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ABSTRACT 
In this paper, we describe a framework for distributed ontology 
learning embedded in a multiagent environment.  The objective of 
this framework is to improve communication and understanding 
among the agents while preserving agent autonomy.  Each agent 
maintains a dictionary for its own experience and a translation 
table.  The dictionary allows the agent to compare and discover 
relationships between a pair of words or concepts, while the 
translation table enables the agent to learn and record (a selected 
portion of) the vocabulary of its neighbors that is useful for the 
collaboration among the agents.  The motivation for this distrib-
uted ontology learning is that each agent has its own experience 
and thus learns its own ontology depending on what it has been 
exposed to.  As a result, different agents may use different words 
to represent the same experience.  When two agents communi-
cate, agent A may not understand what agent B and that hinders 
collaboration.  However, equipped with the distributed ontology 
learning capabilities, agents are able to evolve independently their 
own ontological knowledge while maintaining translation tables 
through learning to help sustain the collaborative effort.  
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1.  INTRODUCTION 
In the real world, where human agents are autonomous, distrib-
uted, and capable of individual learning, there are different lan-
guages.  To communicate or collaborate, humans speaking differ-
ent languages either learn a common language or use a translator.  
Learning a common language that is not a person’s native incurs 
imposes additional effort on that person and may result in disad-
vantages.  However, speaking through a translator may be not 
cost-effective and may be not feasible in some applications.  
Similarly, in a multiagent environment, autonomous and distrib-
uted agents may encounter different events, gather different ex-
periences, and learn different ontologies.  The focus of this paper 
is to describe a distributed ontology learning framework in a 
multiagent environment. 

In our framework, each agent maintains a collection of experi-
ence cases.  Each experience case is a list of words with a list of 
classifying concepts.  There are two ways that an agent can learn 
experience cases.  First, users can teach them—by supplying a 
list of words and what the classifying concepts are for that list of 
words.  Second, an agent can learn a new experience case 
through its interactions with its neighbors.  As a result, each 

agent learns its own concepts based on its experiences and special-
ties.  When a new experience case arrives, the agent needs to in-
corporate it into its dictionary and its translation table.  This is 
supported by three important components: conceptual learning, 
translation, and interpretation, with a Dempster-Shafer belief sys-
tem [1] as the underlying structure to maintain ontology consis-
tency.    

Our discussion here is related to [2].  In [2], however, the agents 
were not able to learn collaboratively in a multiagent system.  
Instead, the learning was conducted only between two agents via 
exchange of concepts (ontologies) where the agents were neither 
able to adapt to changes in concept definitions nor able to handle 
multiple assertions from different neighbors.  Moreover, our 
framework addresses translation and interpretation of concepts, 
query processing and composition for collaboration among agents, 
and action planning based on traffic and agent activities, which 
indirectly control the learning rates of the agents. 

2.  METHODOLOGY 
In our framework, the multiagent system is one in which agents 
can exchange queries and messages to learn about each other’s 
ontology.  To improve the communication and collaboration effi-
ciency, agents determine whether some translation is worth learn-
ing, which neighbors to communicate to, how to handle and dis-
tribute queries, and how to plan for agent activities.  The frame-
work consists of two sets of components: operational and onto-
logical.  The operational components allow the agents to work 
together in a multiagent system.  The ontological components 
allow the agents to communicate and understand each other.     

2.1. Operational Components 
There are three important operational components: query process-
ing, action planning, and query composition.  Note that in our 
framework, an agent sends out a query to its neighbor when it 
needs to find some additional experience cases for that some clas-
sifying concepts.   The query consists of the concepts and may 
consist of also some experience cases that the agent already has.  
When a user submits a new experience case, the agent also treats it 
as a query.  Thus, each agent must be able to process queries.  
Agents are required to compose queries as well as they also need 
to relay or distribute queries to other agents by modifying the que-
ries in their own words.  Finally, for the system to be effective, the 
query distribution and the ontology learning behavior are sup-
ported by an action planning component that makes decision based 
on the agent’s environment such as message traffic and neighbor-
hood profile.  



2.2. Ontological Components 

There are three important ontological components in our frame-
work: conceptual learning, translation, and interpretation.  We 
represent an experience case as a vector.  Each vector consists of 
the classifying concept and then a list of words describing that 
concept.  A concept may have many different experience cases.  
Different concepts may be used to classify the same list of words, 
resulting in different experience cases.  A word may appear in 
different experience cases for different concepts as well.  These 
experience cases can be further linked under a concept hierarchy.  
Moreover, for each concept, the agent also learns the description 
vector, combining all relevant experience cases together.  This 
allows the system to incrementally learn and evolve existing on-
tologies.   

2.2.1. Conceptual Learning 
This component has three structures: description vectors, concept 
hierarchies, and semantic rules.   A descriptor vector is concept-
specific.  A concept hierarchy links several concepts together.  A 
semantic rule distinguishes a concept from all other concepts. 

First, when submitted, each concept is supported by n experience 
cases, in which each case has a list of words.  Then, this compo-
nent examines these experience cases to update the description 
vector for that concept.  A description vector consists of a list of 
word-frequency pairs.  For each word found in all the experience 
cases describing the same concept, the agent finds its frequency.  
In this manner, the agent learns the different significance of the 
words describing a concept.   

Second, each agent uses a set of concept hierarchies to organize 
the concepts.  If a concept name is a word in the description vec-
tor of another concept, then we say that the concept is part of that 
another concept.   

Third, for the purpose of query matching and ontological learn-
ing, the conceptual learning includes deriving semantic rules that 
help discriminate one concept from another.  To construct rules, 
we feed the vector field into an inductive learner.  The learner 
parses the vectors into a decision tree that deterministically allo-
cates each example into a semantically unique branch.  Branches 
will then be traversed—attribute values extracted and compara-
tives introduced—to arrive at rules.  An example rule is:  

 If(university > 0.20) and  
 (nebraska > 0.35) and (lincoln > 0.5) 
and(omaha < 0.1) and then  

  NU. 

The above rule says that if frequency of the word “univer-
sity”  appears in the description vector is greater than 20%, and 
the frequency of the word “nebraska”  is more greater than 
35%, and the frequency of the word “lincoln”  is greater than 
50 percent, and the frequency of the word “omaha”  is less than 
10%, then the concept is “NU.”   This rule thus is used in query 
processing: if a query asks for experience cases under the concept 
“NU,”  the agent knows how to evaluate the relevance of the de-
scription vectors to the query.   

So, conceptual learning gives us a description vector for each 
concept.  Each description vector specifies a list of words (with 
their frequencies) for that particular concept.  The collection of 
the description vectors is the agent’s dictionary.  Further, the 

agent builds a group of concept hierarchies to link the concepts 
together.  This allows matching to find part-of concepts.  More-
over, the agent derives semantic rules to distinguish each concept.  
With these, the agent is able to tell whether a description vector 
has anything to do with a particular concept.  This is critical to our 
ontological learning.  We assume that the concept names may 
differ among agents or users while the words describing these 
concepts are of the same vocabulary, of common examples. 

2.2.2. Translation   
An agent sends out query when it needs to obtain some experience 
cases or a description vector for a particular concept.  When the 
queried agent processes the query, it first matches the concept to 
its translation table.  This is translation.   

If a credible translation is found, then the queried agent simply 
sends back its experience cases or a description vector (depending 
on what the querying agent has asked for) associated with the con-
cept translated.   

Each agent maintains a comprehensive translation table.  Each 
table lists the concepts that the agent knows and maps them to the 
corresponding concepts of the neighboring agents.  Only transla-
tions that are credible will be recorded in the table.   

In the beginning, each agent has an empty repository of translation 
tables.  At birth, an agent learns from the users’  submission (or 
queries).  Then the agent learns about the relations it has with its 
neighbors through two functional occasions.  First, when it queries 
another agent for certain information (experience cases or descrip-
tion vectors).  Second, when it receives a query from another 
agent.  When an agent queries another agent for certain informa-
tion and if the queried agent responds positively with its own se-
mantics, the querying agent will duly interpret it and update it in 
its translation table.  When an agent receives a query from another 
agent, if it does not have a readily available and up-to-date transla-
tion, then the agent interprets the semantics that accompany the 
query.  At the end of the interpretation, if the agent is able to rec-
ognize the semantics, it then reflects the learned mappings in the 
translation tables. 

2.2.3. Interpretation 
When a query fails to be matched through during translation, it is 
forwarded to the interpretation module.  There are two steps here: 
clarification and matching.   

Clarification.  At this step, the queried agent first requests from 
the querying agent the semantic rule that characterizes the concept 
in question.  The querying agent may not have a semantic rule for 
that concept and thus may be unable to satisfy the request.  Then 
the queried agent may ask for a description vector supporting the 
concept in question.  Once again, the querying agent may or may 
not have the vector for the request.  If the queried agent does not 
get further clarification on the concept, the interpretation step 
stops.  However, if the querying agent is able to provide a seman-
tic rule, then the process moves to the matching step.  If the query-
ing agent is able to provide only a description vector, then the 
queried agent has to perform conceptual learning to understand the 
concept before moving to the next step.  In the end, if a clarifica-
tion is achieved, the queried agent will have a semantic rule char-
acterizing the concept in question.  Then, the interpretation mod-
ule is ready to perform matching.   



Note that a querying agent may not have a semantic rule for the 
concept in question when it simply relays that query from another 
agent.  A querying agent may only have a description vector if 
the concept has not been incorporated into the ontology of the 
agent.   

Matching.  When matching the semantics of the query with the 
semantics of a resident rule, if the two sets are synonymic, then a 
mass of 1.0 will be added to the interpretation scores.  When we 
say ‘synonymic’ , we refer to the inclusiveness and exclusiveness 
when comparatives are involved.  For example, if the querying 
semantic has a semantic component “university > 0.20”  
and the resident semantic has “university > 0.15” , then 
the resident semantic component is said to be inclusive of the 
querying semantic component.  A similar observation can be said 
about the less-than comparative.  Hence, two semantics are syn-
onymic when the resident components include the querying com-
ponents.  In the sense of rule-based systems, if a semantic is 
matched, then the resident rule is fired by asserting the concept 
name entailed by the resident rule with a mass of 1.0.  The trans-
lation between the concepts that describe the synonymic seman-
tics will then be recorded in the translation tables. 

Our agent is also equipped to handle relevant matching since a 
synonymic matching is rare.  Suppose we have a querying seman-
tic “(college > 0.13 nebraska > 0.1237 corn-
husker > 0.10)”  and the resident semantic “(corn-
husker > 0.2000 university > 0.1200 nebraska 
> 0.1138)” .  Now, the first semantic component is not 
matched.  The second semantic component is matched.  The third 
semantic component is partially matched: the semantic token is 
matched but the comparative requirement is not fulfilled.  Sup-
pose the number of resident semantic components is scN , the 

mass of the assertion of the above partially-matched rule is  
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If a resident semantic component is matched, then the function 
matched returns 1.0.  If the semantic token of a resident semantic 
component is not found in the querying semantic, then the func-
tion matched returns 0.0.  If the semantic token matches but its 
semantic frequency is excluded (from the range), then matched 
returns 

freqconqueryfreqconresident −−0.1  

 

3.  DEMPSTER-SHAFER BELIEF SYS-
TEM 
An agent performs two types of learning.  It learns incrementally, 
refining its concepts whenever there is a new submission.  It also 
learns collaboratively, refining its translation table whenever 
there is a query that prompts the agent to ask for help from its 
neighbors.  The underlying problem is how to combine the vari-
ous assertions made by the relevant matching that we discussed 
earlier in a consistent manner.  Towards this end, we incorporate 
the Dempster-Shafer theory [1] for building a belief system that 

receives evidence and maintains global beliefs in its assertions 
consistently.   

Suppose that all the concept names that an agent understands, 
stored in its ontologies, are of the frame of discernment or uni-
verse U.  A proposition in favor of a concept name, Γ , is thus an 
assertion as previously described.  Thus, the set of all propositions 
is ( )UΡ , the power set of U.  Let ( ) [ ]1,0: →Ρ Um  be a func-

tion—a basic probability assignment—satisfying conditions for a 
certainly false proposition, ( ) 0=∅m , and for a certainly true 

proposition, ( ) 1=Γ∑
⊆Γ U

m .  The belief function, 

( ) [ ]1,0: →Ρ UBel , is defined in terms of the basic probability 

assignment m: ( ) ( )∑
Γ⊆

=Γ
α

αmBel .  This tells us the degree of 

belief associated with the proposition Γ  as the probability mass 
associated with Γ  and its subsets.  The plausibility of a proposi-
tion is further defined as ( ) ( )Γ¬−=Γ BelPls 1 .  Hence a propo-

sition is always bound by [ ]PlsBel,  in terms of the confidence in 
its perceived truthfulness.  To combine various pieces of evidence 
for building up beliefs in favor of various propositions, the Demp-
ster’s rule of combination is used.  Suppose we are given two as-
signments (two pieces of evidence), 1m  and 2m , and we want to 

combine them into a single piece of evidence.  Hence, we compute 

[ ]( )
( ) ( )

( ) ( )∑

∑

∅=∩

Γ=∩

−
=Γ⊕

βα

βα

βα

βα

21
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where ∅≠Γ , and [ ]( ) 021 =∅⊕ mm .    

For example, suppose after matching the semantics to our rule 
base, we arrive at two assertions: NU with mass 0.7 and Monet 

with mass 0.2.  Hence, 1m corresponds to our belief:   

   {NU}   0.7 
   Θ  0.3 

and 2m  corresponds to our belief: 

   {Monet}  0.2 
   Θ  0.8 

Then we can compute their combination 3m  using the rule of 

combination above (presented as a table below): 

 

 {NU} 0.7 Θ  0.5 

{Monet}  0.2 {  }  0.14 { Monet}  0.10 

Θ   0.8 { NU}  0.56 Θ  0.40 

  

3.1. Concept Disambiguation   
Until now, after the rule-based, semantics-driven assertions and 
the evidential combination, we arrive at a set of evidential inter-
vals for the propositions or concept names.  For our disambigua-



tion process, we follow the two axioms of evidential interval 
analysis: 

Axiom 1 The higher the belief and the plausibility values, the 
more credible the proposition is. 

Axiom 2 The closer the belief value is to the plausibility value, 
the more credible the proposition is. 

 Axiom 1 follows naturally from the work of the Dempster-
Shafer theory.  On the other hand, Axiom 2 punishes ignorance.  
That is, if the agent thinks that a proposition is very plausible but 
believes with little confidence that the proposition is true, then 
the agent is ignorant about the proposition.  Following from the 
above two axioms, we devise a measure of credibility of a propo-
sition as: 

( ) ( ) ( )
( ) ( )Γ−Γ

Γ+Γ=Γ
BelPls

BelPls
yCredibilit . 

During interpretation, the concept that yields the highest credibil-
ity will be the winning concept.  Note that if the credibility of the 
winning concept is below a certain threshold, then the interpreter 
realizes that it does not understand or recognize the querying 
concept.  This provision prevents low-quality recognition.   

At the end of this stage, the interpreter performs one of the fol-
lowing: (1) If the winning concept passes the credibility test, then 
the agent supplies the querying agent with what it knows, i.e., the 
experience cases under the winning concept.  The translation will 
also be recorded in the translation tables, or (2) If the winning 
concept fails the credibility test, then the agent turns to the trans-
lator module of its system. 

3.2. Concept Amalgamation  
This process is triggered by the combination of (1) the lack of a 
credible winning concept, and (2) the existence of a credible, 
relevant non-singleton concept structure.  The objective is to 
promote non-singleton sets of concepts, such as { Basketball, 
NU} , to a recognizable concept structure.  For example, suppose 
the set { Basketball, NU}  has an evidential interval of [0.6 0.9].  
Its credibility is 5.0.  Suppose this passes our filter and the win-
ning concept fails.   

The amalgamation process will register the conceptual complex 
{ Basketball, NU}  to a complex-relevant table, together with the 
semantics that support the complex.  Further, it will record the 
translation and its credibility to the corresponding space under 
the querying agent.   

This provision self-motivates every agent to build and learn com-
plex concepts, which in turns increases the complexity and level 
of understanding among the agents with distributed ontologies.  

3.3. Belief System and Distributed Ontology Learn-
ing 
Our agents conduct distributed ontology learning at different 
times.  When an agent interacts with the user, it handles user 
submissions, performs inductive learning to obtain semantic 
rules, and builds its concept database.  Since these submissions 
or experience cases are received sequentially, the learning is in-
cremental.  During the interaction with other agents in the envi-

ronment, users can still submit both queries and new experience 
cases to an agent.  When new experience cases are submitted, an 
agent revises its concept database through the belief system in the 
following manner.  If the new experience cases are submitted with 
an existing concept name, then the agent essentially finds a trans-
lation between the concept name with new experience cases (evi-
dence) and the concept name with old experience cases.  The 
credibility of the translation is then used to re-weight mass of the 
existing semantic rules and the new rules derived from the new 
experience cases.  This revision is then propagated to all related 
translations in the table.  On the other hand, when a query is sub-
mitted and the agent fails to recognize the concept of that query, it 
may relay it to other agents.  If another agent retrieves the relevant 
experience cases and returns them, then the originating agent 
learns that new concept using the retrieved experience cases as 
examples, absorbing it into its concept base via belief system in a 
manner similar to the aforementioned.  

During interactions with other agents, an agent also learns to re-
direct tasks and re-formulate queries for better ontology under-
standing.  The fundamental mechanism that enables such behavior 
is through the maintenance of the translation tables in the system.  
The presence of a unique translation table at each agent increases 
the autonomy of the agents in the system, allowing each to special-
ize for specific sets of queries and experience cases.  Further, an 
agent is designed to relay a query that it cannot satisfy to other 
agents for help.  An agent may not satisfy a query when it does not 
recognize the query concept, or does not find a relevant match, or 
does not retrieve experience cases with high relevance values, or 
does not find enough experience cases as required.  As a result, the 
agent can use its translation table to locate useful neighbors to 
approach for help.  If the concept query does not have a translation 
but the agent does have a few lowly-relevant experience cases, 
then it will supply those to its neighbors as examples.  The key of 
our utilization of this type of distributed learning is that each agent 
has its own set of concepts to facilitate query accuracy and speed.  
Communications are only necessary when agents need help.  
Through communications, queries are relayed and concepts are 
shared.  Thus, the agents only learn necessary translations based 
on their experiences, making the learning process efficient and 
effective.   

In conclusion, the belief system allows the agents to evolve their 
own ontologies in the following ways: (1) infusion of new experi-
ence cases into the translation table via the concept hierarchies, (2) 
propagation of new credibility values to all translation entries, (3) 
joining terms to form complex concept names, and (4) exchange of 
concepts between agents that is based on the collaboration behav-
ior between the agents (traffic congestion and agent activities). 
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