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Abstract. This poster paper presents the design and implementation
of an RDFS reasoner based on a backward chaining approach and imple-
mented on a clustered RDF triplestore. The system presented, called 4sr,
uses 4store as base infrastructure. In order to achieve a highly scalable
system we implemented the reasoning at the lowest level of the quad
store, the bind operation. The bind operation in 4sr traverses the quad
store indexes matching or expanding the query variables with awareness
of the RDFS semantics.

1 Introduction

The Semantic Web community is promoting RDF stores (or triple stores) as
the data storage technology for the Web of Data. RDF stores implement some
extra features that make them very attractive for certain type of applications.
For instance, data is not bound to a schema and it can be asserted directly
from RDF sources (e.g. RDF/XML or Turtle files) due to their native support
of Semantic Web data standards. But the most attractive characteristic is the
possibility of implementing an entailment regime. Having entailment regimes in
a triple store allows us to infer new facts, exploiting the semantics of properties
and the information asserted in the knowledge base.

Today, it is still a challenge to query datasets with a few hundred of millions
of triples following the RDFS regime for datasets subject to frequent changes. If
we want semantic databases to handle big volumes of data transactions then we
need to find backward chained approaches that do not add excessive overhead
to the query phase.

4sr1 has been implemented on the 4store [1] RDF database. 4store is an
efficient, scalable and distributed RDF database which gives us a good platform
on which to implement a backward chaining and decentralised approach.

To summarize, the main characteristics of 4sr are:

1 4sr is available from http://4sreasoner.ecs.soton.ac.uk/ under GNU GPL li-
cense
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– Low level RDFS Backward Chained reasoning implementation.
– Duplicate entailment detection and elimination.
– Named graph management.
– Client applications can disable/enable the RDFS entailment regime via pa-

rameters in the HTTP SPARQL endpoint.
– 4sr doesn’t add overhead at the import phase keeping intact 4store’s import

throughput (100kT/s).

2 Background

In the context of distributed techniques, [7] performs Forward Chaining (FC)
parallel reasoning to expand the RDFS closure over hundreds of millions of
triples. [6] pursues a similar goal and using MapReduce computes the RDFS
closure over 865M triples in less than two hours. A continuation of this work has
been presented in [5] providing a parallel solution to compute the OWL Horst
regime.

[3] presented a novel method based on the fact that Semantic Web data
present very skewed distributions among terms. Based on this evidence, the
authors present a FC algorithm that works on top of data flows in a p2p-alike
infrastructure. This approach reported a materialization of RDFS for 200 million
triples in 7.2 minutes on a cluster of 64 nodes.

Obviously, in the last 2-3 years there has been a significant advance on ma-
terialization of closure for both RDFS and OWL languages. However very little
work has been presented on how to actually query vast amounts of data and how
to connect those solutions with SPARQL engines.

3 4sr Design and Implementation

The RDFS inferencing in 4sr is based on two new components that have been
incorporated into 4store’s architecture:

– RDFS Sync: A new processing node to replicate RDFS statements called
RDFS sync. This node gathers all RDFS statements from all the storage
nodes and keeps a synchronized copy of such information accessible to the
bind operation in all the segments. After every import, update, or delete,
this process extracts the new set of RDFS statements in the KB and sends it
to the Storage Nodes. Even for large KBs this synchronization is fast because
RDFS statements tend to be a very small proportion of the dataset. This
node is also responsible for filtering out entailed duplicates.

– bind’: The new bind function matches the quads not just taking into account
the explicit knowledge but also the extensions from the RDFS semantics.

Figure 1 shows in the architecture how bind’ and RDFS Sync interact for a
hypothetical 2 storage-node deployment.
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Fig. 1. 4s-reasoner architecture

The current version of 4sr implements the RDFS rule entailments related to
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range. These seman-
tics include the rules rdfs2, rdfs3, rdfs5, rdfs7, rdfs9, rdfs11, ext1, ext2, ext3 and
ext4 of the RDFS Rule Entailment Regime (see section 7.3 in [2]).

The bind’ takes a super set of 4 elements < M,S, P,O > to match the
segment quads. The first goal in bind’ is to expand P and O sets so as to broaden
the index coverage. After this, the algorithm iterates over the M,S, P,O patterns
applying not just an explicit match but a match where the members of the quads
are compared taking into account RDFS semantics. Every matched solution with
p or/and o unbound will be expanded according to the RDFS entailment regime.
As a final step, duplicates are detected and eliminated. This approach has been
presented in [4].

This architecture has been implemented in ANSI C 99 using a custom TCP/IP
protocol to communicate Storage Nodes and the RDFS Sync Node. Figure 2 gives
an overview of how the previous phases are implemented.
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4 Evaluation

Due to the lack of space, we refer the committee to [4] where we preliminary
tested 4sr using the Berlin SPARQL Benchmark.

5 Conclusions

In this poster paper we present a backward chained decentralized implemen-
tation of the RDFS entailment. The novelty of our work is to implement such
reasoning in the bind operation of an RDF decentralized database. 4sr offers a
good balance between import throughput and query performance over the RDFS
entailment regime. In that sense, 4sr will support the development of Semantic
Web applications where data can change frequently and RDFS inference is re-
quired. This poster paper will be accompanied with a demo on site similar to
the one available online at:

http://4sreasoner.ecs.soton.ac.uk/demo.html
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