
STEREO: a SaT-based tool for an optimal
solution of the sERvice selEctiOn problem

Daniel Izquierdo, Maŕıa-Esther Vidal, and Blai Bonet

Departamento de Computación
Universidad Simón Boĺıvar
Caracas 89000, Venezuela

{idaniel,mvidal,bonet}@ldc.usb.ve

Abstract. We present STEREO, a system that offers an expressive for-
malism and implements techniques firmly grounded on logic to solve the
Service Selection Problem (SSP). STEREO adopts the Local-As-View
approach (LAV) to represent services’ functionality as views on ontol-
ogy concepts, while user requests are expressed as conjunctive queries on
these concepts. Additionally, users can describe their preferences, which
are used to rank the solutions. We discuss the LAV formulation of SSP;
then, we illustrate the encoding of SSP as a logical theory whose mod-
els are in correspondence with the problem solutions, and in presence of
preferences, the best models are in correspondence with the best-ranked
solutions. We demonstrate STEREO and the properties of modern SAT
solvers that provide an efficient and scalable solution to SSP.

1 Introduction

Nowadays, several annotation tools like the one proposed by Ambite et al. [1],
are able to label and convert existing Web data sources into Semantic Web
Services. Once this tremendous amount of services becomes available, users will
more than ever require approaches to precisely express their selection needs and
to effectively identify the services that best meet their requirements. To achieve
this goal, we developed STEREO, a system that offers an expressive formalism
for describing Web services and user requests, and implements a logic-based
solution to efficiently select the services that best meet the user requirements.
The STEREO formalism and techniques have been reported in [4].

STEREO is tailored to constantly changing Web service datasets and a rel-
atively stable set of ontology concepts. STEREO adopts the recent approach of
Ambite et al. [1] that describes services as views on ontology concepts following
the LAV approach that is widely used in integration systems [5]. Thus, every
time a service changes or a new one becomes available, only a tiny fraction of
the mappings must be updated. Additionally, STEREO models user requests
as conjunctive queries on the ontology concepts and casts SSP as the problem
of rewriting a query in terms of a set of views, the so-called Query Rewriting
Problem (QRP). Thus, STEREO exploits existing scalable and efficient tech-
niques that have been proposed in the data integration area [2, 5]. Furthermore,



Encoder Service 
RewritingsFinder Decoder

CNF 
Theory

Models

Ontology 
reasoner

IS=<D,S,M>

Service Views

www.aa.com
www.united.com

Catalog

User 
Request
R=<Q,P>

Fig. 1. The STEREO Architecture

STEREO offers a simple yet expressive language for preferences and supports
users’ preferences and constraints on the set of the selected services to satisfy
a given request. These preferences and constraints further refine and rank the
set of valid rewritings of the posed query, in a way that the best solutions to
SSP corresponds to the best-ranked valid rewritings of the corresponding QRP.
STEREO constructs a propositional logical theory that captures the features
associated with SSPs; each model of the theory encodes a valid combination
of services, and these models are ordered by their rank and the best-ranked
models are the models with minimum rank. Knowledge encoded in the ontology
is used to extend the rules in the logical theory to permit the cover of ontol-
ogy symbols in the query with symbols in the views according to subsumption
relationships represented in the ontology. We demonstrate the benefits of the
approach and show the following key issues: the expressiveness by modeling a
real-world domain; the scalability by demonstrating how STEREO is able to
enumerate realistic instances of SSP in a few seconds; and finally, the perfor-
mance by enumerating in the same logical theory, the optimal models based
on different cost/rewards of the users’ preferences. The demo is published at
http://stereo.ldc.usb.ve/STEREO.

2 STEREO Architecture

The STEREO architecture is comprised of a Catalog of service descriptions,
an Ontology Reasoner, the Encoder, the best model Finder, and the Decoder.
Figure 1 depicts the overall architecture. An instance of SSP consists of an
integration framework IS and a user request R. Formally, IS is a tuple 〈D,S, M〉
where D is an ontology1, S is the set of services, and M is the set of LAV
mappings. R is a tuple 〈Q,P 〉 where Q is a conjunctive query on the ontology
relational symbols and a set of preferences P . The STEREO Catalog is populated
with the integration system components. We developed an Ontology Reasoner to
compute the transitive closure of the subsumption relationships, and the Encoder
module makes use of this information in conjunction with the LAV mappings,
constant symbols, and users’ preferences to encode an input instance of SSP
1 An ontology is comprised of a set of relational and constant symbols from which log-

ical formulas can be constructed, and a collection of axioms describing the ontology.



as a CNF theory. STEREO uses c2d (http://reasoning.cs.ucla.edu/c2d)
to compute all the best-ranked models of the CNF theory in a certain normal
form called deterministic and decomposable negation normal form (d-DNNF)
[3]; however, off-the-shelf SAT solvers can be also used. The Finder computes
a best model by enumerating the models and it can reuse the same d-DNNF
for different cost/rewards associated with the preferences to calculate the best
service rewritings. The Decoder translates the model(s) into the input instance.

3 Demonstration of Use Cases

We illustrate our approach on a simple travel domain that contains information
about flight and train trips between cities and information about which cities
are in the US. The ontology is comprised of the predicates trip, flight, train and
uscity. The first predicate relates cities (x, y) if there is a direct trip either by
plane or train between them. The flight predicate relates (x, y, t) whenever there
is a direct flight from x to y operated by airline t, and similarly for train, and
uscity indicates if a given city is or not a US city. The ontology axioms capture
two subsumption relations:

flight(x, y, t) v trip(x, y). train(x, y, t) v trip(x, y).

For the services, we assume the following type of data sources:

– nat-flight(x, y, t) relates two US cities that are connected by a direct flight,
– one-way-flight(x, y) relates two cities that are connected by a one-way flight,
– nat-train(x, y) relates US cities that are connected by a direct train,
– to-pa(x) tells if there is a direct flight from x to Paris operated by American,
– from-la(x) tells if there is a direct flight from LA to x operated by United.

Based on the ontology concepts the services are described using LAV views:

nat-flight(x, y) :− flight(x, y, t), uscity(x), uscity(y) .

one-way-flight(x, y) :− flight(x, y, t) .

nat-train(x, y) :− train(x, y, t), uscity(x), uscity(y) .

to-pa(x) :− flight(x, Paris,AA) .

from-la(x) :− flight(LA, x,UA) .

Consider a user that needs to select the services able to retrieve one-stop
round trips from a US city x to any city y in the world, and the user prefers
flying than traveling by train. This request is represented as follows:

Q(x, y) :− uscity(x), trip(x, u), trip(u, y), trip(y, v), trip(v, x) .

This preference is modeled by assigning a high reward to the symbol flight.
Any rewriting of the ontology predicates in terms of the services defined by these
predicates, implements the request. In addition, rewritings comprised of services



defined by the symbol flight will have higher scores than those with services
defined by the symbol train. Thus, this rewriting is valid and highly ranked:

I(x,Paris) :− nat-flight(x, u), to-pa(u), one-way-flight(Paris, v), nat-flight(v, x) .

But, the following rewriting is not a valid solution because it maps the query
variable y into two different constants Paris and LA that denote different cities:

I ′(x, y) :− nat-flight(x, u), to-pa(u), from-la(v), nat-flight(v, x) .

Using this travel domain, we consider the following scenarios:

– We run STEREO in three different benchmarks. We start with a benchmark
of queries with 2 to 5 sub-goals and sets of 10 to 100 services; we show that
the sets of 100 airlines with 5-stop flights can be compiled in 328 secs, the best
model can be computed in 0.29 secs, and the enumeration of all models in
0.47 secs. We add a second service for each airline and show that STEREO
behavior remains similar. Finally, we try services with multiple sub-goals
which are randomly generated and show that the compilation time does not
grow monotonically with the number of views. The time to find the best
model is 0.46 secs while the enumeration of all models is about 17 hours.

– We test the system with ontologies of different sizes and show reusability
by assigning different cost/reward to the preferences; we also demonstrate
that the same d-DNNF can be used to compute the best model, while the
execution time remains almost the same.

4 Conclusions

We present a logical-based approach that relies on the LAV formalization to
solve SSP; the approach is expressive, efficient and scalable. We illustrate the
formalization of service functionalities in terms of simple conjunctive rules. In
addition, we demonstrate a propositional logic-based formalization of SSP in-
stances, and different scenarios where the properties STEREO can be observed
by users. We show how the approach can be applied to real-sized problems, while
the whole approach is only possible when the compilation of the CNF theory
into d-DNNF succeeds.

References

1. J. L. Ambite, S. Darbha, A. Goel, C. A. Knoblock, K. Lerman, R. Parundekar, and
T. A. Russ. Automatically constructing semantic web services from online sources.
In ISWC, pages 17–32, 2009.

2. Y. Arvelo, B. Bonet, and M.-E. Vidal. Compilation of query-rewriting problems
into tractable fragments of propositional logic. In AAAI, 2006.

3. A. Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.
4. D. Izquierdo, M.-E. Vidal, and B. Bonet. An expressive and efficient solution to the

service selection problem. In ISWC-To Appear, 2010.
5. R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries

using views. VLDB J., 10(2-3):182–198, 2001.


