Creating and Using Ontologies in Agent Communication’

Chris van Aart
Social Science Informatics
University of Amsterdam
Roetersstraat 15
1018 WB Amsterdam
The Netherlands

aart@swi.psy.uva.nl

Giovanni Caire
Telecom Italia LAB S.p.a.
Via Reiss Romoli 274
10148 Turin
Italy

giovanni.caire@tilab.com

ABSTRACT

This paper presents an approach for the creation and use
of ontologies to support agent communication. The use of
ontologies in message based communication gives meaning
to the contents of messages sent between agents. A prelim-
inary upper ontology based on a content reference model is
presented that provides the semantics for message content
expressions. Furthermore, a tool is presented that can assist
agent programmers in designing message content ontologies
with the Protégé tool and export this to Java source code. A
case study on international insurance traffic shows the pro-
cess from ontology design to system architecture design.

1. INTRODUCTION

In this work, we present an approach for the creation and

use of ontologies to support communication between agents.

A lot of effort has been spent in the creation of mecha-

nisms to transport messages between peers, for example

CORBA, SOAP, XMLRPC and RMI. Furthermore, research

in markup languages for information and knowledge exchange
provided languages, such as KQML, KIF and FIPA-SL. How-
ever, we think that making services to collaborate through

remote procedure calls, simply shifts the complexity of inter-

operability to end-users. For example, WDSL or DAML-S

can express a relatively detailed view on the structure of
(SOAP) interfaces to a service. However, when making use

of this interface, one still has to work out all details dealing

with the signature of the methods to call, behavior and ex-

ception handling. Furthermore, although web services are

already deployed in various domains, many of these tend

to be inflexible: it is not possible to modify the underlying

system, to configure it for other domains, or to integrate

different services to produce new functionalities.

One way to offer services in a flexible manner is by means of
mediators. A software agent can act as a mediator capable
of translating agent messages to proprietary instructions to

*This work has been partially funded by the IST project
IBROW, nr.-1995-19005, http://www.ibrow.org.

Ruurd Pels
Acklin B.V.
Parkstraat 1a
4818 SJ Breda
The Netherlands

ruurd@acklin.nl

Federico Bergenti
AOT Lab and CNIT
Parco Area delle Scienze 181/A
43100 Parma
Italy

bergenti@ce.unipr.it

access a service, i.e. it can act as a transducer [8]. A trans-
ducer maps instructions from agent to service and results
from service to agent. This approach has the advantage
that the agent does not have knowledge of the invocation of
the services. These agents can be used to form new appli-
cations, not by means of integration, i.e. trying to couple
different components with proprietary software, but by fed-
eration, i.e. standardizing interaction patterns. This means
that agents do not have access to each other’s code but they
can request services by sending messages. By Federating
systems, the emphasis lies on agent collaboration instead of
service integration. Our view on these kind of distributed
systems is that of an information processing and communi-
cation structured systems: the agents are seen as informa-
tion processors (cf. [6]). Challenging problems arise when
agents from different organizations have to collaborate with
each other, instead of only providing (existing) information
retrieval functions. An example of such collaborations is
negotiation about price, quality or misinterpretations. One
way to design really loosely coupled distributed systems, is
to regard systems as purely message exchanging. To design
such systems, the following questions arise:

o How should messages be generated, transmitted and
represented 7

e How can the content of messages be standardized?

e What principles (e.g. concepts, mechanisms and pat-
terns) can be used?

e What heuristics and guidelines are there those tell us
when to apply what principle?

In Sec. 2 we briefly discuss message based communication
between agents. Sec. 3 describes an approach for creating
message content ontologies. In Sec. 4 we show the creation
of a message content ontologies for a case study on inter-
national insurance traffic. Finally, we discuss some issues
arising from this study and suggest future work.

2. AGENT COMMUNICATION

Agent Communication can be defined as a form of interac-
tion in which the dynamic relationship between agents is
expressed through the intermediary of signals, which, once
interpreted, will affect these agents [4]. As discussed by
Ferber, a large number of (agent) communication forms ex-
ist [4]. Here we see the act of communication of sending some
information from a sender to a set of (intended) receivers.
This information is encoded with the help of languages and
decoded upon arrival by the receivers. An advantage of this
approach is that one can get loosely-coupled open systems,
that only use message passing as vehicle for collaboration.
Unfortunately, there is no standardized definition of what
an (operational) agent is and how agents may communi-
cate between with each other. In this paper we refer to the
abstract communication model of FIPA ! that derives from
speech act theory [12]. In this model, communication occurs
through the exchange of asynchronous messages correspond-
ing to communicative acts. The ACL language format > de-
fines the format of these messages. ACL messages can be
characterized by:

e Intention, e.g., REQUEST, INFORM, QUERY REF.

e Attendees, i.e. the sender and a set of receivers.

e A content, i.e. the actual information that is exchanged.

e Content description, i.e. an indication of (i) the con-
tent language used to express the content and(ii) the
ontology by means of which both the sender and the
receiver ascribe a proper meaning to the terms used in
the content.

e Conversation control, e.g. interaction protocol and
conversation identification.

<fipa-message act="INFORM" >
<sender>
<agent-identifier>
<name id="Peter@hostl1:8888/JADE" />
</agent-identifier>
</sender>
<receiver>
<agent-identifier>
<name id="John@host2:8888/JADE" />
</agent-identifier>
</receiver>
<content>
(weather today raining)
</content>
<language>English</language>
<ontology>Weather-ontology</ontology>
<conversation-id>Peter-John253781</conversation-id>
</fipa-message>

ACLMessage 1: Example message expressed in XML with
intention INFORM; attendees Peter and John; content an
expression about the weather; plain English as content lan-
guage; an ontology about the weather; and conversation con-
trol

FIPA has also defined valid formats to represent an ACL
message among which an XML based one. The XMLs can

"http://www.fipa.org
http://www.fipa.org/repository/ips.html

be found at the FIPA repository®. ACLMessage 1 shows an
example in which agent Peter informs agent John that the
weather today is raining. As shown in the example, ACL
messages are built up of layers of languages. Elements in the
world are defined in a domain ontology. A content language
expression (i.e. the element between content tags) is used
to represent statements of the world. Finally, a speech act
(i.e. INFORM) as the agent’s intention to describe or alter
the world is wrapped around the content expression.

The three layers are also linked by constraints such as, the
message expresses which content language, encoding and on-
tologies are used for the content. For example, when an
agent sends a message containing a prolog expression, the
language will be Prolog, the encoding String and the on-
tology family-ontology. Furthermore, the speech act used
constrains the type of content allowed . For example, a mes-
sage with the intention: request should have a content ask-
ing for an action and not an answer. For a more elaborated
discussion, see [14].

The FIPA communication model, however, in order to pre-
serve agent autonomy as much as possible, is based on the
speech act as communication attempt idea: when a rational
agent utters a speech act to another one, it is only trying
to get a message through and it is not entitled to believe
the rational effect of its utterance. It is clear therefore, that
something more is needed to enable agents to communicate
effectively.

That is, in order for agents to be able to reason about the
effects of their communications, ACL messages could be in-
serted into proper Agent Interaction Protocols (AIP). AIPs
describe communication patterns as allowed sequences of
messages between agents and the constraints on the con-
tent of those messages. An example of the application of
ATPs (expressed in the AUML notation [11]) can be found
in Fig. 3.

3. AGENT ORIENTED TOOLKITS

An important enabling factor for the development of intel-
ligent agents is constituted by the existence of a number
of agent-oriented toolkits® that natively provides basic ser-
vices such as communication, life cycle management, yellow
pages and so on. In this paper we will focus on one of
the best known: JADE (Java Agent DEvelopment frame-
work) [1]. JADE is a software framework that simplifies the
implementation of multi-agent systems through a middle-
ware that complies with the FIPA specifications®, a library
of classes that developers can use or extend while creating
agents and a set of graphical tools that support the debug-
ging and deployment phases. JADE agents communicate
by exchanging messages in compliance with the FIPA ACL
language®. Furthermore, JADE supports the AMS (Agent
Message Service)and the DF (Directory Facilitator), which
represent the white and yellow page for agent (service) dis-
covery.

3.1 Handling message content
A content expression within an ACL message is typically
encoded as a string. However, considering software agents

3http://www.agentlink.org/resources/agent-software.html

written in an object oriented programming language, this

representation is not convenient to manipulate the infor-

mation conveyed by the content expression within the agent

code. A better representation is by means of objects. This is

to say that for instance the expression (Person :name "Maxima"
:age 30) is easy to manipulate if represented as an object

of a class, as illustrated in Fig. 1.

class Person {
private String name;
private int age;
public void setName(String n) {name = n;}
public String getName() {return name;}
public void setAge(int a) {age = a;}
public int getAge() {return age;}

Figure 1: JAVA class of concept Person, showing
members and set and get methods

Proper conversion and validation operations must be carried
out each time a content expression represented as an object
has to be inserted into or extracted from an ACL message.
The JADE toolkit, as discussed in Sec. 3, provides support
for performing these conversion and validation operations
automatically. thus allowing developers manipulating infor-
mation within their agents as objects without the need of
any extra work. More in details, a Codec object deals with
the syntax of a given content language and an Ontology ob-
ject checks that content expressions are meaningful to the
ontology of the addressed domain.

3.2 Content Languages

While an ontology is typically specific to a given domain,
content languages are domain independent. Therefore, un-
like ontologies that normally must be defined ad hoc for
the domain addressed by an agent application, a content
language is typically selected among those already available
without the need of defining a new one. JADE provides
codecs for the next two content languages. The FIPA SL
language® is a human-readable string-encoded (i.e. a content
expression in FIPA SL is a string) content language and is
probably besides KIF the mostly diffused content language
in the scientific community dealing with intelligent agents,
see for example the Agentcities project?. FIPA SL is partic-
ularly indicated in open applications where agents from dif-
ferent developers and running in different environments have
to communicate. Moreover, the property of being human-
readable can be very helpful when debugging and testing
an application. FIPA SL deals with agent actions particu-
larly: all agent actions in FIPA SL must be inserted into
the ACTION construct that associates the agent action to the
identifier of the agent that is intended to perform the action.
For that reason we use FIPA SL as content language in this
paper.

The LEAP language® is a non-human-readable byte-encoded
(i.e. a content expression in LEAP is a sequence of bytes)
content language that has been defined ad hoc for JADE.
It is therefore clear that only JADE agents will be able to

“http://www.agentcities.org
Shttp://leap.crm-paris.com

speak the LEAP language. There are some cases however in
which the LEAP language is preferable with respect to FIPA
SL. Finally, the LEAPCodec class is lighter than the SLCodec
class. When there are strong memory limitations the LEAP
language is preferable. LEAP also supports sequences of
bytes. Finally, while the LEAP language was defined with
the Content Reference Model in mind, which we will discuss
in the next section.

4. MESSAGE CONTENT ONTOLOGIES

A message content ontology helps agents to describe facts,
beliefs, hypotheses and predications about a domain. On-
tologies range in abstraction to very general terms to terms
that are restricted to specific domain of knowledge. Terms
at very general levels of described are called upper ontology.
Chandrasekaran et al., has discussed that there are agree-
ments between proposed upper ontologies. There are objects
in the world; these objects have properties that can take val-
ues; these object may exists in various relations with each
other; properties may change over time, there are events
that occur at different time instances; there are processes
in states; events may cause other events as effects; and ob-
ject have parts [2]. Further, there is the notion of classes,
instances and subclasses. Other views on upperontologies,
such as Generalized Upper Model, Gensim, WordNet and
CYC are discussed in [5].

Here we propose a preliminary upper message content on-
tology based on the content reference model (CRM) used in
JADE. The CRM is derived from the semantics of FIPA
ACL that requires content expressions inserted into ACL
messages to have proper characteristics according to the
message performative (INFORM, REQUEST). In the CRM,
the following elements are distinguished.

o Concepts expressing entities that ”exist” in the world.
For example

(Person :name "Maxima" :address
(Address :street "Dam 1" :place "Amsterdam"))

e Predicates expressing the status of a part of the world.
These can be true or false. For example

(Married (Person :name "Maxima")
(Person :name "Alexander"))

e Agent actions expressing the actions an agent can be
requested to perform. For example:

(Marry (Person :name "Maxima")
(Person :name "Alexander"))

e Primitives are atomic expressions such as Strings and
Integers.

o Aggregates, expressing entities that are groups of other
entities. For example,

(sequence (Person :name "Maxima")
(Person :name "Alexander"))

e Identifying Referential Expressions (IRE) are expres-
sions identifying entities for which a given predicate is
true. These are typically used in queries (i.e. as the
content of a QUERY _REF message). For example

(A11 ?x (Present-at 7x (Marriage :date "2002/2/2")))

o Variables expressing a generic element not known a
priori and typically used within IRE.

Fig. 2 shows the relations among these elements taking into
account that only predicates, agent actions and IREs are
meaningful content of some ACL message. In fact a predi-
cate can be the content of an INFORM message, and agent
action can be the content of a REQUEST message and an
IRE can be the content of a QUERY _REF message. Only
terms can be meaningful values for the slots in a concept.

ContentElement

[Predicate] [AgentAction] [Concept] [Primitive | [Aggregrate | [variable|

Figure 2: Content Reference Model, showing the re-
lations between possible elements of ACL messages,
according to the semantics of FIPA ACL.

4.1 Construction of Ontologies

The Protégé 2000° is a tool with which a user can construct
ontologies. This ontology is stored in a frame-based knowl-
edge model [9]. This model consists of classes, slots, facets
and axioms. Classes are concepts in the domain of discourse,
with which a taxonomic hierarchy can de constructed. Slots
describe properties or attributes of these classes. A slot in
itself is a frame that has a type. This can be a primitive
class, like String, Integer and Float, or an instance of an-
other class. Furthermore, a slot has a value. Facets describe
properties of slots. These properties (or constraints) include:

e Cardinality of a slot, i.e. how many values the slot can
have, i.e. 0,1,N. For example, a class person can only
have one father (i.e. cardinality =1). Or a class fa-
ther can have multiple children (i.e. cardinality = n).

o Allowed values restriction of the value type of a slot.
For example Integer, String, Instance of a class.

o Numeric boundaries i.e. the minimum and maximum
value for a numeric slot. For example between the slot
age is between 0 and 150.

e Required or optional. For example, the slot name is
required for the class person.

Defining a message content ontology means defining the
types of concepts, predicates and agent actions that are rele-
vant to the addressed domain. Within Protégé a project can
be included that has already defined these classes”. An ex-
ample is shown in Fig. 4. For creating ontologies in Protégé
we refer to [10]. The use of the upper agent message content
ontology based on CRM is illustrated in the ACLMessage 2
including an IRE and a concept (note that both IRE and
concepts are terms).

Shttp://protege.stanford.edu
"http:/ /www.swi.psy.uva.nl/usr/aart/beangenerator

<fipa-message act="QUERY_REF" >
<sender>
<agent-identifier>
<name id="Initiator@host1:8888/JADE" />
</agent-identifier>
</sender>
<receiver>
<agent-identifier>
<name id="Responder@host2:8888/JADE" />
</agent-identifier>
</receiver>
<content>
(iota ?x (father-of 7x
(set (Person :name "Alexander")
(Person :name "John"))))
</content>
<language>FIPA SL</language>
<ontology>http://www.royalfamily.nl/WeddingOntology
</ontology>
<conversation-id>id7642974365275</conversation-id>
</fipa-message>

ACLMessage 2: QUERY REF showing the use of the
FIPA SL operator iota, which is used by agentinstigtor t0
query whether the predicate on family affairs is true.

In this example, the content is an IRE of type iota. This
IRE includes a variable whose name is z; A Predicate of
type father-of that has two slots: (1) the value of the
first slot is again z; (2) the value of the second slot is an
aggregate of type set including two elements: (a) The first
element is a concept of type Person; (b) The second element
is another concept of type Person. It should be noticed
that iota is an operator of the FIPA SL language, while
father-of and Person are a predicate and a concept defined
in the WeddingOntology.

4.2 Mappingfrom Content Ontologiesto Java

Beans

To support the agent engineer in creating and using on-
tologies, we developed a plug-in for the Protégé 2000 en-
vironment called the BeanGenerator®. With this plug-in a
domain ontology within Protégé can be developed and ex-
ported to Java classes. In particular Java beans. A Java
Bean is a special type of a Java class, which adheres to a
specific design. A Java Bean has members (i.e. attributes)
that can be written with a set operation and be read with
a get operation or an is operation.

The translation from Protégé knowledge base to Java Beans
works as follows: Every class in the CRM, i.e. Concept,
Predicate, and AgentAction is the basis for the generation
of a Java class. The taxonomic structure (i.e. inheritance
relations) of the domain model is mapped on the inheritance
capabilities of Java. Therefore if S1 is a super-schema of S2
then the class C2 associated to schema S2 must extend the
class C1. Slots of a Class are associated with data members
of the Java Bean associated with the Class. If the type of
the slot is a primitive class, like String, Integer or Float,
then the BeanGenerator maps them onto their Java equiv-
alents, otherwise the member of the class is an instance of
the corresponding Java class generated. If the cardinality is
higher than one, a Collection is used.

5. INTERNATIONAL INSURANCE
TRAFFIC

The European Commission has recently enacted the so-called
4th guideline: Fourth Motor Insurance Directive (Directive
2000/26 /EC), operational from February 2003, that obliges
all EU insurance companies to execute and settle insurance
claim submissions within 3 months after the date of the inci-
dent. Today, for incidents that exceed international borders,
such procedures typically take more than six months. Insur-
ance companies have started to consult each other for mech-
anisms that would enable them to smooth this procedure.
However, different kinds of solutions have met serious objec-
tions as they implied making their internal data available to
competing companies. A Dutch insurance company, Inter-
polis N.V. has therefore asked Acklin B.V. to develop a pro-
totype of a multi-agent system to tackle this problem [13].
This approach turned out to be so appealing that Interpolis
asked Acklin to turn the prototype into an operational ap-
plication, in cooperation with Interpolis in Holland, KBC in
Belgium and R+V in Germany.

In the KIR® application, each insurance company is rep-
resented by two agents: agentpgndier and agentpeyer. The
agentpgndier handles a claim and initiates the process. It
contacts the agentpqyerof the insurance company of the per-
son that caused the accident. Both agents use transducers
to interact with back offices (and databases). Imagine the
following scenario: Suppose a Dutch driver causes a car ac-
cident in Germany. The accident is reported to the German
insurance company R+V in Wiesbaden. R+V is hence act-
ing as handling bureau for this incident. R+V will open a
file locally and then contact its Dutch partner Interpolis to
find out where and how the Dutch counter-party is insured
in Holland. If the Dutch driver is insured in Holland, Inter-
polis is going to act as paying office. With two reasonably
simple agent types, each instantiated once for each insurance
company that participates in this network, the KIR appli-
cation is able to handle all standard cases swiftly, as well
as to monitor all complex cases to avoid that time gets lost
because they lay neglected on someone’s office. Only the
transducer needs to be adapted for every insurance com-
pany in the network. With this component, the agent can
get and store information in the proprietary environment of
the insurance company.

The process ascribed above is universal for the companies.
All 17 insurance companies reason with the same concepts,
i.e. insured object, car, owner, driver and policyholder.
However, the ways these concepts (data) are stored in the
respective databases differ per company. The reason for this
can range from historical reasons to differences in sociopo-
litical and technical climate.

5.1 Agent collaboration

We mapped the green card traffic process on an agent col-
laboration diagram from AUML introduced by [11]. The
Green Card Transactions are illustrated in Fig. 3 showing
the handling and paying role and their pattern of interac-
tions.

Two packages show the two main processes: client identifi-

8KIR stands for KBC - Interpolis - R+V.

Client | I
Identification| |

| |
request identification

identify client D

2 failure not_known

notify manager
inform policynumber

search policy

update file :
Case !
Identification :
identify case request claimnumber | .
search file
if not_known

failure not_known create new file

notify manager

inform data send claimnumber
update file m

Figure 3: Part of the Green Card Traffic operations
design in AUML collaboration diagram showing pat-
terns of interaction with the operation. The dotted
lines represent life-lines of agents. The arrows show
interactions and the packages show the applied agent
interaction protocols.

cation using green card number and license plate and case
identification, using policy number and local claim number.
A package shows the applied agent interaction protocols for
enabling the cooperation between the agents, where an ATP
describes communication patterns as an allowed sequence of
message between agents and the constraints of the content of
those messages. Here existing AIPs are placed in sequence to
enable the process. The used AIPs are all based on the FIPA
REQUEST-protocol®>. The next communicative acts make
up the process between agentpgndier and agentpayer and re-
places, the communication by hand into communication by
agent. The idea is that the manager of the department dele-
gates the two identification tasks to the agentpgnaier instead
of a claim handler.

Client Identification starts with a request from agentnqndier

and agentpayer for identification of the client. The iden-
tification contains a license plate and green card number.
The agentyqyer validates the identification and can response
with:

e Failure not_known, which means that the client is not
known. In many cases this is caused by typical errors
such as typos in the license plate or policy number as
fed by the paper reports;

e Inform policy number, meaning that the payer has
identified the local insurance taker.

Case Identification starts with agentsandier sending a re-
quest for identification of the claim to agentpyayer. With
this the agentpandier asks for all known data from the file of
the agentpoyer. agentpayer with:

e Failure not_known, which means that the claim num-
ber is not known.

e Inform policy number, which means that the payer
has either created a new file with the data and locally
know data, or has already created a file for this case.

The latter can happen when the insured party has already
registered this accident, before the handler asks for it. In
both cases, the payer will send a claim number, which is the
key to the file of the accident.

5.2 Ontology Design

The design of the ontology for KIR, called GreenCardOntology,
is based on the content reference model. Conform the CRM,
we first define the AgentActions. These are:

o IdentifyParty, which is used to identify a party.

o IdentifyCase, which is used to check whether a case is
known at the partner.

e UpdateCase, which is used to update data from a par-
ticular case (this is not illustrated in the collaboration
diagram).

The process is transaction based between users. It is there-
fore logical to first start from top-down by defining the agent
actions. The agent actions use both concepts and relations.
We then define the following primitive concepts, including
aggregate relations:

e Accident, i.e. containing elements like location.
e Party, i.e. involved person and car.
e (Car, i.e. insured object.

o Ouwner, i.e. the owner of the car, which does not nec-
essarily has to be the chauffeur of the car.

e Driver, i.e. the one that drove in the car when it was
involved in the accident.

o Address, i.e. a physical location indicated by street,
number and zip code.

Besides that, we define the following relations: OwnedBy,
which puts the relation between Car and Owner; and DrivenBy,
which lays the relation between Car and Chauffeur. The re-
sulting ontology is (partially) illustrated in Fig. 4

5.3 Agent Design

The KIR system uses mailbox semantics (cf. [7]) with per-
agent serial message processing. The agents in the KIR sys-
tem are derived from a common Agent class. The Agent
class contains its queue and contains a QueueMonitor object
that runs in a thread. The QueueMonitor thread monitors
the queue and waits for a new message for a limited time.
This way, the agent can also react to status changes made
by the agent platform. If there are no status changes, the
QueueMonitor object loops. If there is a message, the mes-
sage is handled and after that, the QueueMonitor object
resumes waiting for messages.

%! MessageContent Frotégé-2000 {iusriprotegefprojectskir/MessageCe & O

Project Edit Window Help

ST IRt
f@m"mﬂ:ﬂ] Forms I3 Instances | g4 Queries |

Relatiunshiﬁ\f”?”?”?_:(@%wr [c][x
T THING A 2| ¥ Name
© (C) . SYSTEM-CLASS A |P
@ (C) Concept® ayer
§ (D aDA
%Pa\;er Role
Handler
Concrete hd
g @%&nmctiun" |
IdentifiParty
@IdentifyCase Template Slots
@Updateoase Marme | Typa |
(TJ Accident S| narme String re
(c) Car 5] resalvers Class
l:@Owner Eaddresses String
() Party |
(C) Driver
(Cliddra

[4]

Superclasses []

Figure 4: GreenCardOntology in Protégé, based
on CRM showing AgentTypes (AID), AgentActions
and Concepts.

The KIR system uses a DispatchManager to receive mes-
sages destined for other agents and dispatches them to the
intended recipient by pushing the message object in the
queue of the recipient agent. By derivation from the com-
mon Agent object a number of agents are defined that can
perform tasks such as writing and reading databases, re-
trieving en sending e-mail between parties, and processing
messages.

The main agent is triggered either by messages containing a
flattened representation of the ontology in use, either coming
from other partners or from the back office of the respective
partner. In both cases, an internal representation is built
from the flattened representation. Based on the values in
a number of slots, the main agent decides what action is
necessary. In order to be able to convert from and to a
flattened representation that can be sent over-the-wire, be
it through e-mail or through the transducer, two codecs have
been developed. Using ANTLR?, we defined the necessary
grammars to generate the decoding parts of the codecs. The
encoders where handwritten.

5.4 Scenario

Here we briefly illustrate a scenario with the use of two mes-
sages sent between the agentpgndier and agentpyeyer. The
first message is where agentpandier sSends an REQUEST to
agentpayer in the communicative act Client identification.
The ACL representation of this message is given in ACLMes-
sage 3. The second message is the response of agentyayer as
given in ACLMessage 4.

“http://www.antl.org

<fipa-message act="REQUEST" >

<sender>

<agent-identifier>

<name id="handler@Qinterpolis.nl" />

</agent-identifier>
</sender>
<receiver>

<agent-identifier>

<name id="payer@kbc.be" />

</agent-identifier>
</receiver>
<content>((action

(agent-identifier :name "payer@kbc.be")
(IdentifyParty
:licenseplate "AA-10"
:policynumber "7890489"))))
</content>
<language>FIPA SL</language>
<ontology>http://www.interpolis.nl/GreenCardOntology
</ontology>
<protocol>FIPA-REQUEST</protocol>
<conversation-id>Req1008770622742</conversation-id>
</fipa-message>

ACLMessage 3: REQUEST sent from agentpendier tO
agentpqyer containing the action to Identify a party.

<fipa-message act="INFORM" >
<sender>
<agent-identifier>
<name id="payer@kbc.be"/>
</agent-identifier>
</sender>
<receiver>
<agent-identifier>
<name id="handler@interpolis.nl" />
</agent-identifier>
</receiver>
<content>
((result
((action
(agent-identifier :name payer@kbc.be)
(IdentifyParty
:licenseplate "AA-10"
:policynumber "7890489")))
(Party
:name "Maxima"
:address "Dam 1"
:place "Amsterdam"
NN
</content>
<language>FIPA SL</language>
<ontology>http://www.interpolis.nl/GreenCardOntology
</ontology>
<protocol>FIPA-REQUEST</protocol>
<conversation-id>Req1008770622742</conversation-id>

ACLMessage 4: INFORM sent from agentpayer to
agentpandier containing the result on the action to Identify
a party.

5.5 Implementation

The final implementation of the KIR system did not use
Jade, mainly because a large number of features in Jade
were unnecessary. However, a number of principles used in
Jade are actually also used. The IT-department of Interpolis
developed the transducer between the database of Interpolis
and the agent within 30 days. The agent are built in Java
in less than 60 days. The models/tiers are implemented as
Java-thread objects with asynchronous mail box semantics
meaning that every model is a separate computational pro-
cess with own control that has a mailbox with which objects
communicate [7]. The mailboxes between the agents in the
KIR system are regular mailboxes from a mailer, for exam-
ple Sendmail or Exchange. The transport protocols used are
POP3 and SMTP. The transducer mailbox is implemented
as a database in which records represent messages. The
mailbox also serves as the storage for the model state. For-
warding a message from one model to another means that
the sending model adds a record to the mailbox database
of the receiving model. This ensures that when the agent
or a model (i.e. Java-thread) goes down, the state can be
restored. Every action of a model is logged in a log file, for
both maintenance reasons and tracking and tracing of flows
within the agent. The use of databases ensures robustness
and the ability to resume after a shut down. By using a
fairly simplistic agent model the KIR system has become
an industry strength solution. During production the KIR
system frequently reaches uptime of several weeks at end,
and generally is not the cause for restarts.

Because the KIR system must be implemented in a num-
ber of different organizations, each with a different technol-
ogy set and in different stages of automation, the transport
between agent systems needed to be a mechanism that is
available in a large number of cases. Therefore, the choice
was made to use e-mail and functional e-mail addresses for
inter-company agent communications and for a database for
communication between the agent system and the trans-
ducer. Another option for the transducers was the use of
middleware, such as CORBA, but the state of the technol-
ogy at several insurance companies prevented this. After
testing the KIR Agent, it was taken in production. This im-
mediately resulted in a work pressure release of three people
and reduces the process of identification of client and claim
from 6 months to 2 minutes. The KIR Agent is built once
and re-used for each insurance company, only the compe-
tence model and transducer had to be adapted.

6. DISCUSSION

The goal of this paper was to get insights in the applica-
tion of message content ontologies in the design of agents
systems. A preliminary upper ontology based on a content
reference model was presented that provides the semantics
or message content expressions. A lot of work has been done
on representing and manipulating ontologies with different
types of languages. interesting experiments are to develop
systems that work with these ontologies, such as translat-
ing incoming message to actions, instructions, knowledge,
information and data. This work presented how processes,
i.e. how software-agents use message content ontologies for
these kind of ontology operations. It showed, to some ex-
tent, that:

e The use of ontologies in message exchange communi-
cation gives meaning to the contents of messages sent
between agents. However to make agents collaborate
a lot of standardization work has to be done.

e Message content ontologies designed with the Protégé
tool can be operationalized and exported to Java source
code.

o FIPA SL can be used as content language. However,
the other described content language could be more
useful in certain settings. For example, languages based
on XML and RDF, could be more easily integrated in
the work of the semantic web community.

What we did not investigate are, and what is still open for
further research:

e Agent messaging comes with a combination of layers,
including the use of ontologies in combination with in-
teraction protocols. For example, agents that use the
CONTRACT-NET protocol needs an ontology that
provides the proper semantics for the concept proposal,
while the REQUEST protocol needs an ontology that
deals with the notion of action.

e More elaborated upper message content ontology suited
for the process the agents play a role. This work pre-
sented a case where with an information driven char-
acter (cf. [6]), with notions of information processing
actions. More interesting are processes with a knowl-
edge driven character. For this message, content on-
tologies should be studied that can handling concepts
like competences, knowledge, methods and signatures.
A starting point can be UPML [3].

e Comparison with existing agent message content on-
tologies and approaches, see for example [14].

e Guidelines for what elements of an ontology to use in
what context. Research on agent roles and agent orga-
nizations implicitly leads to the application of ontolo-
gies in the design and management of agent based sys-
tems, handling concepts from organization design. For
example, the notions of organizational position, dele-
gation, authority, and coordination can be used when
designing an agent based system as organizing a com-
pany.

In the case study, we described how a service of an insurance
company is made available to other insurance companies.
Most of these types of service are not meant to be on the
web, they form a part of a larger (centrally controlled) back
office system. Also, they do not address issues like commu-
nication, session management, multi user support and using
web standards. Another issue is that the interface to such
an service is not always specified or clear. Sometimes the
knowledge of how the systems works is not longer present or
consistent. Furthermore, insurance companies do not want
their service open for everyone, especially competing insur-
ance companies. Therefore, software agents can play an im-
portant role as mediators between user (e.g. other software
agents) and the actual service. This instead of an API (as in

SOAP) of such a service that can be distributed to anyone
how wants to use it.

Although the agents get the ontology translation hard coded,
it is technically possible for agent to manipulate existing on-
tologies and even to learn new ones. This can be done on
the symbol level i.e. one agent telling the other agent what
elements of a ontology are and what the relations is to other
elements. A more low-level approach is that the agent sends
some serialized code, then load in order to be able to actu-
ally use the learned ontology. This requires more research
however.

7. REFERENCES
[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing
multi agent systems with a FIPA-compliant agent
framework. Software - Practice And Ezperience,
31:103-128, 2001.

[2] B. Chandrasekaran, J. Josephson, and V. Benjamins.
Ontology of Tasks and Methods. IEEE Intelligent
Systems, 14(1):20-26, 1999.

[3] D. Fensel, R. Benjamins, E. Motta, and B. Wielinga.
UPML: A framework for knowledge system reuse. In
Proceedings of IJCAI-99, Stockholm, Sweden, 1999.

[4] J. Ferber. Multi-Agent Systems. Addison-Wesley,
Reading, MA, 1999.

[5] N. Fridman and C. Hafner. The state of the art in
ontology design. AI Magazine, 18(3):53-74, 1997.

[6] J. Galbraith. Designing complex Organizations.
Addison-Wesley, 1973.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley Reading, MA, 1995.

[8] M. Genesereth and S. Ketchpel. Software agents.
Communications of the ACM, 37(7):48-53, 1994.

[9] N. Noy, R. Fergerson, and M. Musen. The knowledge
model of Protege-2000: Combining interoperability
and flexibility. In 2th International Conference on

Knowledge Engineering and Knowledge Management
(EKAW’2000), Juan-les-Pins, France, 2000.

[10] N. Noy and D. L. McGuinness. Ontology Development
101: A Guide to Creating Your First Ontology. 2001.
Technical report, Stanford Medical Informatics, 2001.

[11] J. Odell, H. V. Dyke, and B. Bauer. Extending UML
for agents. In G. Wagner, Lesperance Y., and E. Yu,
editors, Proc. Of the Agent-Oriented Information
Systems Workshop at the 17th National Conference on
Artificial Intelligence, 2000.

[12] J. Searle. Seech Acts. Cambridge University Press,
1969.

[13] C. van Aart, K. Van Marcke, R. Pels, and
J. Smulders. International Insurance Traffic with
Software Agents. In F. van Harmelen, editor,
Proceedings of the 15th European Conference on
Artificial Intelligence. IOS Press, Amsterdam, 2002.

[14] S. Willmott, I. Constantinescu, and M. Calisti.
Multilingual Agents: Ontologies, Languages and
Abstractions. In OAS2001 Workshop, 2001.

