
Generating RDF for Application Testing⋆

Daniel Blum and Sara Cohen
{daniel.blum@mail,sara@cs }.huji.ac.il

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Abstract. Application testing is a critical component of application develop-
ment. Testing of Semantic Web applications requires large RDF datasets, con-
forming to an expected form or schema, and preferably, to an expected data dis-
tribution. Finding such datasets often proves impossible, while generating input
datasets is often cumbersome. The GRR (Generating Random RDF) system is a
convenient, yet powerful, tool for generating random RDF, based ona SPARQL-
like syntax. In this poster and demo, we show how large datasets can be easily
generated using intuitive commands.

1 Introduction

Testing is a critical step in application development. For Semantic Web applications,
testing is a challenge due to both the large volume of input data needed, and the intricate
format that this data must have. While many Semantic Web applications focus on varied
and unexpected types of data, there are also many others thattarget specific domains.
For such applications, to be useful, datasets used should have at least two properties:

1. The data structure should have the expected structure needed for the target applica-
tion (e.g., conform to a specific RDF schema).

2. The data should match the expected data distribution of the target application.

Currently, there are several distinct sources for RDF datasets. First, there aredown-
loadable RDF datasets that can be found on the web, e.g., Barton libraries, UniProt
catalog sequence, and WordNet. RDF Benchmarks, which include both large datasets
and sample queries, have also been developed, e.g., the Lehigh University Benchmark
(LUBM) [4] (which generates data about universities), the SP2Bench Benchmark [7]
(which provides DBLP-style data) and the Berlin SPARQL Benchmark [1] (which is
built around an e-commerce use case). Such downloadable RDFdatasets are usually an
excellent choice when testing the efficiency of anRDF storage system. However, they
will not be suitable for experimentation and analysis of a particular RDF application.
Specifically, since these datasets are built for a single given scenario, they may not have
either of the two specified properties, for the application at hand.

Data generators are another source for datasets. A data generator is a program that
generates data according to user constraints. As such, datagenerators are usually more
flexible than benchmarks. Unfortunately, there are few datagenerators available for

⋆ This work was partially supported by GIF Grant (2201-1880.6/2008).

RDF (SIMILE [8], RBench [6]) and none of these programs can produce data that con-
forms to a specific given structure, and thus, again, will nothave the specified properties.

In this demo, we present the GRR (Generating Random RDF) system for generating
RDF that satisfies both desirable properties given above. Thus, GRR is not a benchmark
system, but rather, a system to use for Semantic Web application testing. Using intuitive
data generation commands with aSPARQL-like syntax, GRR can produce data with a
complex graph structure, as well as draw the data values fromdesirable domains. Data
generation commands are translated into a series ofSPARQL queries and update com-
mands which are applied directly to an RDF storage system.1 A video demonstration of
GRR is available online,2 and the system is available upon request.

2 Motivating Example

As a motivating example, we discuss the problem of generating the data described in
the LUBM Benchmark. Note that GRR is not limited to creating benchmark data. In our
demo, we will demonstrate using GRR to generate other types of data, such as FOAF [3]
(Friend of a Friend) datasets, which are used in social network applications.

LUBM [4] is a collection of data describing university classes (i.e., entities), such
as departments, faculty members, students, courses, etc. These classes have a plethora
of properties (i.e., relations) between them, e.g., faculty members work for departments
and head departments, students take courses and are advisedby faculty members, etc.

In order to capture a real-world scenario, LUBM defines interdependencies between
the entities. For example, the number of students in a department is a function of the
number of faculty members. Specifically, LUBM requires there to be a 1:8-14 ratio of
faculty members to undergraduate students. As another example, the cardinality of a
property may be specified, such as each department must have asingle head of depart-
ment (who must be a full professor). Properties may also be required to satisfy addi-
tional constraints, e.g., courses, taught by faculty members, must be pairwise disjoint.

In the next section, we describe the GRR data generation language, and demonstrate
commands for producing LUBM benchmark data. Due to space limitations, we do not
provide all commands used to reproduce LUBM. However, we note that the number of
words needed in all data generation commands (in order to reproduce LUBM), is only
about twice as many as used in the intuitive description of LUBM, provided by [4]!

3 Data Generation Commands

Data is generated by a sequence ofdata generation commands (dg-commands, for
short) c1, . . . , cn, when given as input a (possibly empty) RDF datasetR. The first
commandc1 is evaluated overR, while each consecutive commandci is evaluated over
the output of the previous commandci−1.

The general syntax of a single dg-command appears below. Note that square brack-
ets are used to denote optional portions, and the “*” indicates a component that can
appear any number of times.

1 The Jena Semantic Web Framework for Java [5] is used in our implementation.
2 http://www.cs.huji.ac.il/ ˜ danieb12/

(FOR (EACH | sampling-method)
[WITH (GLOBAL DISTINCT | LOCAL DISTINCT | REPEATABLE)]
{list of classes }
[WHERE {list of conditions }]) *

[CREATE i- j {list of classes }]
[CONNECT {list of connections }]

A dg-command contains any number ofFORclauses, and then optionally aCREATE
and/orCONNECTclause. Intuitively, theFORclauses choose portions of the RDF input,
the CREATEclause creates new nodes in the RDF graph, and theCONNECTclause
connects nodes in the RDF graph. We require that at least one among theCREATE
andCONNECTclauses be present in every dg-command. We now describe eachclause,
briefly. (Full language semantics appears in [2]).

– TheFORClause: EachFORclause defines(1) a query which will applied against
the RDF input, as well as(2) a method to choose a subset of the query results. For
(1), the user provides a list of classes whose instances should be chosen (similar to
a SPARQLSELECTclause), as well as any conditions (similar to aSPARQLWHERE
clause). The correspondence toSPARQL is not precise as we allow for certain syn-
tactic shortcuts, which avoid explicit variable use, and make dg-commands more
readable. For (2), the user defines both the method with whichanswers should be
sampled, as well as whether the sampling process is with/without repetition.

– The CREATEClause: TheCREATEclause defines nodes that should be created.
The user provides both a list of RDF classes, and a range determining how many
instances of these classes should be created.3

– TheCONNECTClause: TheCONNECTclause determines the edges that should be
generated in the RDF graph, by providing a list of triples.

Several examples of dg-commands appear below. Explanations follow.

(c1) CREATE 1-5 {ub:Univ }

(c2) FOR EACH {ub:Univ }
CREATE 15-25 {ub:Dept }
CONNECT{ub:Dept ub:subOrg ub:Univ }

(c3) FOR EACH {ub:Faculty, ub:Dept }
WHERE{ub:Faculty ub:worksFor ub:Dept }

CREATE 8-14 {ub:Undergrad }
CONNECT{ub:Undergrad ub:memberOf ub:Dept }

(c4) FOR EACH {ub:Dept }
FOR 1 {ub:FullProf }
WHERE{ub:FullProf ub:worksFor ub:Dept }
CONNECT{ub:FullProf ub:headOf ub:Dept }

3 Dg-commands do not directly define how textual (or other atomic) properties are created and
associated with class instances. This information is provided in a simple auxilliary file, e.g.,
which associates each textual property with a sampling method or dictionary.

(c5) FOR 20%-20% {ub:Undergrad, ub:Dept }
WHERE{ub:Undergrad ub:memberOf ub:Dept }

FOR 1 {ub:Prof }
WHERE{ub:Prof ub:memberOf ub:Dept }
CONNECT{ub:Undergrad ub:advisor ub:Prof }

(c6) FOR EACH {ub:Undergrad }
FOR 2-4 WITH LOCAL DISTINCT {ub:UndergradCourse }
CONNECT{ub:Undergrad ub:takeCourse ub:UndergradCourse }

(c7) FOR EACH {foaf:Person ?p1 }
FOR 15-25 {foaf:Person ?p2 } WHERE{FILTER(?p1 != ?p2) }
CONNECT{?p1 foaf:knows ?p2 }

Commandc1 creates between 1 and 5 universities, and commandc2 adds 15–25
departments as suborganizations for each university. Commandc3 iterates over all pairs
of faculty members4 and departments, and adds 8-14 students, per pair to the depart-
ment (therby achieving the required 1:8-14 ratio of facultymembers to undergraduates).
Commandc4 chooses one full professor as the head of each department. Commandc5

adds an advisor for 20% of all undergraduates. Commandc6 assigns 2-4 courses for
each undergraduate. Note the use ofWITH LOCAL DISTINCTwhich ensures that
the set of courses chosen per student does not contain repetition, while allowing differ-
ent students to be assigned the same courses. Finally,c7 demonstrates advanced features
including variables and a filter command, to connect people (in an FOAF RDF dataset)
to one another.

In our poster and demo, we will show how to recreate the LUBM benchmark using
24 dg-commands, of the style seen above. In addition, we willshow how to create
interesting datasets for the FOAF schema. We will also allowthose interested to write
their own dg-commands, which we will evaluate in GRR to create an RDF dataset.

References

1. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. International Journal of Semantic
Web Information Systems 5(2), 1–24 (2009)

2. Blum, D., Cohen, S.: Grr: Generating random RDF. Tech. rep., The Hebrew University of
Jerusalem (2010)

3. The friend of a friend (FOAF) project.http://www.foaf-project.org
4. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Journal

of Web Semantics 3(2-3), 158–182 (2005)
5. Jena–a Semantic Web framework for Java.http://jena.sourceforge.net
6. RBench website.http://139.91.183.30:9090/RDF/RBench/index.html
7. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL performance bench-

mark. In: ICDE. pp. 222–233. Shanghai, China (Mar 2009)
8. Simile website.http://simile.mit.edu/

4 The faculty members were created with an additional dg-command, whichwas omitted due to
lack of space.

