
On the Impact of Ontological Commitment
Marian Nodine

Telcordia Technologies
106 E. 6th Street, Suite 415

Austin, TX 78733
(512)478-8923

nodine@research.telcordia.com

Jerry Fowler
setenv, LLC
Houston, TX

(713)526-8641

gfowler@acm.org

ABSTRACT
Ontological commitment, or the agreement to have your
applications and users conform to a common domain
understanding as encapsulated in one or more shared ontologies,
is a noble goal and essential for open agent systems. Our
experiences building ontology-based agent systems in multiple
domains have shown us that the intention for a new application
to locate and conform to some existing ontology or ontologies
within its domain has many impediments to its success. For
instance, the goals of the designer of a domain ontology include
developing a complete and comprehensive domain description;
however, the application developer may only require a small
fragment of that ontology. Multiple applications that conform to
the ontology may, in fact, use completely orthogonal fragments of
the ontology, and not be able to interact at all. Users may insist
on importing into the ontology sets of terms that are neither
logically consistent nor easily modelable.

With these issues in mind, in this paper we propose some
guidelines for ontology development and evolution paradigm that
should facilitate ontology reuse. These guidelines could
underpin a usage model for ontologies; one that enables the
application designer to reuse ontological concepts from multiple
ontologies in a more flexible manner, while retaining the
essentially good properties of ontology sharing and reuse. These
guidelines affect both the design and use of ontology-based
applications, as well as the way applications advertise
themselves to other agents with which they may interoperate.

1. INTRODUCTION
The goal of knowledge representation is to make explicit the
semantics of a particular domain of interest for the purposes of
sharing the knowledge among humans and computer artifacts.
Sowa [11] subdivides knowledge representation into categories:

“Logic provides the formal structure and rules of inference.

Ontology defines the kinds of things that exist in the
application domain.

Computation supports the applications that distinguish
knowledge representation from pure philosophy.”

There is a strong relationship between some specific ontology
and the logical rules and computational artifacts that use that
ontology, in that when they communicate among themselves, they
have some level of assurance that the same terms have the same
meanings to all. However, this use requires that the logical rules
and the computational artifacts have explicit linkages with the
ontology; often in the form of hard-coding the ontological terms
into the rules and/or the application code itself.

In an agent-based system, common ontologies specify the
ontological commitments of a set of participating agents [16]. An
ontological commitment is an agreement to use a vocabulary in a
way that is consistent with an ontology. An agent or human
committed to an ontology understands (some subset of) the
ontology and agrees to use it in a manner consistent with the
semantics of the ontology. Agents and humans committed to the
same ontology can share knowledge among themselves with
some confidence that they share an underlying understanding of
what is being said. Commitment to common, shared ontologies
facilitates openness in an agent-based system.

In this paper, we examine the conflicting requirements and goals
of ontology designers, ontology-committed applications, and
ontology-aware users, and their respective impact on the problem
of ontology commitment and reuse. As ontological sharing and
reuse increases, the gap between the ontology designers and the
ontology users grows larger. Our goal is to analyze what issues
inhibit reuse and to propose strategies for facilitating reuse. In
particular, we consider the problem of reuse of ontologies whose
specification is complete, for applications whose requirements
were not considered during the design of the ontology. This
problem is not addressed in the ontology design methodologies
summarized in [17]. We develop guidelines and approaches for
agents to use existing ontologies in a more flexible manner.

Throughout the paper, we relate the issues to real issues we have
encountered within the context of one of our applications, EDEN
[3]. EDEN1 is an agent-based system developed for the purpose
of inter-organizational sharing of environmental data collected,
stored and monitored by multiple government agencies and non-
government scientists spread throughout the US and Europe, and
relating information from these disparate data sources and
schemas at a semantic level as needed by the users. EDEN uses
ontologies to represent the semantics of the underlying
information, and real and varied databases to populate those
ontologies with instances.

2. ONTOLOGICAL COMMITMENT
Because ontologies are meant to facilitate sharing and reuse of
knowledge, it is important that the ontology and its collection of
users (both human and agent) align themselves to a shared view
of the domain during the process of designing and evolving the
ontology for that domain. However, many existing ontologies
have been developed either by designers attempting to
characterize a domain (with no real computational applications
that use them) or by application developers to support individual
applications (with no real sharing of the ontology with other

1 EDEN was funded jointly by the DOD, DOE, EPA and EEA.

applications). The plethora of existing ontologies argues that
many concepts are already represented within some ontology, so
reuse of these ontologies, increasing the ontological commitment
level, is now feasible. For example, some ontologies such as the
Unified Medical Language System (UMLS) Metathesaurus [7]
have achieved a higher level of commitment.

There are several issues that impede this sharing and knowledge.
First are issues related to the conflicting goals and objectives of
ontology definers, ontology-committed applications, and users of
such applications. Second are issues of the mutual conflict
between ontological commitment and ontological evolution.
Third are issues of conceptual mismatches between ontologies
and the applications and users that use them. Unfortunately,
these issues stem from fundamental issues and characteristics of
the problem of sharing ontologies so broadly.

2.1 Conflict: Definer, Application, User
The commitment to ontologies is hampered by the conflicting
goals of ontology definers, developers of ontology-committed
applications and ontology-committed application users, and often
by the confusion of users and definers over the demands of
ontology-committed applications. Here, we use the descriptor
“ontology-committed” to mean that something purports to use the
terms in the ontology(-ies) in a manner consistent with its (their)
definitions.

The goal of the ontology designer, at least one working towards
maximizing the usefulness of his ontology to a wide variety of
applications, is to completely characterize a particular domain at
the semantic level. The ontology designer needs expertise in
knowledge representation and in the domain of the ontology. His
intent is to develop a comprehensive and up-to-date ontology,
with a broad set of acceptable terms. His job is hampered by the
fact that the different domain experts have different viewpoints
of the domain, and these viewpoints must be reconciled within
the ontology itself, placing pressure on the designer to either take
a commonly agreed-upon but consistent subset of the domain, or
to attempt to placate everyone by including everything. The likely
result is either the ontology will express concepts at a higher
level than can be used effectively by an application that seeks to
attach suitable labels to real data, or the terminology within the
ontology will not be logically consistent and thus easily
incorporatable into an application. Fortunately, our experience
indicates that many terminology disagreements can be addressed
by synonymy. For instance, what the EPA refers to as a “site” the
DOD calls a “facility.” What the EPA calls an “operable unit” (a
specific location contained in an EPA “site”) the DOD calls a
“site.”

The goal of the application designer is to use the ontology to
support an application. The application designer has expertise in
building applications, especially within given domains. His intent
is to develop an efficient and useful application. It is likely that
the application will not cover the whole domain, or may span
multiple domains. Also, applications need to focus on some
issues that are unimportant to the designer. For instance, a failure
to take sufficient care of value representation issues in the
ontology may force the application designer to code this
information directly into the application, even though it is really
domain-related knowledge. For example, within the

Environmental Data Registry [4], it was difficult to relate
measurements of chemicals between different representations
because the measurement ontology was “well understood,” and
often explicit in the data representations themselves. Even terms
such as “milligrams per kilogram” were sometimes represented
inconsistently in text fields. This posed a problem in extracting
values for computation in this “well understood” measurement
system.

The desire of the application user is to be able to do his job well
and easily. Application users have expertise in their own jobs
and potentially in the domain of the application, but may have
minimal understanding of knowledge representation or
application design issues. Typical users want an understandable,
natural, easy-to-use interface to the application that facilitates
their work. This implies that they want the scope of the ontology
restricted to the exact area within the domain that they are
specifically concerned with. Another issue is that a user may
have a comfortable vocabulary of domain-related terms that do
not map well to the ontology representation model, to the domain
model that the ontology developer had in mind or to the needs of
the application itself.

2.2 Conflict: Commitment, Evolution
A second hampering factor when considering ontological
commitment itself is the fact that ontological commitment
impedes ontology evolution, and vice versa. Yet, both of these
are necessary for an ontology to be successful. As Mark Tuttle
et.al. say, “if you don’t use it, it won’t improve, if you don’t
improve it, it won’t get used.” [13]. In other words, use brings
out the need to change, change is required for continued use.

As stated before, a measure of ontological commitment is the
number of agents and humans that are committed to using the
ontology. Each of these committed entities has made the effort to
learn the ontology and to use the concepts therein in a manner
consistent with their definition. However, the ontology itself may
have problems, or may be incomplete in some aspect, or not
reflect changes in the domain itself. In these situations, it
becomes desirable at some point to evolve the ontology,
providing an updated version. Initially, there is no real
commitment to the updated version; rather, the entities
committed to the old ontology must explicitly learn the new
ontology, and adapt to the changes therein. This leads to the
observation that, as commitment to an ontology rises, so does the
level of effort required to accommodate an evolutionary step.

Development of an application represents a strong degree of
ontological commitment. The incorporation of an ontology into an
application may require specific coding with respect to the
ontology, so application developers tend not to appreciate it when
the ontology evolves. This tends to discourage users from
employing the precision they need to express their views of the
data in an application. In EDEN, the first version of our ontology
easily evolved into the second, because there were only three
small database fragments and a single user view in the initial
demonstration. As the complexity of the user interface increased
to make multiple views possible, and as we added larger, more
complex resources, the task of evolving the ontology from version
two to version three became more demanding due simply to the
numbers of agents impacted.

2.3 Impedance Mismatch
There are several areas where mismatch and other problems
seem to crop up. This problem has been studied extensively
within the heterogeneous database community [19,20]. Some
examples of these issues are as follows:

Uneven concept granularity: Some ontologies and other
dictionaries were developed with a focus on one particular aspect
of the domain. This aspect was well-developed and well-tested,
but other aspects of the same domain are ignored. For instance,
the ontology could have very strong and detailed concepts for
contaminants and hazardous waste sites on land and in lakes, but
not for ocean contaminants. However, a general application
concerning toxic waste sites would need all of these concepts.

Concept modeling mismatch: Some applications and
information sources model individual concepts differently from
others, thus it was hard to develop a single ontological concept
that would relate well to all the ways it could be represented. For
instance, the concept of a set of measurements of contaminant
levels taken daily could be represented in the ontology and/or the
data itself either with a class of measurement vectors (one
instance per day), or a class of measurements, with one instance
per measurement type per day, specialized on measurement type.

Value representation mismatch: Many ontologies we have
found do not even consider issues relating to the representation
of the values of the attributes in the instances, a requirement for
many applications. For instance, it would be easy to say that
“area” was an integer; therefore setting its range as the range of
positive integers. However, the Americans measured area in
square feet, etc, while the Europeans measured it in square
meters, etc. The application needed to know in which unit the
integer in a particular instance of the area is represented, and
how the units relate. These concepts should therefore exist in the
domain ontology. In a more complex example, one information
source in the EDEN application had “soil” as one of the media
that could be polluted; but a second had “topsoil” and “subsoil”
as separate concepts. A third site had multiple, more fine-grained
classifications for soil. These did not all map easily onto any
single ontological representation for soil, as mapping between the
different concepts required additional knowledge (e.g. the depth
of the soil), and sometimes was lossy (e.g. if everything was just
mapped to “soil”).

Terminology mismatch: Sometimes different sets of users use
the same term for different concepts, or the term best suited to
the user is already present in the ontology with a different
meaning. This means that necessary concepts are sometimes
omitted because the lexical terms needed to express them in
human language are all present in other usages. For instance, the
UMLS set of Semantic Relations was slow to develop the
concept of genetic relationship because the terms parent and
child existed for their use in logical tree structures.

All of these issues conspire to make ontology sharing
challenging.

3. ONTOLOGY DEVELOPMENT ISSUES
For ontological commitment to become real, ontology designers,
application designers and users within a domain need all to be

attracted to the same ontology. This affects not only the original
design, but also the process of evolving the ontology.

3.1 Design and Representation
Ideally, the design and representation of an ontology should be
done in collaboration with users and applications; the
applications then can incorporate the ontology as designed, and
the users can validate the concepts, relationships and axioms that
they access in the ontology via the application. These
interrelationships are shown in Figure 1.

Ontology
Designer

Application

Designer

Application

User

Representability vs.
Implementability

Usability vs.
Representability

Implementability vs.
Usability

Implementation

Requirements,
validation

Domain
knowledge,
validation

Speci-
fication

Domain
knowledge,
validation

Speci-
fication

Figure 1. Ontological Interactions

Partly because of the desire to maximize ontological
commitment, it is normally the goal of the ontology designer to
represent the domain as completely as possible. Ontologies such
as UMLS or environmental thesauri such as the General
Multilingual Environmental Thesaurus (GEMET) [6] or the
Terminology Reference System (TRS) [12] provide a broad base
for discourse over their relative domains, medicine and the
environment. Their definition has largely been driven, not by the
implementers of the computer systems that use the ontologies,
but rather by the practitioners within the domain itself. An
example of the practical impact of this high-level design on the
EDEN system was the design of value mapping across conceptual
domains. The Environmental Data Register’s (EDR) [4]
implementation of its value domain model was fully normalized.
This produced response times that were suitable for individual
term lookups and mappings, but the performance scaled
inadequately when several agents were performing simultaneous
large-scale term conversions for entire tables. To obtain any
tolerable performance at all, we were compelled to revise the
ontology of the conceptual domain to support a flatter, non-
normal data structure.

3.2 Evolution
As application developers develop applications using ontologies,
and users use those applications, they identify weaknesses,
missing concepts, and different issues that need to be addressed.
For instance, when we developed our initial environmental
ontology, some of the users who were used to the terminology in
GEMET requested that we evolve our own ontology to be
consistent with GEMET, or otherwise incorporate its terms. This

request mandated an incorporation of that ontology into the
environmental ontology. Once this incorporation was complete,
all agents had to be adapted to the new ontology (this required a
varying amount of effort depending on how closely the agent was
hardwired to the ontology). Some of the users who were not used
to the GEMET terminology also had to learn it. Thus, the
evolution of the ontology engendered quite a bit of effort on many
people. One could envision that the evolution of an ontology that
has a higher level of ontological commitment, such as UMLS,
could get very complex.

Clearly, the evolution of an ontology to a new version must be
done carefully and collaboratively, involving the same types of as
were involved in the original design. This indicates a slower,
more coarse-grained type of evolution, which in turn affects the
contents of the ontology. An ontology may contain several types
of information useful to the domain that it represents. These
include:

• Concepts/classes, their attributes, and the types of
representations their attributes can take.

• Relationships between concepts, including subclassing,
synonyms, and containment.

• Axioms and functions over those concepts.

• Instances of those concepts the relationships between them,
and axioms over the instances.

The first three of these are referred to as the schema information
(also known as the conceptual model or meta-knowledge) and the
last is referred to the instance knowledge.

Experience has shown us that instances, because they represent
changing objects in the real world, tend to evolve much faster
than the concepts themselves. Because of this, it is easier to
factor the ontology into two pieces, the schema and the instances.
Within the EDEN application, the environmental ontology itself
only contained schema-level domain information, and we
populated the schema using information from different
environmental databases. Because the agents themselves
naturally were written only against the schema concepts, and the
schema-level ontology information evolved more slowly, ontology
evolution did not create as significant a problem as it could have.
This experience has carried over into numerous other
applications developed using the InfoSleuth agent system [8,3];
thus, we recommend this factoring unless the instance
information is guaranteed to be stable (e.g., constants).

Ontological representation systems maintain this natural
factoring between schema and instances. In OIL [9], the schema
level is encapsulated within Standard OIL. OKBC clearly
distinguishes between schema and instances in its own
vocabulary. Therefore, there is no real barrier to this factoring
approach.

4. COMPOSITIONAL ONTOLOGIES
Given that the best approach to ontology design and use is a
collaborative one among ontology designers, application
developers and users, let us now turn our attention to the issue of
reuse. Consider an application developer, developing an
application to fulfill some of the needs of a specific class of users
in a given application domain. The developer has decided to

reuse as much already-defined ontological information as he can
within his application, tagging the imported concepts back to the
ontologies from which they were taken to facilitate the process of
evolving the application within the ontology. Unfortunately, up to
this point the application developer has had no input whatsoever
into the ontological design, though he has been working closely
with the prospective application users. Thus, the necessary
collaboration between the ontology designer, the application
developer and the users is missing in this situation. Furthermore,
the users’ input into the application design is much more direct
than that of the ontology designer. The result often is that there is
no good existing ontological “match” to the application and/or its
users.

Our experiences with our own ontology-based agent applications
has led us to the following observations:

1. Reusing ontologies is necessary for acceptance by domain
specialists, but many mature ontologies specify a lot more
than current agent systems can actually use.

2. Most of the applications we have developed require
concepts from multiple ontologies.

3. Most of the applications that we have developed require
some concepts defined in no ontologies, because of
mismatch issues.

 GEMET GPS
Positioning

EDR Facility

EDEN

Extension

Figure 2. A Compositional Ontology

In order to facilitate reuse, we have designed our applications to
use a compositional notion of ontologies, where we select
concepts from different ontologies as needed, and supplement the
result with any new concepts that we cannot locate elsewhere.
This leads us to support three operations over ontologies
themselves, which we term subset, compose and extend,
respectively, as shown in Figure 2.

4.1 Subset
Agents are frequently coded as specialists, understanding a
focused subset of the domain itself. For example, an agent that is
interfacing with information repositories on environmental
remediation techniques would not necessarily understand the
information related to companies and their responsibilities for
cleaning up specific toxic waste sites; yet the scope of the domain
encompasses both areas. These agents need not incorporate entire
ontologies; in fact, this may not even be possible for lightweight
agents using large ontologies. Standards such as FIPA [5] allow
agents to advertise the ontologies they understand, However,
such an advertisement may be misleading to other agents if the
agent only understands a subset of the ontology, in that two

agents advertising the same ontology may in fact understand
orthogonal subsets of the ontology, rendering communication
impossible.

Furthermore, too much ontology information may also confuse
users. As a practical matter, users of several of our agent
applications including EDEN were confused by the presence of
ontological terms for which no agent had advertised any
knowledge. The presence of the term implied to them that they
should be able to extract information (other than definition and
ontological relationships) relevant to the term. That no agent had
advertised the term was an unsatisfying explanation. Because of
this, the agents themselves that implement the ontology must be
careful how they present themselves to their users.

We define this subsetting using ontological fragments. An
ontological fragment consists of:

• The name of the ontology

• The classes or entities in the ontology that are supported
within the application, and their superclasses.

• Constraints on those classes including such things as ranges
of values allowed for specific slots

• The axioms that reference the supported classes/ attributes.

The fragment can be expressed as a set of constraints over the
classes and attributes. As an example from the EDEN system,
each agent that provided a wrapper for a data resource advertised
only a fraction of the domain ontology – precisely that portion for
which it could provide data instances. In some cases, a wrapper
agent advertised only a fraction of the slots of a class, and further
placed semantic constraints on the content of the slots based on
knowledge of the data instances about which it could report. In
other cases, an agent might fill a slot with a static value from the
canonical data representation for that slot. For example, because
there was no record in a particular remediation database for land
use, one of the attributes of a site, certain government database
wrappers returned the generic value “Federal Facility” which
was one of the values used in other databases.

Another example decision that needs to be made on any system is
whether a request for everything matching a query should return
an empty set if an agent does not advertise all elements of a
class, or should return nulls for the unadvertised elements. This
provoked strong disagreement on our team between those who
felt that the former was algebraically preferable and those who
felt that the latter was more intuitive to users already intimidated
by the challenge of understanding the nature of the results
produced by a dynamic distributed information system.

4.2 Compose
Another issue that is brought about by ontological commitment is
the issue that an agent often requires access to terms from
multiple ontologies. There exist a growing number of useful and
public ontologies, and it often seems more appropriate to pick
and choose terms from those ontologies than to build a new one
from scratch, with just the terms that you need for your ontology.
The result is a virtual ontology that imports fragments of other
ontologies, into some sort of unified and useful whole. For
example, within the EDEN application the diverse ways of
representing values relating to various concepts such as chemical

or geographic identifiers made it necessary to compose the
domain ontology incorporating terminology from the field of
hazardous waste pollution and remediation with the EDR
ontology for value representation.

The ability to compose ontologies has an immediate benefit in
modular ontology design. For instance, if you look within the
EDR tags, there are tags relating to location (street address,
postal code) as well as geographic (latitude and longitude). These
tags are not specific to the environmental domain, but are shared
among other domains such as address books and GPS positioning
systems. Furthermore, such structures seem relatively stable.
This indicates that it may be much more useful to have, say, a
single ontology for geographic positions, their representations,
and the relationships between them that can be incorporated into
environmental applications as well as those in other domains.

4.3 Extend
Unfortunately, applications frequently need to incorporate
concepts that are not represented in any ontology, or they may
need to “glue” concepts from different ontologies together using
new concepts. Thus, it is not sufficient to compose subsets of
ontologies; frequently it is necessary also to add some new
concepts. For example, within the setting of our EDEN
application, the domain ontologies covered the concepts for
which users wanted to retrieve information; for instance, they
enabled the user to answer questions such as, “What toxic waste
sites are within 10 miles of Houston, TX?” However, the agent-
based system that supported the application also was able to ask
higher-level, more abstract questions such as “Are the number of
toxic waste sites within 10 miles of Houston increasing faster
than they can be remediated?” These higher-level questions used
concepts present neither in the domain ontology, nor in any other
ontology available at the time.

The important issue with extension is to do it in a manner that
will not create further problems later. There are two ways to
extend an ontology; extensions that are safe and can easily be
incorporated into other applications, and extensions that are
unsafe and should eventually be agreed upon and then folded
back by consensus into the ontology. We define safe and unsafe
extensions with respect to the permissible definitional changes
with respect to the underlying ontology(-ies). A safe extension
can be characterized as follows:

Safe extension: an extension incorporating existing concepts
from one or more ontologies, where any new concepts are defined
axiomatically against the existing concepts in such a way that
instances of the new concepts can be determined computationally
from instances of the existing concepts. The transformation
axioms must be invertible; the conversion of any instance
between its view in the existing concept(s) and its view in the
new concept must be lossless in both directions.

Safe extensions are “safe” primarily because they can be shared
among the agents easily, simply by sharing the axioms that allow
for conversion from the existing classes to the extended classes.
We note that new concepts within such a safe extension cannot
have new attributes that would need to be present in any instance
of that concept, as this would violate the lossless conversion
property. So, for example, “milliliters per liter” would be a safe
extension for a concept if the concepts “water pollutant” and

“parts per million” were already present in the ontology being
extended.

In contrast, unsafe extensions are “unsafe” because they are
harder to share with other agents, as the other agents may not
maintain the information necessary to populate instances of the
unsafe classes. For example, adding a new concept, “Water
pollutant” with a new property, “concentration” would not be a
safe extension if there were no concept of containing medium in
the original ontology. Other agents, committed to the ontology,
may not have the information necessary to provide a
concentration for each pollutant they have, or may have different
ways of modeling the concept of how badly the pollutant is
contaminating the water.

Because unsafe extensions allow agents to instantiate classes that
have been extended unsafely and thus cannot easily be shared;
these extensions limit the openness of the agent. However,
unsafe extensions are sometimes necessary; for instance, they are
often required to deal with some of the impedance mismatch
issues discussed earlier. Allowing unsafe extensions increases
the possibility that different agents will create divergent
extensions to the ontology, and become incompatible with one
another. Therefore, unsafe extensions should be treated with
caution. One approach is to limit such extensions to those that
are monotonic [16] -- not requiring modifications to existing
ontological elements. Idealistically, the need for specific unsafe
extensions should be propagated to the ontology designers, who
can determine whether or not there is a consensus on the need for
the particular extension, and whether they should be incorporated
into the next version.

4.4 Example

depth

location

unit

canonical unit

Locator

GeoLocation Lat/Long

Sampling
Point

GPS Ontology

Measured
Contamination

atPoint

EDEN Ontology

Distance
Measurement

Ontology

Quantity
unit

canonical unit

Meter

Foot

unit
Unit of

Measure
isa

isa

isa

isa

Figure 3. A part of the EDEN compositional ontology.

Figure 3 shows a fragment of an example compositional
environmental ontology closely related to the one we used in the
EDEN application. This ontology used subsets of the GPS and
Measurement ontologies, composed together with a fragment of
the environmental ontology. The necessary concepts for this
particular application span all three ontologies. The gray boxes
indicate the three ontologies, and the white boxes within indicate
the classes taken from the individual ontology into the
compositional ontology. Note that the attributes from the
“Sampling Point” class refer to concepts in the other ontologies.

5. IMPLEMENTATION ISSUES
Given that we allow the operations of subsetting, composition
and (safe) extension over ontologies within an agent system, the
agents themselves need to be able to represent exactly what
combination they are committed to, in order to ensure that they
do not mislead others with respect to their capabilities.

There are three issues with representation and implementation.
The first is that the agent needs to be able to represent internally
the full set of details on how the ontology fragments it is using fit
together. This can be done with a suitable abstract ontology
representation. Secondly, the agent must be able to converse in
some detail with other agents about the parts of the ontologies
that they understand. This must be done using a suitable
exchange representation. Thirdly, messages should be able to
represent the ontology fragments that the message covers. This
requires a more specific ontology field within the agent
communication language.

5.1 Internal Representation
Internally, an agent needs to understand in detail the specific
schema-level knowledge to which it is committed. This
understanding may be complicated by the fact that ontological
knowledge may be represented using many different
representational models; for instance, there are subject-verb-
object models such as DAML, frame-oriented models such and
OKBC, and object-oriented models such as UML [14, 1]. These
all differ in key issues such as whether or not attributes are first-
class objects, whether or not multiple inheritance is allowed, and
how strongly-typed classes must be. Further complicating this, if
the operations of subsetting, composition and extension are used,
a single application may look into a set of ontologies whose
underlying ontological models may diverge.

Recent discussions have included the notion of developing
abstract ontology representations for the internal representation
of ontological knowledge. As with all applications that attempt to
span multiple viewpoints, key choices in specifying an abstract
ontology representation revolve around whether it should
incorporate every modeling features present in some ontology
representation, or it should only look at the modeling features
used by every representation, or it should take some path in the
middle. Wilmott et.al. [15] discuss in depth some of the issues
associated with the specification and implementation of an
abstract ontology representation from a theoretical standpoint.
Fortunately, an abstract ontology representation is implemented
within an ontology service, and thus only needs to incorporate the
requirements of the agents that it serves. In the InfoSleuth
system, our ontology service focused on frame-based ontologies,

as they were most compatible with the databases with which we
were working.

Internally, an agent that is using ontologies need only store the
subsets of the ontology that it needs, and the glue that puts them
together. So, for instance, in the ontology of Figure 2, the agent
itself only needs to understand the concepts in the shaded areas
of the GEMET, GPS Positioning, Facility and EDR ontologies, as
well as the additional information associated with their
composition and extension. Managing this information in an
efficient way is the work of the ontology service.

Our experience has shown us that a good abstract ontology
representation and a good ontology service are essential to cope
with the incorporation of existing ontologies and their
evolutionary steps. The abstract ontology representation
engenders a unified methodology by which the agent can absorb
existing ontology information and its particular use within the
application. Agent implementers then use the ontologies in a
more declarative and less hard-wired manner, which in turn
facilitates the incorporation of new ontological information.

5.2 External Representation
Agents need to be able to share which parts of the different
ontologies that they use or require, and how they put them
together, with their other collaborating agents. This happens
when the agent advertises its capabilities to another agent, when
an agent is looking to locate another agent that can help it with
some task, or when agents are negotiating over who is
responsible for what subtasks. We have identified three basic
ways that ontologies may be adapted dynamically: subsetting,
composition, and extension:

Subsetting: The notion of subsetting an ontology is not reflected
in the definition of the ontology itself, but rather in artifacts
related to the use of the ontology. For example, fragments may be
advertised from one agent to another, so that agents can inform
other agents within their community of their exact capabilities.
Alternatively, an application may be supported at the user end by
an agent that interfaces with the user, ensuring that the user is
presented only with the fragments of the ontology that are
supported within the underlying agent community. Any user
interfaces can then be tailored to the ontology fragment.

Composition: As with subsetting, composition should be
specified at the time of use, however, there are some
representational difficulties at this point. While subsetting can be
defined as a set of axioms that overlays a single ontology,
composition spans multiple ontologies and thus presents different
representational challenges. For instance, a composition may
wish to state that the values of the “LatitudeMeasure” slot for the
“FacilityIdentification” in the EDR may be understood by the
agent as represented in the “LatLongCoordinate” units defined in
the “GPS Coordinates” ontology. In EDEN, we defined a
geographic location as comprising a (selectable) coordinate
scheme and a coordinate value.

OKBC and DAML present different challenges with respect to
composition. Within OKBC, composition must be done by
explicitly importing the component ontologies. Existing tools do
not necessarily facilitate importing ontologies from remote
locations, or ones that are represented in different languages
(e.g., DAML). The resulting new ontology, even if it can be

defined is a potentially huge superset of what is actually needed
by the agent. Furthermore, it may not be possible to relate the
terms in the new ontology back to the ontologies that it imported,
so it may be computationally difficult to re-relate terms imported
from the same ontology into two such composed ontologies.
DAML+OIL, on the other hand, uses namespaces to facilitate the
combination of ontologies and the relating of concepts among
multiple ontologies. However, this ability to use namespaces
relies on having the component ontologies’ contents also within a
namespace.

Extension: Safe extensions by definition should be able to be
specified in terms of logical axioms over existing concepts in the
ontology. While axioms are strongly considered among ontology
designers, many ontology exchange languages hardly consider
them at all; for instance, DAML+OIL at the moment has no good
foundation for representing axioms and is thus unsuitable for
exchanging knowledge concerning safe extensions.

In EDEN, we prepared a number of ad hoc lexical translation
processes to translate between an old version and an extended
version of the ontology. This did not yield a reusable method.

5.3 Representation in ACL Messages
The last area of application impact concerns the communication
of ontological reference information in ACL messages. Currently,
agent communication languages such as the FIPA ACL [5] carry a
specification of the ontology from which the message content
takes its concepts in an “:ontology” property. Compositional
ontologies do not map directly to a single ontology, so the
message format needs to change in one of the following ways:

1. Give the compositional ontology a name and make it
explicitly available, and use this in the message’s :ontology
property.

2. Specify all ontologies using multiple :ontology properties.
This may not cover concepts in safe extensions to the
ontology.

3. Allow the ontology field to contain a description of the
concepts in the in the ontologies, including extensions, that
are used in the message. This could result in unnecessary
performance impact on communicative actions.

6. CONCLUSIONS
Ontological commitment is the decision by a particular group of
applications or users within an application domain to use the
terms defined in a given ontology. High ontological commitment
occurs when many users and/or applications within an
application domain commit to sharing the same vocabulary of
concepts, meanings and relationships defined within a specific
ontology. Ontological commitment to a common set of ontologies
is a key feature to provide for openness in an agent system, as it
provides a common vocabulary over which agents can converse.

 This paper focused mainly on two areas relating to ontological
commitment and use. The first area is the clash of goals between
ontology definers, application developers and users. Ontology
definers are concerned with the completeness and purity of their
ontological design. Application developers are often concerned
only with specific subsets of the ontology that relate directly to
the application, and with application-specific representational

and computational issues. Users are concerned mainly with
sticking with known and familiar terminology and vocabularies,
which may not be logically structured and therefore may not be
amenable to being reformulated into computationally-accessible
concepts. This clash is complicated by the widening gap between
these groups – developers, for instance, may be using ontologies
that are already well-established. Thus, while several good
design paradigms involving ontology designers, application
developers, and users, exist for initial ontology development
[16,17,18], none of these seem to encompass these more long-
term concerns. We recommend the development of an extended
ontology lifecycle that fosters evolution. Components required to
support this lifecycle should include long-term ontology design
support, a widely-available feedback channel from developers
and users back to designers, and an open forum for discussing
issues and extensions to the ontology.

 An application committed to reuse existing ontologies may
encounter several difficulties, as search for the perfect ontology
for the application – one that is acceptable to both the application
and its users – is not necessarily fruitful. We described a
compositional approach to ontological use. Compositional
ontologies base themselves in existing ontologies as much as
possible, using the operations of ontological subsetting,
ontological composition and ontological extension to tailor them
to the specific needs of the applications. Compositional
ontologies fit well with the needs of the application, and the
approach has the potential to raise the level of ontological
commitment to existing ontologies. However, they require more
sophisticated ontology-related exchanges among collaborating
agents. In order to incorporate these compositional ontologies,
further work needs to be done on the development of a more
formal algebra to support the subset, compose and extend
operations over ontologies (in contrast to our current ad-hoc
methods). Visser and Cui [19] attacked a related problem of
heterogeneous ontology structures, and this may provide further
insight into this formal algebra. As a second task, we need to
develop a methodology for ensuring the correctness and
consistency of these compositional ontologies.

Many approaches to the representation and specification of
ontologies exist; some common ones for the exchange of
ontological information include OKBC, DAML+OIL, OIL and its
varieties, and UML. Each of these has features amenable to their
adoption as a means to exchange information on ontological
components and extensions, though none cover all of the issues
addressed in this paper. Therefore, the exchange of such
information using these standards is still problematic.

7. REFERENCES
[1] Cranefield, S., Haustein, S and Purvis, M. “UML-based
ontology modeling for software agents”. In Proceedings of the
workshop on Ontologies in Agent Systems, Autonomous Agents
2001, Montreal, Canada, 2001.

[2] DAML.org. http://www.daml.org, 2002.

[3] Deschaine, L. M., Brice, R. S. and Nodine, M. H. “Use of
InfoSleuth to Coordinate Information Acquisition, Tracking and
Analysis in Complex Applications.” In Proceedings of Advanced
Simulation Technologies Conference, April, 2000.

[4] “EPA Environmental Data Registry”. http://www.epa.gov/edr,
2002.

[5] FIPA. “Agent Communication Language Specifications”.
http://www.fipa.org/repository/aclspecs.html, 2001.

[6] “General Multilingual Environmental Thesaurus”.
http://www.nu.niedersachsen.de/cds/etc-
cds_neu/library/select.html

[7] Humphreys, B.L. et.al. “Assessing and Enhancing the Value
of the UMLS Knowledge Sources”. In Proceedings of the 15th
Annual Symposium on Computer Applications in Medical Care,
pp. 78-82, Washington, D.C., November, 1991.

[8] Nodine, M. et.al. “Active Information Gathering in
InfoSleuth.” International Journal of Cooperative Information
Systems 91/2, 2000, pp.3-28.

[9] “Welcome to the OIL Page”.
http://www.ontoknowledge.org/oil, 2002.

[10] “OKBC Home Page”.
http://www.ksl.stanford.edu/software/OKBC, 2002.

[11] Sowa, J. F. Knowledge Representation. Brooks/Cole,
California, 2000, pp. xi-xii.

[12] “EPA Terminology Reference System.”
http://www.epa.gov/trs/index.htm , 2002.

[13] Tuttle, M. S. et al., “Merging terminologies”. Medinfo.
1995;8 Pt 1:162-6.

[14] Object Management Group. OMG Unified Modeling
Language Specification, version 1.3.
http://www.omg.org/technology/documents/formal/unified_model
ing_language.htm. 2000.

[15] Willmott, S., Constantinescu, I. and Callisti, M.
“Multilingual Agents: Ontologies, Languages and Abstractions.”
In Proceedings of the First International Workshop on
Ontologies in Agent Systems, Autonomous Agents 2001,
Montreal, Canada, May, 2001.

[16] Gruber, T.R. “A Translation Approach to Portable Ontology
Specifications.” Knowledge Acquisition 5(2), 1993.

[17] Gomez-Perez, A., “Ontological Engineering: A State of the
Art.” Expert Update, 1999.

[18] Gruninger, M and Fox, M. S. “Methodology for the Design
and Evaluation of Ontologies.” In Proceedings of the Workshop
on Basic Ontological Issues and Knowledge Sharing, 1995.

[19] Hammer, J. and McLeod, D. “An Approach to Resolving
Semantic Heterogeneity in a Federation of Autonomous,
Heterogeneous Database Systems.” In International Journal of
Intelligent and Cooperative Information Systems 2(1), 1993.

[20] Kent, W. “The Many Forms of a Single Fact”. In
Proceedings of IEEE COMPCON, 1998.

