
An ontology for publishing and scheduling events
and the lessons learned in developing it.

Craig Sayers
Hewlett Packard Labs, Palo Alto, California

craig sayers@hp.com

Reed Letsinger
Hewlett Packard Labs, Palo Alto, California

reed letsinger@hp.com

ABSTRACT
This paper provides a brief overview of an ontology for pub-
lishing and scheduling events. It summarizes our experiences
using the FIPA SL0 language in a Jade environment, and
aims to capture some practical lessons for future ontology
development.

The described ontology supports the preferences and uncer-
tainty which are a natural consequence of holding events
with real people, in a real world. It represents the rela-
tionships between event times, places, and people; handles
events that are physically or temporally distributed; and
serves to describe events during all stages of scheduling,
starting from an initial imprecise specification, and ending
with an exact event description suitable for publication.

For future ontology development we argue for placing the
burden on content producers, rather than consumers; for
maintaining a single consistent representation; and for push-
ing localization and presentation issues to the edges of the
network. In addition, we recommend exploiting hierarchies
in the information (particularly with recursion) and allowing
for the representation of incomplete knowledge.

1. INTRODUCTION
During the winter of 2001, we began work on an agent-
based meeting management system. The system, which we
called CoolAgent [6], is organized as a distributed collec-
tion of software agents and services implemented within the
JADE [1] development environment. The agents negotiate
with each other to determine times and places best suited
to the needs of both the meeting organizer and the meet-
ing participants. For this negotiation to work, the software
agents must be able to exchange messages containing infor-
mation about meetings.

A simple description of a meeting would collect together an-
swers to questions like: Where will the meeting be held?
What time does it start? Who is invited? What is the
purpose? This is the approach taken by conventional calen-
daring systems. See for example: iCalendar [2], iTip [9] and
two early Internet drafts: draft-dawson-ical-xml-dtd-01 [3]
and draft-reddy-xml-ical-00 [7].

For our application, simply collecting a set of facts into a flat
structure is not sufficient. It does not allow us to to capture
the nuances of real-world interactions. For example, a quite
reasonable meeting request of a human would be:

“I’d like to arrange a meeting with you in Cu-
pertino on Thursday morning, or in Palo Alto
on Friday afternoon”

This requires handling the dependencies between times and
places. For example, an acceptable solution to that event
request would not be a meeting in Cupertino on Friday af-
ternoon. Replies to meeting requests can be equally difficult
to represent. For example, consider a reply:

“I could meet at any time on Thursday, but would
prefer sometime between 10 and 11”.

Handling that in a software agent environment requires rep-
resenting preferences and uncertainty, which are a natural
consequence of holding events with real people, in a real
world. To satisfy those requirements, we needed to rep-
resent the relationships between event times, places, and
people; we needed to represent events that are physically or
temporally distributed; and we needed to represent events
during different stages of scheduling, starting from an ini-
tial imprecise description, and ending with an exact event
suitable for publication.

In the remainder of the paper we’ll describe the representa-
tion of actions (section 2.1) and events (section 2.2) before
presenting some general lessons for future development (sec-
tion 3).

2. MESSAGES
In our system, agents communicate by sending messages ex-
pressed in the Foundation for Intelligent Physical Agents
(FIPA) Agent Communication Language (ACL) [4]. Each
ACL message is part of a conversation. ACL messages in-
clude the names of the sending and receiving agents, an iden-
tifier of the conversation the message belongs to, a perfor-
mative, the message content, and the names of the language
and ontology used to encode that content. Performatives
are used to specify what role the message is playing in a
conversation, e.g. a question, a request for action, or a re-
sponse to a request. The FIPA standard specifies the set of
possible performatives, which are all domain-independent.

The domain-dependent semantics of the message are en-
coded using a content language and a domain-specific vocab-
ulary. We chose the FIPA-defined content language SL0 [5],
and then defined the CoolAgent ontology to provide the vo-
cabulary that can appear in SL0 sentences. SL0 is a very

simple language that provides the means to describe par-
ticular objects and actions, and to express ground, atomic
facts. No logical connectives, such as “and”, “or”, “not”,
“for all”, come as part of the language. If there is need to
express some level of logical complexity, the ontology must
take on the responsibility.

In general, a CoolAgent conversation consists of a series of
request/inform pairs. One agent requests another to per-
form an action on an event, and the agent later responds,
informing the requester of the result of that action. The
Coolagent ontology [8] defines those actions and events.

2.1 Actions
In SL0, an action specification is a verb describing some
domain-specific activity. In CoolAgent, the most common
actions performed on an event are: publish, inquire, schedule
and cancel. The interpretation of these verbs is similar to
the pre-existing iCalendar specification.

In constructing conversations it simplified the ontology to
overload the actions by making their interpretation depen-
dent on the identity of the receiver, rather than just the
message content. So, for example, when we ask a personal
agent to “schedule” it is interpreted to mean “schedule a
person to attend this meeting”; while when the same mes-
sage is sent to a room broker agent, it is interpreted to mean
“schedule a conference room for this meeting”. This frame-
work was particularly helpful in allowing code reuse among
the agents.

2.2 Events
The ontology for events is built on a single event object.
Within each event object there are expressions for different
instances of that event; where each instance is a particular
combination of time, place and people. An event description
contains three main components:

• Event - the highest level in the hierarchy, capturing
details that are relevant for the whole event. It in-
cludes a unique id number, a summary, the name of
the organizer, and an expression for the invitees. It
also includes an expression for the different instances
of this event.

• Instance - describes a particular combination of time,
place, and people. It includes expressions for the start-
time, duration, location, and attendees.

• Place - describes a particular location (for example,
a conference room). It includes the address, phone
number and a list of available features (for example, a
whiteboard, or an overhead projector).

In the simplest case, the event contains only a single in-
stance, and the location of that instance is only a single
place. In practice, we need to represent events which are
much more complex. That requires a representation for ex-
pressions.

For example, to represent an event that takes place in sev-
eral times/places, we use an all-of relationship, so the single
instance is replaced by an expression:

Figure 1: An example of an event described using
the ontology. In this case, the event will take place
in one of two physical locations and will also have a
call-in number.

all-of(instance1, instance2, . . . instanceN)

This has the force of a conjunction: the event has instance1,
and the event has instance2, and so on.

To represent the choices during the planning stages of an
event, we have the additional expressions:

one-of(instance1, instance2, . . . instanceN)
any-of(instance, instance2, . . . instanceN)

A one-of expression captures the force of an exclusive-or,
while an any-of expression has the semantic effect of an
inclusive-or. All three types of expressions may be combined
and nested to arbitrary levels.

An example of an event using expressions is shown in Fig-
ure 1. This example is typical of an event during scheduling.
Similar expressions were used to present alternatives for peo-
ple and places. An example message is shown in Figure 2

This hierarchical structure proved helpful in separating event-
specific from instance-specific information. The higher-level
event object captures information which is never open to
negotiation, and which is defined only once for each event,
while the lower-level objects capture information specific to
a particular instance which may be under consideration. Not
all meetings may be represented in a pure hierarchy. In
particular, we can not directly encode the knowledge that
two different instances must occur simultaneously. However,
since we know that is usually the case, that knowledge can
be hard-coded into the message interpreter.

(REQUEST

:sender (agent-identifier:name gateway)

:receiver (set(agent-identifier:name griss))

:content

((action

(agent-identifier :name griss)

(schedule-event

(CoolEvent

:type meeting

:summary "Coolagent discussion"

:invitees

(any-of

(set

(agent-identifier :name griss)

(agent-identifier :name letsinge)

(agent-identifier :name wymore)))

:instances

(CoolInstance

:start

(range-of

(CoolDate "20010504T150000000Z")

(CoolDate "20010505T000000000Z"))

:duration 3600

:location(CoolPlace)

:expected-attendee-count 5

:attendee-ratings(set)

:attendee-probabilities(set))))))

:reply-with gateway.Thread-42.988050547328

:language FIPA-SL0

:ontology CoolAgent

)

Figure 2: An example message requesting that an
event be scheduled. This is an incoming message
to the personal agent “griss” asking it to schedule
a meeting with the specific people represented by
the other invitee agents. The meeting requires a
physical location and it is estimated that 5 people
will attend (even though only three were personally
invited). This example also includes an additional
“range-of” expression which serves to replace what
would otherwise be a huge “one-of” expression.

As the event description is refined during scheduling, there
will often be a choice of time or location. To decide among
those, we take into account the preferences of each invitee,
allowing them to tag each instance with both a probability
of attendance and a rating.

The rating allows the expression of subtle preferences which
are typically ignored when scheduling meetings by hand. For
example, if you were to manually schedule a meeting with
six other people, the burden of personally coordinating the
schedules of six people and finding a conference room is so
high that you would likely be unwilling to accept any ad-
ditional constraints – especially if they were small personal
preferences.

In cases where there are a range of options, the recipient
can break a single instance into multiple instances in order
to rate each differently. For example, if the start time was
specified as a range from 9:00-12:00, a recipient could break

that into two instances: 9:00-10:00 and 10:00-12:00 and rate
each separately.

3. LESSONS FOR FUTURE WORK
While the CoolAgent ontology was focused on event schedul-
ing, many of the lessons are applicable to other ontology
development.

Choose an appropriate language.When choosing a lan-
guage there is a tradeoff between expressiveness and com-
plexity. With a simple language, the ontology must assume
responsibility for adding expressiveness. These custom ex-
pressions require effort to implement, but they can simplify
the work for agents interpreting messages since the expres-
siveness is limited to exactly the places it is needed. A more
complex language allows for a simpler ontology, but may
require more work in each agent which must interpret mes-
sages.

In our case, we found the SL0 language a pragmatic and
convenient choice. At the time, it was the only language
supported by Jade, and we could add just enough logical
complexity to serve our needs without needing to unduly
burden each agent. However, if our project had been much
larger, we would likely have run into problems. SL0 has no
formal language for describing constraints on the ontology,
so one must write custom code to verify that the message
content is valid. In our case that proved not to be a large
burden (due partly to some built-in ontology assistance in
Jade, and partly to code re-use among many of the agents).

Use existing standards and not existing formats.This
might seem obvious, but it is very tempting to simply choose
an ontology representation which matches the existing data
format, regardless of how obscure that might be. The short-
term advantages of such an approach are rarely worthwhile.

Place the burden on content producers.For most frag-
ments of content there will be one producer and many con-
sumers. So, given a choice, push work onto the single content
producer to simplify the work for all the content consumers.
In particular, that means we should force producers to put
data into a standard format.

Maintain a single consistent representation.It is partic-
ularly beneficial to store any one piece of information using
only one representation. This simplifies the ontology, and
makes less work for code receiving messages in that ontol-
ogy. Interestingly, there are a number of standards that
don’t enforce this. That shows an unfortunate lack of for-
titude by their designers. At design time, in cases where
one is not sure, or where a committee can not agree, its al-
ways easiest to simply allow several variants. But that is
costly later, since now every consumer needs to accept ev-
ery possible variant. We would strongly urge a move to only
supporting a single canonical representation.

In the CoolAgent project we found it particularly helpful to
store event information in a single representation through all
stages of scheduling and publishing. This meant we could
re-use code for processing events in many of the agents. In
many cases, agents could delegate tasks by simply forward-
ing the content of the message they had received. It also had
the more subtle benefit of simplifying debugging by allowing
a developer who understood any one agent to have at least

some understanding of the messages passed between other
agents.

Localize at display time.It is impossible to predict all the
potential consumers. So always store information in a con-
sistent globally acceptable form. For example, store mea-
surements using SI units and store dates/times relative to
UTC, rather than in some local timezone. Localization must
be the responsibility of the information consumer, since only
it knows the preferences of the human to which the infor-
mation is being displayed.

In our implementation we ran into at least half-a-dozen dif-
ferent date/time representations as we interfaced with differ-
ent legacy systems. We also ran into a number of bugs (es-
pecially when we started to schedule teleconferencing calls
across timezones during a switch to daylight-savings-time).
The choice of UTC format for the dates/times within mes-
sages provided valuable insulation between the different pieces
of the system.

Exploit hierarchies.When developing ontologies, its tempt-
ing to adopt a flat structure, but that tends not to scale
well later. In our case, the inter-dependency between times,
places and attendees meant that a simple flat structure would
have proved unmanageable. So, look for potential hierar-
chies early, and use them (even if initially, there is only one
option at some levels). Be especially careful to look for po-
tential recursive definitions as these invariably end up being
more useful than their designers imagined. In our case, the
use of expressions proved particularly helpful and made for
elegantly simple implementations.

Consider hard-coding some information.While it is usu-
ally possible to construct an ontology to represent all details,
that is not always necessary. In our case, we were able to
make do with a simpler ontology by hard-coding some infor-
mation in the agents (for example, the knowledge that given
a choice of times, the different instances of each event should
occur simultaneously). We further simplified the ontology
by using the identity of the receiving agent when decoding
each incoming message.

Allow for incomplete knowledge.It is tempting to assume
that all facts represented in the ontology are completely
specified. Such an assumption simplifies things greatly, but
it also limits the usefulness for conversing about a subject to
decide on those facts. For example, making an ontology to
represent the list of people who attended a meeting is much
easier than making one for use in conversations to decide
who can/should attend that meeting.

More information is not always better.It is tempting to
define messages by making an exhaustive list of everything
which might one day be helpful to a recipient. However, this
neglects the important matter of privacy. In the Coolagent
ontology, where we were exchanging information about em-
ployee meeting preferences, it was beneficial to not disclose
too much information. For example, when providing meet-
ing availability information, we stored only a single floating-
point number, representing the individual’s probability of
attending each instance. This was sufficient for scheduling,
without giving away too much personal information about
the reasons behind the user’s preferences.

4. CONCLUSION
We have described an ontology for scheduling and publishing
meetings and events. It uses a single consistent representa-
tion with a hierarchical structure and is able to capture some
of the uncertainty and complexity which occur in real-world
systems.

This work represents one approach to the trade-off between
logical complexity in the ontology and the content language.
It avoided the need to have sophisticated reasoning abilities
in our agents, while providing sufficient expressive power for
our needs. The ontology was simplified by hard-coding some
information in the agents, and by overloading actions.

In developing a new ontology, it is always tempting to simply
copy the semantics of the first piece of pre-existing data one
needs to encode. That is usually a poor choice. It is equally
tempting to allow more than one representation for the same
piece of data. Unfortunately, the more latitude one gives
content producers, the more effort is needed by the much
larger group of content consumers. We urge developers to
adopt a single canonical representation, pushing issues of
presentation or localization out to the edges of the network.

5. ACKNOWLEDGMENTS
The Coolagent project was a collaborative effort spanning
several departments. We are grateful to all those who con-
tributed, and to our management for supporting this work.
Thanks also to all the contributors to the JADE system.

6. REFERENCES
[1] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa.

JADE Programmers Guide. CSELT S.p.A.,
http://jade.cselt.it, 2001.

[2] F. Dawson et al. iCalendar Message-based
Interoperability Protocol - iMIP. RFC 2445, November
1998.

[3] F. Dawson et al. iCalendar XML DTD, Internet draft
draft-dawson-ical-xml-dtd-01, December 1998.

[4] Foundation for Intelligent Physical Agents,
http://www.fipa.org. FIPA ACL Message Structure
Specification, document XC00061D, 2000.

[5] Foundation for Intelligent Physical Agents,
http://www.fipa.org. FIPA SL Content Language
Specification, document XC00008D, 2000.

[6] M. Griss et al. Coolagent: Intelligent digital assistants
for mobile professionals - phase 1 retrospective.
Technical Report HPL-2002-55 (Revision 1), Hewlett
Packard Laboratories, Palo Alto, California, 2002.

[7] L. Lippert et al. iCal in XML, Internet draft
draft-reddy-xml-ical-00, November 1998.

[8] C. Sayers and R. Letsinger. The coolagent ontology: a
language for publishing and scheduling events.
Technical Report HPL-2001-194, Hewlett Packard
Laboratories, Palo Alto, California, 2001.

[9] S. Silverberg et al. iCalendar Transport-independent
Interoperability Protocol - iTIP. RFC 2446, November
1998.

