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Abstract. Stable semantic ontology measurement is crucial to obtain significant
and comparable measurement results. In this paper, we present a summary of
the definition of ontology measurement stability and the preprocessing for stable
semantic ontology measurement from [5]. Meanwhile, we describe two existing
ontology metrics. For each of them, we compare their stability from the per-
spectives of structural and semantic ontology measurements, respectively. The
experiments show that some structural ontology measurements may be unusable
in cases when we want to compare the measurements of different models, unless
the pre-processing of the models is performed.

1 Introduction

In recent years, ontology engineers have proposed many ontology metrics for assess-
ing ontology quality such as the literatures [1–4]. However, some proposed ontology
metrics are to measure ontology structure instead of ontology semantics which are the
nature of ontology. They only simply calculate the number of classes and class inher-
itances by some labels in ontologies such as owl:Class and rdfs:subClassOf,
and do not consider possibly implicit semantic subsumption between (complex) classes.
Most ontology metrics do not take into account the open world assumption (OWA) and
the possible addition of implicit axioms, which will cause incomparable measurement
results [5]. To use the same metric to measure the ontologies with the same semantic
knowledge will bring about variable values. Such ontology metrics may be unstable.

2 Stable ontology measurement and preprocessing

An ontology can be regarded as a set of triples of the form (s,p,o). The structural de-
scription of an ontologyO is the set of explicitly represented triples inO. The semantic
description of O is the set that contains not only the structurally described triples, but
also all implicit triples obtained by reasoning O. Note that an ontology with the same
semantic description possibly has multiple structural descriptions (including O).

Definition 1. Let Sem(O) be the semantic description of an ontology O. Sem(O)
has the multiple structural descriptions, denoted Stru(O)={O, O1, · · ·, On}. A sta-
ble ontology measurement M is mapping, M : Stru(O) → R such that M(O) =
M(O1) = · · · = M(On), where R is a nonempty set of real numbers.



We summarize the preprocessing for stable ontology measurement from [5].
1) Naming all anonymous classes and all anonymous individuals. We can automat-

ically detect the related labels and name anonymous classes. Anonymous individuals
can be detected and named by class membership. The set of named concepts of Ontol-
ogyO is denoted CO = {C1, · · · , Cn}, where each Ci is unique, and is either an atomic
concept or a named anonymous concept.

2) Eliminating cycles of concept subsumption such as A v A1, · · ·, An v A, where
A, Ai(1 ≤ i ≤ n) are concepts. Once we detect such a cycle of concept subsumption
in an ontology, we replace all cyclic concept subsumption axioms with B v Ai (1 ≤
i ≤ n), where B is a new concept name for each cycle.

3) Instances explicitly asserted by class membership, object property and datatype
property should be enriched as deeply as possible by reasoning the ontology O.

4) Getting rid of possible transitivity relationships. We attempt to adopt a definition
of axiom fanouts per concept to get rid of the possible transitivity relationships. The
reason to do this is that a well-founded measurement theory should avoid the double
counting problem, e.g., a measurement unit is counted more than once. Once some
axioms are counted, then the axioms derived from these counted axioms should not be
counted. In the following, we specifically discuss axiom fanouts per concept.

Definition 2. ∀C, D ∈ CO, C is directly subsumed by D, i.e., directly-subsumed-
by(C, D), iff ∀C, D ∈ CO(C v D ∧ ¬∃C ′ ∈ CO(C ′ v D ∧ C v C ′)).

Definition 3. ∀C ∈ CO, the axiom fanouts of C are denoted AFC = {D1, · · · , Dm},
where for each Di(1 ≤ i ≤ m ≤ |CO|), directly-subsumed-by(Di, C) holds, and |CO|
represents the cardinality of CO.

In the following, we simply analyze the correction of the preprocessing. On one
hand, as mentioned above, for an ontology O, its semantic description Sem(O) con-
tains not only the structural description of O, but also the implicitly expressed knowl-
edge derived from O. This means that, for any axiom or assertion α in O, O implies α
iff Sem(O) implies α. On the other hand, the preprocessing for stable ontology mea-
surement is terminable because Step 1), Step 2) and Step 3) will be terminated if there
is no complex concept, cycle of concept subsumption, and unenriched concept in O.
At last, this can guarantee that Sem(O) should be finite and unique no matter how the
ontology O is represented. In the case, the measurement result for O will be invariable
and stable if we measure O by Sem(O). We can also obtain the following corollary.

Corollary 1. An ontology measurement of ontology’s semantic description is stable by
using the preprocessing for comparing the measurements of different models.

3 Proposal of two ontology metrics

A structural ontology measurement is just to measure the explicitly expressed ontology
without applying the preprocessing. In contrast to a structural ontology measurement, a
semantic ontology measurement is just to measure the quality of semantic description of
original ontology by using the preprocessing. We describe two ontology metrics related
to axiom fanouts for validating the stability of ontology measurement.



Metric 1: Average Axiom Fanouts per Concept (AAFC)

AAFC of Ontology O can be defined as follows: AAFC(O)=

∑
C∈CO

AFC

|CO| .
Metric 2: Average Depth of Concept Subsumption of Leaf Concepts (ADCS-LC)

A concept RC ∈ CO is a root one iff ¬∃C ∈ (CO \ RC) such that RC v C. A
concept LC ∈ CO is a leaf one iff ¬∃C ∈ (CO \ LC) such that C v LC. The depth of
path p, denoted |p|, is the total number of concepts in p. ADCS-LC ofO can be defined

as ADCS-LC(O)=

∑
p∈P S

|p|

|LS| , where PS and LS are the set of all paths and the set of leaf
concepts in ontology O, respectively.

AFC and ADCS-LC are ontology metrics related to ontology fanouts which can be
often used as the indicators of some ontology quality properties such as complexity and
cohesion [1–4]. They can be used for structural or semantic ontology measurements.

4 Experiments and measurement stability analysis

The goal of the experiments was designed to compare the stability of the two ontology
metrics from the perspectives of structural and semantic ontology measurements, re-
spectively. The experimental settings were as follows. 1) We randomly searched the 10
testing ontologies by the search engine, Swoogle. They were evaluated for validating
the stability of ontology measurement; and 2) For each of AAFC and ADCS-LC, we
collected the values of their structural and semantic ontology measurements, respec-
tively. The measurement values of AAFC and ADCS-LC were shown in Figure 1.

Fig. 1. Semantic and structural measurement values of AAFC and ADCS-LC

Pearson’s correlation coefficient is used for analyzing the stability of AAFC and
ADCS-LC, which is with the following hypotheses: H0 : ρ = 0 (There is no correla-
tion between the pair of values); H1 : ρ 6= 0 (There is correlation between the pair of
values). For each of AAFC and ADCS-LC, we calculated the correlation coefficient and
p-value of pair of measurement values. The larger absolute value of the correlation co-
efficient means stronger correlation between the pair of variables. If the pair of variables
are independent, the correlation coefficient is 0. P-values are used in hypothesis tests
to either reject or fail to reject a null hypothesis. A small p-value indicates that a null
hypothesis is false. A p-value (<0.001) means that we must reject the null hypothesis.



By the statistical software, SPSS , we can obtain the correlation coefficient and
p-value of pairs of AAFC and ADCS-LC, respectively. We find that the correlation co-
efficient and p-value between the pair of semantic and structural measurement values
of AAFC are -0.195 and 0.588, respectively. This means that there is no obvious corre-
lation between the pair of AAFC. However, there is a very strong correlation between
the pair of semantic and structural measurement values of ADCS-LC because their cor-
relation coefficient and p-value are 0.946 and 0.000, respectively. Especially for the
p-value, it is less than 0.001 such that we can obviously reject the null hypothesis.

From Corollary 1, if we we want to compare the measurements of different mod-
els, a semantic ontology measurement is stable by using the preprocessing. In the case,
if the semantic and structural measurements of an ontology metric are strongly corre-
lated, then this means that the structural measurement of the ontology metric may be
usable to compare the measurement values of ontologies, and can be a useful indica-
tor of some ontology quality properties such as complexity and cohesion. Otherwise,
the structural measurement of the ontology metric is likely to be unusable. According
to these analysis, we find that AAFC may be not usable to compare the measurement
values of ontologies. In contrast to AAFC, ADCS-LC is usable for both semantic and
structural ontology measurement. We believe that more experiments should be made to
comprehensively validate the stability of ontology measurement.

5 Conclusions

We summarized the definition about stability of ontology metrics and the preprocessing
for stable ontology measurement. By two ontology metrics to compare the measurement
stability of different models, we found that some structural ontology measurements may
be unusable, unless the pre-processing of the models is performed.
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