
A Semantic Web Repository for Managing and

Querying Aligned Knowledge

James P. McGlothlin, Latifur Khan

The University of Texas at Dallas
Richardson, TX USA

{jpmcglothlin, lkhan}@ utdallas.edu

Abstract. Ontology alignment is the task of matching concepts and terminology

from multiple ontologies. Ontology alignment is especially relevant in the
semantic web domain as RDF documents and OWL ontologies are quite
heterogenous, yet often describe related concepts. The end goal for ontology
matching is to allow the knowledge sets to interoperate. To achieve this goal, it
is necessary for queries to return results that include knowledge, and inferred
knowledge, from multiple datasets and terminologies, using the alignment
information. Furthermore, ontology alignment is not an exact science, and
concept matchings often involve uncertainty. The goal of this paper is to

provide a semantic web repository that supports applying alignments to the
dataset and reasoning with alignments. Our goal is to provide high performance
queries that return results that include inference across alignment matchings,
and rank results using certainty information. Our semantic web repository uses
distributed inference and probabilistic reasoning to allow datasets to be
efficiently updated with ontology alignments. We materialize the inferred,
aligned data and make it available in efficient queries.

1 Introduction

We shall begin this paper by defining the high level problem we wish to solve and the
system goals. Given multiple datasets (RDF documents) and ontologies, the goal is to

allow queries against the complete knowledge set. The queries should be able to be

specified using the terminologies from any of the ontologies, or from a new common

global terminology. The queries should return all relevant knowledge, including

inferred triples and triples that are specified using different, but corresponding,

terminologies. The queries should rank results based on confidence values, and should

enable selection based on probability conditionals. Furthermore, these queries should

return such knowledge in a very timely manner.

Determining the alignments or matchings is the obvious first task. If two datasets

use different terminology, then the concepts must be aligned to enable queries across

both knowledge sets. Ontology alignment is already a well-researched area. Our
contribution is to allow these alignments to be applied to the dataset, to transform the

data accordingly, and to allow queries against the aligned results.

In [2], we first introduced RDFKB (Resource Description Framework Knowledge

Base), a bit vector schema that is uniquely able to materialize inferred triples without

a performance penalty. In [6], we introduced a multiple bit vector schema using

thresholds to support efficient queries involving probability. RDFKB is the only

semantic web repository to materialize uncertain information and to support queries

involving probabilistic inference.

Our solution in this paper builds on these technologies. We propose to materialize

all inferred triples including those inferred by reasoning with alignment matchings. In

fact, we propose to implement all alignment matches as inference rules. We also

propose to use the threshold vector schema as our solution for propagating and

querying similarity measurements.

However, this paper involves more than just utilizing previous versions of RDFKB

to apply alignments. We must be able to support distributed inference across multiple

datasets, which changes our data management schema. We must be able to add
inference rules to an existing dataset, which changes our inference rules

specifications. Ontology alignment is a fluid process. Similarity measures can

fluctuate through user feedback, additional machine learning, etc. Therefore, we must

be able to change or even delete inference rules from the system. Also, many times

the alignment goal is to transform the data into new terminology, thus replacing the

original data. Finally, trust factors should be able to be associated with data origins,

in order to facilitate handling conflicting information during dataset merges.

In Section 2, we will briefly overview the RDFKB schemata and our previous

work. In Section 3, we will specify the new features that enable us to apply

alignments. In Section 4, we will present experimental results, and, in Section 5, we

make some conclusions and define some future work.

2 Background

RDFKB uses two schemata, one for data management, and one for queries. The data

management schema is centered around a Triples table. This allows us to associate
additional information (probability) with each triple, to optimize the addition and

deletion processes, and to encapsulate the query schema from the user.

Our query schema includes two bit vector tables: POTable and PSTable. POTable

contains 5 columns: the property, object, subjectbitvector, bitcount and threshold.

The subject bit vector has a 1 for each subject that appears in a triple with the

corresponding property and object and with probability >= threshold. PSTable

contains 5 columns: property, subject, objectbitvector, bitcount and threshold. Bit

vectors allow us to access entire collections of triples by reading a single tuple.

Furthermore, joins and unions can be performed using efficient bit operations.

All inferred triples are materialized during addition time using forward chaining.

[2] details how our bit vector schema is able to support inference materialization

without a performance penalty, and describes our implementation of OWL inference
rules. [6] details our probability solution using multiple bit vectors and thresholds,

and demonstrates that adding probability does not reduce query performance.

3 New Features

Inference Rules. RDFKB uses inference rules to materialize inferred data. The

actual instantiated inference rules are registered with RDFKB rather than

implemented by RDFKB. At a high level, an inference rule defines that given a set of

1 or more triples (A1,…,An), we can conclude an additional triple B. For example,
given <Professor1 type AssistantProfessor>, we can conclude <Professor1 type

Professor>. Using our high level definition above, it is obvious we can use inference

rules to perform any alignment transformation.

The inference rule must define two methods Infer() and Infer(triple T). Infer(triple

T) returns the set of inferred triples that this inference rule can infer if T is added to

the dataset. Infer() returns all triples that can be inferred across an entire dataset.

This new method allows an inference rule to be added to an existing dataset, one of

our requirements to support applying ontology alignments.

Provenance. In [6], RDFKB uses an InferenceCount value and forward chaining to

enable updates and deletes. However, this will not allow us to update or delete an

inference rule, which is required to support changing alignments and similarity

measures. Therefore, we replace the InferenceCount field in the Triples table with

Lineage, a foreign key into one of our provenance tables. The provenance tables are

Users, Datasets, Events, and Dependencies. The Events table defines what inference

event materialized an inferred triple, including the Inference Rule. This allows us

query all triples materialized by an inference rule, so we are able to delete inference

rules or update probabilities associated with inference rules.

The provenance tables also solve several of our other requirements. The Datasets

table and Users table provide our trust factors. A concrete triple specifies its Dataset

in the lineage column and we have replaced the Triples table with a collection of
Triples tables. The Datasets table allows us to traverse over these tables, and

inference rules can now query the entire collection of triples tables during the forward

chaining process. This enables distributed inference, a core requirement for reasoning

with alignment. We can apply any inference rule across multiple datasets and

ontologies, which enables all possible alignment updates.

Remove(). Often, the goal is to transform the dataset to a new terminology rather than

to just enable queries using the new terminology. The difference between these two

scenarios is whether the original instances, using the original terminology, persist in

the dataset. Inference rules can transform the dataset by instantiating inferred triples

using the new terminology. To support deleting the original triples, we add a function
Remove(triple T). Remove, unlike delete(triple T) , removes the concrete triple

without removing the inferred (transformed) triples.

4 Experimental Results

In [6], we show that we are faster than all existing semantic web repositories using all

26 queries defined by LUBM[3] and Barton Dataset[4]. In fact, we are faster than the

next fastest solution, RDF-3X[1], by almost 3x times. There is no standard dataset

and set of alignments for us to test our new features with. Our claim therefore is that

since we are faster than other repositories for basic queries, and the current

technologies for applying alignments (bridges, transformation APIs, etc) are all query

time functions, we will also be much faster for queries involving alignment.

We have defined some simple experiments to demonstrate that we can apply

alignment matchings to the dataset, and that queries are still efficient. For these

experiments, we continued to use LUBM (with 67 million triples) and Barton dataset.

Certain relationships between these datasets are natural since university students and

professors commonly author publications. Our tests utilize only the most common

alignment matchings: sameAs and subClassOf. However, these tests verify that each

of the requirements in Section 1 is satisfied. Performance times are listed in seconds.

The first experiment we performed was simply to align type Person by applying a

sameAs inference rule matching the two Person classes. We applied this rule to the

two datasets in 0.91s. We were then able to query ?s type Person in 0.08s.

In the second experiment, we aligned instances. We choose 100,000 specific

professors from LUBM and arbitrarily aligned them with 100,000 authors from
Barton Dataset in 10.8s. We then queried all members of University0 who wrote a

item of type text (0.03s), all professors who wrote a conference publication (0.24s),

and all conferences which published a work by a professor (0.13s).

The third experiment we performed was to align the LUBM type Publication. We

first aligned this with Item. This alignment took 0.91s. We queried all Items (0.07s)

and Publications (0.08s). We then deleted this alignment and added a new alignment

between Publication and Text (1.27s to delete and add the alignments). We changed

the probability on this alignment from 1.0 to 0.97 (0.38s). We then queried and

ranked items of type text(0.06s). The results from the Barton Dataset were first

(p=1.0) followed by all items of type Publication from LUBM (p=0.97).

Finally, we used the subject types in Barton to align with the publicationResearch

in LUBM. We took this a step further and used this information to guess the subjects
associated with research groups and departments in LUBM. For example, if 6/7

publications written by members of a research group were on the topic of data mining,

we concluded the research group related to data mining with p= 0.86. The main point

in this experiment was to validate our ability to adjust alignments on the fly. For

example, matching four researchers with authors increases the number of known

topics for a research group and alters the similarity measure of the research group.

5 Conclusion and Future Work

We have defined a set of specific requirements necessary to allow ontology alignment

to be applied to data in a semantic web repository. No existing semantic web

repositories provide these features. We have presented experiments validating that

we do provide these features, and we have presented performance numbers

documenting the times required to apply various alignments and to query the results.

For future work, we would like to develop a complete benchmark and perform

more elaborate experiments and comparisons. We also plan to use cloud computing
solutions such as HBase and Hadoop[5] to further increase RDFKB’s scalability.

6 References

1. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB(2008) 647-659
2. McGlothlin, J.P., Khan, L.R.: RDFKB: efficient support for RDF inference queries and

knowledge management. In IDEAS(2009) 259-266
3. Lehigh University Benchmark (LUBM), http://swat.cse.lehigh.edu/projects/lubm
4. The Barton dataset, http://simile.mit.edu/wiki/Dataset:_Barton
5. Hadoop, http://hadoop.apache.org
6. Mcglothlin, J., Khan, L.: Materializing and Persisting Inferred and Uncertain Knowledge in

RDF Datasets. In AAAI(2010)

