semantic Web reasoning systems do not scale to the requirements of the 
rapidly increasing amount of data, such as those coming from millions of sensors and 
mobile devices or the terabytes of scientific data produced by automated 
experimentation. 

The latest attempts to overcome the above-mentioned limitations resulted in 
infrastructures for large-scale semantic reasoning, such as one set up by LarKC (the 
Large Knowledge Collider [1]) which focuses on reasoning over billions of structured 
data in heterogeneous data sets. Along with a number of original solutions for 
obtaining Web scale by semantic applications, LarKC offers services for transparently 
accessing diverse computing architectures, including multi-core (many-core) multi-
processor, and cluster-based computer architectures as well as dedicated high-
performance computers. 

Parallelization enables simultaneous execution of independent computational 
operations and thus resolves the conflicts occurring between the concurrent operations 



while performing computation. Given the large problem sizes that are addressed by 
LarKC, and considering the benefits of parallelization, it seems natural to explore use 
of the main parallelization strategies for semantic applications, too. Here we discuss 
some major parallelization techniques for providing parallelism on task-, instruction-, 
and data-level, applied for LarKC’s pilot applications. However, the investigated 
approaches and techniques are quite generic and can be potentially applied for any 
other Semantic Web engine. 

2   Parallelization Patterns 

There are several parallelization techniques, which have proven their usability for a 
wide range of optimization tasks and might be beneficial for semantic applications. 
They can be roughly classified according to the level at which the parallelism takes 
place (Fig. 1): 
1) between loosely-coupled components (workflow level) – implementation of 

parallelism by running multiple instances of the same plug-in simultaneously 
o task-level parallelism 

• workflow branching 
2) within a separate component (“plug-in” level) – implementation of parallelism in 

the concurrent regions of the component’s algorithms 
o instruction-level parallelism 

• shared-memory systems: multi-threading 
• distributed-memory systems: message-passing 

o data and instruction-level parallelism 
• MapReduce data processing 
 

Fig. 1. For the semantic applications, which are described through complex 
workflows, parallelization can be applied on different levels: workflows (task- and 
data-level parallelism), or single components/plug-ins (data- and instruction-level 
parallelism). 
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3   Main Instruction-Level Parallelization Techniques 

The techniques presented in Section 2 differ by complexity of their implementation 
and obtained performance impact. In this section we discuss only the approaches, 
which allow obtaining considerable performance impact with a minimum of 
implementation efforts for sequential code. In particular, we consider multi-threading 
and message-passing. The achieved performance impact is discussed as well. 

3.1   Multi-threading  

Most of today’s CPUs are equipped with multiple cores. Unfortunately, many 
applications are still using only one of them for their processing (i.e., applications are 
still sequentially programmed) instead of distributing particular tasks to different 
processor cores concurrently. In order to make use of the capabilities provided by 
modern CPU architectures, applications must align their tasks according to the 
number of available cores. 

Implementation of multi-threading for a sequential code is to large extent trivial 
and does not require much development efforts. For evaluation purposes, we 
implemented multi-threading support for the Urban Computing application of LarKC 
[2]. Realization of multi-threading for the most time consuming component of the 
investigated workflow allowed us to obtain a considerable performance speed-up 
(Table 1). 

Table 1. Performance characteristics after applying multi-threading 

Intel @ 1.8 GHz, 2 cores Xeon @ 2.8 GHz, 8 cores 
Tested 

realization Time, ms % of total 
execution 

Time, ms % of total 
execution 

Single thread 4400 80 3400 74 
Multiple 
threads 1100 37 900 36 

Speed-up, 
times 3.8  3.7  

3.2   Message-Passing 

The Message-Passing Interface (MPI) is the most widely used parallel 
programming paradigm for highly-scalable parallel applications. MPI enables sharing 
the application workload over various nodes of a parallel system (both shared and 
distributed memory architectures are supported). The synchronization between the 
nodes is achieved by means of the messages passed among the involved processes 
through the network interconnect. Implementations of MPI in Java (such as MPIJava 
or MPJ-Express) have enabled use of MPI also for Java applications. MPI is highly 
beneficial for computing-intensive applications, whereby scalability within a shared-
memory space is not sufficient for obtaining the necessary performance. 



For evaluation purposes, we implemented message-passing for the “Airhead” 
library from the S-Space package1. The parallelization technique was evaluated for 
the Linked Life Data subset used by University of Sheffield within the LarKC project. 
The obtained performance characteristics, collected in Table 2, prove great benefit of 
distributed-memory parallelisation not only for the investigated application, but also 
for similar ones coming from other areas of the Semantic Web. 

Table 2.  Performance characteristics after applying message-passing 

Intel @ 1.8 GHz, 2 cores Xeon @ 2.8 GHz, 8 cores Number of 
computing 

nodes 
Time, s. Speed-up (to 

1 CPU case) 
Time, s. Speed-up (to 1 

CPU case) 
1 750 1 57 1 
2 - - 20 2.85 
4 - - 10 5.7 
8 - - 5 11.4 

4   Conclusions 

In our tests we investigated the impact of the main instruction-level parallelization 
strategies, namely multi-threading and message-passing, on performance of two 
typical Semantic Web use cases. The first application was taken from the urban 
computing use case, where parallelization facilitates meeting real-time requirements. 
Whereas message-passing was not very useful for this application due to real-time 
performance requirements, applying multi-threading allowed the application to 
greatly benefit from the multi-core CPU architecture. The second application - 
random indexing - was much more complex as the first one, and made great benefit of 
message-passing that leveraged a cluster of shared-memory nodes for the application. 
Our future investigations will concentrate on further approaches presented here (such 
as MapReduce [3]) as well as hybrid algorithms combining them (e.g. multi-threading 
inside a shared-memory node combined with message-passing among nodes). 
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