Linked data from your pocket:
The Android RDFContentProvider

Jérome David, Jér6me Euzenat

INRIA & LIG
Grenoble, France
{Jerome.David,Jerome.Euzenat} @inrialpes.fr

Smartphones are becoming main personal information repositories. Unfortunately
this information is stored in independent silos managed by applications. We have seen
that already: in the Palm operating system, application “databases” were only accessible
when the application schemas were known and worked by opening other application
databases.

Our goal is to provide support for applications to deliver their data in RDF. This
would allow applications to exploit this information in a uniform way without know-
ing beforehand application schemas. This would also connect this information to the
semantic web and the web of data through reference from and to device information.
We present a way to do this in a uniform manner within the Android platform. More-
over, we propose to do it along the linked data principles (provide RDF, describe in
ontologies, use URIs, link other sources).

We first consider how the integration of RDF could be further pushed within the
context of the Android platform. We demonstrate its feasibility through a linked data
browser that allows for browsing the phone information.

1 Providing RDF support in Android

Android is built around different kinds of services, one of which being
ContentProvider which exposes some data of an application to other applications.
ContentProviders manage data structures (usually relational tables) and are able to
answer messages of type query, insert, delete and update. A query returns a cursor on a
table of tuples. So they offer a typical database interface:

Cursor query(Uri id, String[] proj, String select, String[] selectArgs, String order)
Uri insert(Uri id, ContentValues colValuelist)

int update(Uri id, ContentValues colValuelist, String select, String[] selectArgs)
int delete(Uri id, String select, String[] selectArgs)

String getType(Uri id)

This interface uses URIs for identifying the kind of data which is requested:
content://contacts/people/ identifies all people in the contact application and con-
tent://contacts/people/22 identifies the 22nd instance of these'.

Calling a ContentProvider is driven by the kind of content to be manipulated:
the calling application indicates the will to retrieve some content through its type, but
does not control which application will provide it. Android calls a ContentResolver
which further looks into the query (the id) to find a suitable content provider on the

! Android URIs are not particularly portable, we leave the discussion of this out of this paper.

phone which is able to provide the required content. For that purpose, the resolver maps
the query URIs to the declared providers. These providers are declared in application
manifests.

In order to exchange RDF within the Android platform, we need
ContentProviders providing RDF. For that purpose we have developed a new
abstract RDFContentProvider extending ContentProvider. Answers to queries in
an RDFContentProvider could be:

— set of triples, which would correspond to the description of one object and the
attribute values, this is restricted to queries like: tell me what you know about a
particular individual;

— table of tuples, like in ContentProviders or SPARQL which would correspond
to values of variable in a SPARQL-like query

These interfaces can be unified since, the former is the answer to the SPARQL query:
SELECT ?p 20 WHERE content://contacts/people/22 ?p ?o.

The RDFContentProvider follows primarily the same kind of interface as
ContentProvider. The minimal interface for linked data applications is:

— RDFCursor getRdf(Uri id)

The Cursor iterates on a table of subject-object-predicate (or object-predicate) which
are the triples involving the object given as a URI. A more elaborate semantic web
interface could be that of a minimal SPARQL endpoint:

— Uri[] getTypes(Uri id):returns the RDF types of a local URI;

— Uri[] getOntologies (): ontologies used by the applications;

— Uri[] getQueryEntities(): classes and relation that the application can de-
liver;

— Cursor query(SparglQuery query):returns results tuple;

— Cursor getQueries (): triple patterns that the application can answer.

So far, we have only developed this interface but the three first primitives.

2 Demonstration: linked data browser

We have implemented a prototype of this architecture described in Figure 1. Precisely,
we have implemented:

— RDFContentProvider: the provider interface;

— RDFContentResolver: which can decide to which class to redirect a query;

— Pikoid: a picture annotation application which implements
RDFContentProvider;

— AndroidRDFProvider: an application encapsulating data access to the applica-
tions of the Android platform (Calendar, Contact, Map, etc.);

— RDFBrowser: a simple client for navigating within RDF data provided by these
applications in a generic manner.

uri © : rdf uri : :rdf Internet

7
0}‘@ﬁ ery || tupjgs &
\\\Q o GIJ/

! > Phone
| RDFBrowser HTTPResolver :
| iy U |
| urt df o (& |
| ‘
: ’RDFContentResolver ‘ I
|
| o
: a |
I Uy :
| |
: ’AndroidRDFProvider‘ :
| |
| |
| |
! |
| |
| |
|

Fig. 1. The four implemented components and the communication between them. Communica-
tion with the web (dotted) is not implemented at submission time.

In this demonstration, we will show how to quickly annotate a picture with the help
of the standard Android applications (Pikoid), then we will use the RDFBrowser to
navigate through these annotations provided as interrelated RDF statements.

The beauty of linked data is that it is easy to understand how to navigate within
this data through HTTP requests: each request (a URI) returns RDF from which URIs
can be extracted for formulating further requests. The RDF browser acts as a linked
data client except that it works over the Android content provider mechanism instead of
HTTP: it asks triples about a particular URI, displays these and when clicked on, issue
the same URI query. Figure 2 shows the current interface.

3 Conclusion

What we have to demonstrate is only a proof of concept that semantic technologies
could be included uniformly in a portable platform with a minimal overhead. This
would accomplish one integration step further since the seminal work of [1].

There is room for many developments on the basis of the RDFContentProvider
interface, bringing our personal data silos closer to the semantic web. Many issues have
not been considered in this first development, most importantly the connection to the
web. From the Android device to the web, using REST over HTTP to reach (linked)
RDF data is not a real problem. From the web to Android, implementing a HTTP server
which acts as a REST proxy for Android data accessible to our RDFBrowser is not
difficult either. The main issue is the conversion of Android local URIs to HTTP URIs.

The system is available at http://swip.inrialpes.fr as several applica-
tions. It has been tested on the Android emulator and HTC Android 1.6 devices. Spe-
cific developments have been made for this version which would not be necessary in
newer versions of Android. It is currently being tested on other devices.

Froperties ROF Properties

Fig. 2. The Pikoid application annotates images with metadata stored as RDF. RDFBrowser al-
lows for querying this information to the Pikoid RDFContentProvider interface and displaying it.
The current picture metadata is shown in the second panel (pikoidRDFprovider/60). From there,
it is possible to browse the information available in the address book (people/104) and the calen-
dar (events/3) through the AndroidRDFProvider wrapper. Finally, RDFBrowser also allows for
inspecting available RDFContentProviders and the ontologies they manipulate.

References

1. Walsh, N.: Generalized metadata in your palm. In: Proc. 2nd Extreme markup languages
conference, Montréal (PQ CA) (2002), http://conferences.idealliance.org/
extreme/html/2002/Walsh01/EML2002Walsh0l.html

4 Acknowledgements

We thank Yu Yang who has programmed part of this demonstration.

