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Abstract. As more RDF streaming applications are being developed,
there is a growing need for an efficient mechanism for storing and per-
forming inference over these streams. In this poster, we present a tool
that stores these streams in a unified model by combining memory and
disk based mechanisms. We explore various memory management algo-
rithms and disk-persistence strategies to optimize query performance.
Our unified model produces an optimized query execution and inference
performance for RDF streams that benefit from the advantages of using
both, memory and disk.

1 Introduction
An application that processes RDF streams does not know apriori the size of the
stream. This makes it difficult to store these streams in memory as only a limited
amount of data can be stored, and on the disk which requires a longer query
processing time for small streams. Research has thus far focused on storing RDF
data in relational databases [1] or in non-database approaches [2]. We have a
developed a tool1 that presents a unified model based on an optimal combination
of memory and disk based solutions for storing RDF streams. This tool allows
users to pose any SPARQL query (non-inference or inference) to an application.
Our tool is implemented as a Jena graph which is the basic building block of the
Jena framework. Our graph moves from Jena’s in-memory graph to a Lucene2

graph when we begin to run out memory. The Lucene graph mirrors the in-
memory graph and queries to the unified model are rewritten to query the Lucene
indices. We use different memory management algorithms to select nodes from
the RDF stream to be left in memory based on the frequency of access patterns
and the centrality of nodes in the stream. We have also tested two Lucene index
creation strategies to optimize query performance. Finally, we switch to a Jena
RDB graph when a threshold limit is reached, beyond which the RDB graph is
better than Lucene for non-inference queries. Reference [3] presents an excellent
survey on using memory management algorithms in relational databases. We
have selected Lucene only as a temporary storage mechanism because we will
switch to the RDB graph if more data is streamed. Our proposed model works
very well for query execution and inference tasks with RDF streams.

2 Proposed Architecture
Figure 1 shows a flow of control to store RDF streams using the unified ap-
proach. We begin by storing the RDF stream in Jena’s in-memory triple store.

1 http://jena.sourceforge.net/contrib/contributions.html,http://cs.utdallas.edu/semanticweb
2 http://lucene.apache.org/java/docs/index.html



Fig. 1. Unified Approach Architecture - Creating a model

If the triple is an ABox triple we also store or update for every subject of each
incoming triple, it’s degree, a timestamp of when it was last accessed and a
pointer to the triples belonging to it, in a memory buffer. The TBox triples
are first read into memory without maintaining any statistics for them in the
buffer. This helps to distinguish TBox triples from ABox triples. Since no statis-
tics are maintained these TBox triples are never written to disk. When the
writeThreshold is reached the buffer management subsystem returns a sorted
buffer based on the selected memory management algorithm such as FIFO,
LIFO, LRU, MRU and RANDOM. We also adapted social network central-
ity measures such as degree centrality (DC ) and clustering coefficient (CC )
[4] into memory management algorithms. The writeThreshold is defined as,
writeThreshold = initThreshold×totalMem. The equation takes initThreshold
as a number of triples and the memory size (specified in gigabytes) given to the
current run from the user. Triples from the in-memory graph are moved to the
Lucene graph using the pointer of every subject node (from the sorted buffer) and
the selected persistence strategy. This process of moving triples continues as long
as x% of the writeThreshold is not reached (x is also user configurable). Finally,
when the dbThreshold is reached we move all triples to Jena’s RDB graph. From
this point onwards all incoming triples are directly stored in the RDB graph.
We use a combination of in-memory, Lucene and RDB graphs for non-inference
models and a combination of in-memory and Lucene graphs for inference models.
For query execution, the input query is submitted to the graph that is currently



being used. A non-inference query is run on either the in-memory and Lucene
graphs or the RDB graph and a complete result is returned to the user. For an
inference query, Pellet infers additional triples by reasoning over the result from
the in-memory and Lucene graphs, using the TBox triples that are always in
memory. The resulting triples are then returned to the user.

3 Experimental Results

We performed benchmark experiments to compare the performance of the unified
model to both, the Jena database backends and a purely Lucene triple store. We
used the Sp2Bench [5] benchmark to check non-inference query execution and the
LUBM [6] benchmark to test inference. Although we have tested all queries of
both benchmarks on our system, in this section we show results only for Q5b and
Q8 from Sp2Bench and for Q4 and Q6 from LUBM as they are representative of
the overall trend. The graphs below show only query time and they do not include
loading times. We have also performed scalability tests with varying graph sizes,
but in this poster we only show graph sizes of 50168 triples for Sp2Bench and
1 university (≈ 103000 triples) for LUBM. We use these small sizes since we
only want to determine the best algorithm and Lucene persistence strategy in
this paper. Further, we set writeThreshold = (3/4)×no. of triples in the graph,
totalMem = 1 and x = no. of triples in mem/90. We chose these values for the
parameters so that we always have a good balance of triples between memory
and Lucene giving us a good indication of the overall performance of various
queries of both benchmarks.
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Fig. 2. Comparison of all algorithms and persistence strategies

We have used the degree and timestamp values to implement the memory man-
agement algorithms. For example, if we use LRU, we sort the buffer in the in-
creasing order of timestamp values while for degree centrality we sort the buffer
in increasing order of DC values. The reader should note that the DC and CC
values are recomputed for every node each time the buffer is sorted. We then
move triples to the Lucene graph for every node starting from the top of the
buffer until x% of the triples are moved. We have also combined LRU and MRU
with both DC and CC by first using the timestamp to sort the buffer and if there
is a tie we use DC or CC to break the tie. Figure 2 shows a comparison of all
memory management algorithms that we have tested for Sp2Bench and LUBM.



For Sp2Bench, we see that DC gives us the best result because it keeps nodes
that are relevant to the Sp2Bench queries in memory. In comparison, for LUBM,
we see that MRU performs the best. This is due to the fact that MRU leaves
the least recently used nodes in memory that are used by the Pellet reasoner for
inference and query execution.
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Fig. 3. Comparison of persistence strategies

We have also tested two Lucene persistence strategies, the first creates all in-
dices at the same time (C-S) while the second creates each index as needed
starting with the predicate, then the object and finally the subject (C-S-Eff).
In the unified model we do not create the subject Lucene index, instead we set
dbThreshold to be the number of triples at this point. The C-S strategy works
well with LUBM queries but does not work for the Sp2Bench queries as shown in
figure 3. With C-S-Eff we get a query time comparable to in-memory storage for
Sp2Bench, but a much higher query time for LUBM. For LUBM, the Pellet rea-
soner needs to query the larger predicate Lucene index multiple times, making it
slower than the C-S approach where the reasoner needs to query the smaller sub-
ject and object Lucene indices. The Sp2Bench queries use the in-memory subject
and object structures, and hence perform as well as the in-memory model.

4 Conclusion
In this paper we show that creating a unified model by combining the in-memory,
Lucene and relational database models gives us excellent query execution and
inference time with an enhanced scalability for RDF streams.
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