
Multiagent Distributed Ontology Learning
Leen-Kiat Soh

Computer Science and Engineering
University of Nebraska

115 Ferguson Hall
Lincoln, NE

(402) 472-6738

lksoh@cse.unl.edu

ABSTRACT
In this paper, we describe a framework for distributed ontology
learning embedded in a multiagent environment. The objective of
this framework is to improve communication and understanding
among the agents while preserving agent autonomy. Each agent
maintains a dictionary for its own experience and a translation
table. The dictionary allows the agent to compare and discover
relationships between a pair of words or concepts, while the
translation table enables the agent to learn and record (a selected
portion of) the vocabulary of its neighbors that is useful for the
collaboration among the agents. The motivation for this distrib-
uted ontology learning is that each agent has its own experience
and thus learns its own ontology depending on what it has been
exposed to. As a result, different agents may use different words
to represent the same experience. When two agents communi-
cate, agent A may not understand what agent B and that hinders
collaboration. However, equipped with the distributed ontology
learning capabilities, agents are able to evolve independently their
own ontological knowledge while maintaining translation tables
through learning to help sustain the collaborative effort.

Keywords
Multiagent systems, distributed learning, ontology learning,
Dempster-Shafer belief system

1. INTRODUCTION
In the real world, where human agents are autonomous, distrib-
uted, and capable of individual learning, there are different lan-
guages. To communicate or collaborate, humans speaking differ-
ent languages either learn a common language or use a translator.
Learning a common language that is not a person’s native incurs
imposes additional effort on that person and may result in disad-
vantages. However, speaking through a translator may be not
cost-effective and may be not feasible in some applications.
Similarly, in a multiagent environment, autonomous and distrib-
uted agents may encounter different events, gather different ex-
periences, and learn different ontologies. The focus of this paper
is to describe a distributed ontology learning framework in a
multiagent environment.

In our framework, each agent maintains a collection of experi-
ence cases. Each experience case is a list of words with a list of
classifying concepts. There are two ways that an agent can learn
experience cases. First, users can teach them—by supplying a
list of words and what the classifying concepts are for that list of
words. Second, an agent can learn a new experience case
through its interactions with its neighbors. As a result, each

agent learns its own concepts based on its experiences and special-
ties. When a new experience case arrives, the agent needs to in-
corporate it into its dictionary and its translation table. This is
supported by three important components: conceptual learning,
translation, and interpretation, with a Dempster-Shafer belief sys-
tem [1] as the underlying structure to maintain ontology consis-
tency.

Our discussion here is related to [2]. In [2], however, the agents
were not able to learn collaboratively in a multiagent system.
Instead, the learning was conducted only between two agents via
exchange of concepts (ontologies) where the agents were neither
able to adapt to changes in concept definitions nor able to handle
multiple assertions from different neighbors. Moreover, our
framework addresses translation and interpretation of concepts,
query processing and composition for collaboration among agents,
and action planning based on traffic and agent activities, which
indirectly control the learning rates of the agents.

2. METHODOLOGY
In our framework, the multiagent system is one in which agents
can exchange queries and messages to learn about each other’s
ontology. To improve the communication and collaboration effi-
ciency, agents determine whether some translation is worth learn-
ing, which neighbors to communicate to, how to handle and dis-
tribute queries, and how to plan for agent activities. The frame-
work consists of two sets of components: operational and onto-
logical. The operational components allow the agents to work
together in a multiagent system. The ontological components
allow the agents to communicate and understand each other.

2.1. Operational Components
There are three important operational components: query process-
ing, action planning, and query composition. Note that in our
framework, an agent sends out a query to its neighbor when it
needs to find some additional experience cases for that some clas-
sifying concepts. The query consists of the concepts and may
consist of also some experience cases that the agent already has.
When a user submits a new experience case, the agent also treats it
as a query. Thus, each agent must be able to process queries.
Agents are required to compose queries as well as they also need
to relay or distribute queries to other agents by modifying the que-
ries in their own words. Finally, for the system to be effective, the
query distribution and the ontology learning behavior are sup-
ported by an action planning component that makes decision based
on the agent’s environment such as message traffic and neighbor-
hood profile.

2.2. Ontological Components

There are three important ontological components in our frame-
work: conceptual learning, translation, and interpretation. We
represent an experience case as a vector. Each vector consists of
the classifying concept and then a list of words describing that
concept. A concept may have many different experience cases.
Different concepts may be used to classify the same list of words,
resulting in different experience cases. A word may appear in
different experience cases for different concepts as well. These
experience cases can be further linked under a concept hierarchy.
Moreover, for each concept, the agent also learns the description
vector, combining all relevant experience cases together. This
allows the system to incrementally learn and evolve existing on-
tologies.

2.2.1. Conceptual Learning
This component has three structures: description vectors, concept
hierarchies, and semantic rules. A descriptor vector is concept-
specific. A concept hierarchy links several concepts together. A
semantic rule distinguishes a concept from all other concepts.

First, when submitted, each concept is supported by n experience
cases, in which each case has a list of words. Then, this compo-
nent examines these experience cases to update the description
vector for that concept. A description vector consists of a list of
word-frequency pairs. For each word found in all the experience
cases describing the same concept, the agent finds its frequency.
In this manner, the agent learns the different significance of the
words describing a concept.

Second, each agent uses a set of concept hierarchies to organize
the concepts. If a concept name is a word in the description vec-
tor of another concept, then we say that the concept is part of that
another concept.

Third, for the purpose of query matching and ontological learn-
ing, the conceptual learning includes deriving semantic rules that
help discriminate one concept from another. To construct rules,
we feed the vector field into an inductive learner. The learner
parses the vectors into a decision tree that deterministically allo-
cates each example into a semantically unique branch. Branches
will then be traversed—attribute values extracted and compara-
tives introduced—to arrive at rules. An example rule is:

 If(university > 0.20) and
 (nebraska > 0.35) and (lincoln > 0.5)
and(omaha < 0.1) and then

 NU.

The above rule says that if frequency of the word “univer-
sity” appears in the description vector is greater than 20%, and
the frequency of the word “nebraska” is more greater than
35%, and the frequency of the word “lincoln” is greater than
50 percent, and the frequency of the word “omaha” is less than
10%, then the concept is “NU.” This rule thus is used in query
processing: if a query asks for experience cases under the concept
“NU,” the agent knows how to evaluate the relevance of the de-
scription vectors to the query.

So, conceptual learning gives us a description vector for each
concept. Each description vector specifies a list of words (with
their frequencies) for that particular concept. The collection of
the description vectors is the agent’s dictionary. Further, the

agent builds a group of concept hierarchies to link the concepts
together. This allows matching to find part-of concepts. More-
over, the agent derives semantic rules to distinguish each concept.
With these, the agent is able to tell whether a description vector
has anything to do with a particular concept. This is critical to our
ontological learning. We assume that the concept names may
differ among agents or users while the words describing these
concepts are of the same vocabulary, of common examples.

2.2.2. Translation
An agent sends out query when it needs to obtain some experience
cases or a description vector for a particular concept. When the
queried agent processes the query, it first matches the concept to
its translation table. This is translation.

If a credible translation is found, then the queried agent simply
sends back its experience cases or a description vector (depending
on what the querying agent has asked for) associated with the con-
cept translated.

Each agent maintains a comprehensive translation table. Each
table lists the concepts that the agent knows and maps them to the
corresponding concepts of the neighboring agents. Only transla-
tions that are credible will be recorded in the table.

In the beginning, each agent has an empty repository of translation
tables. At birth, an agent learns from the users’ submission (or
queries). Then the agent learns about the relations it has with its
neighbors through two functional occasions. First, when it queries
another agent for certain information (experience cases or descrip-
tion vectors). Second, when it receives a query from another
agent. When an agent queries another agent for certain informa-
tion and if the queried agent responds positively with its own se-
mantics, the querying agent will duly interpret it and update it in
its translation table. When an agent receives a query from another
agent, if it does not have a readily available and up-to-date transla-
tion, then the agent interprets the semantics that accompany the
query. At the end of the interpretation, if the agent is able to rec-
ognize the semantics, it then reflects the learned mappings in the
translation tables.

2.2.3. Interpretation
When a query fails to be matched through during translation, it is
forwarded to the interpretation module. There are two steps here:
clarification and matching.

Clarification. At this step, the queried agent first requests from
the querying agent the semantic rule that characterizes the concept
in question. The querying agent may not have a semantic rule for
that concept and thus may be unable to satisfy the request. Then
the queried agent may ask for a description vector supporting the
concept in question. Once again, the querying agent may or may
not have the vector for the request. If the queried agent does not
get further clarification on the concept, the interpretation step
stops. However, if the querying agent is able to provide a seman-
tic rule, then the process moves to the matching step. If the query-
ing agent is able to provide only a description vector, then the
queried agent has to perform conceptual learning to understand the
concept before moving to the next step. In the end, if a clarifica-
tion is achieved, the queried agent will have a semantic rule char-
acterizing the concept in question. Then, the interpretation mod-
ule is ready to perform matching.

Note that a querying agent may not have a semantic rule for the
concept in question when it simply relays that query from another
agent. A querying agent may only have a description vector if
the concept has not been incorporated into the ontology of the
agent.

Matching. When matching the semantics of the query with the
semantics of a resident rule, if the two sets are synonymic, then a
mass of 1.0 will be added to the interpretation scores. When we
say ‘synonymic’ , we refer to the inclusiveness and exclusiveness
when comparatives are involved. For example, if the querying
semantic has a semantic component “university > 0.20”
and the resident semantic has “university > 0.15” , then
the resident semantic component is said to be inclusive of the
querying semantic component. A similar observation can be said
about the less-than comparative. Hence, two semantics are syn-
onymic when the resident components include the querying com-
ponents. In the sense of rule-based systems, if a semantic is
matched, then the resident rule is fired by asserting the concept
name entailed by the resident rule with a mass of 1.0. The trans-
lation between the concepts that describe the synonymic seman-
tics will then be recorded in the translation tables.

Our agent is also equipped to handle relevant matching since a
synonymic matching is rare. Suppose we have a querying seman-
tic “(college > 0.13 nebraska > 0.1237 corn-
husker > 0.10)” and the resident semantic “(corn-
husker > 0.2000 university > 0.1200 nebraska
> 0.1138)” . Now, the first semantic component is not
matched. The second semantic component is matched. The third
semantic component is partially matched: the semantic token is
matched but the comparative requirement is not fulfilled. Sup-
pose the number of resident semantic components is scN , the

mass of the assertion of the above partially-matched rule is

sc

N

i
i

N

conquerycompconresidentmatched

Mass

sc

∑
== 1

),(

If a resident semantic component is matched, then the function
matched returns 1.0. If the semantic token of a resident semantic
component is not found in the querying semantic, then the func-
tion matched returns 0.0. If the semantic token matches but its
semantic frequency is excluded (from the range), then matched
returns

freqconqueryfreqconresident −−0.1

3. DEMPSTER-SHAFER BELIEF SYS-
TEM
An agent performs two types of learning. It learns incrementally,
refining its concepts whenever there is a new submission. It also
learns collaboratively, refining its translation table whenever
there is a query that prompts the agent to ask for help from its
neighbors. The underlying problem is how to combine the vari-
ous assertions made by the relevant matching that we discussed
earlier in a consistent manner. Towards this end, we incorporate
the Dempster-Shafer theory [1] for building a belief system that

receives evidence and maintains global beliefs in its assertions
consistently.

Suppose that all the concept names that an agent understands,
stored in its ontologies, are of the frame of discernment or uni-
verse U. A proposition in favor of a concept name, Γ , is thus an
assertion as previously described. Thus, the set of all propositions
is ()UΡ , the power set of U. Let () []1,0: →Ρ Um be a func-

tion—a basic probability assignment—satisfying conditions for a
certainly false proposition, () 0=∅m , and for a certainly true

proposition, () 1=Γ∑
⊆Γ U

m . The belief function,

() []1,0: →Ρ UBel , is defined in terms of the basic probability

assignment m: () ()∑
Γ⊆

=Γ
α

αmBel . This tells us the degree of

belief associated with the proposition Γ as the probability mass
associated with Γ and its subsets. The plausibility of a proposi-
tion is further defined as () ()Γ¬−=Γ BelPls 1 . Hence a propo-

sition is always bound by []PlsBel, in terms of the confidence in
its perceived truthfulness. To combine various pieces of evidence
for building up beliefs in favor of various propositions, the Demp-
ster’s rule of combination is used. Suppose we are given two as-
signments (two pieces of evidence), 1m and 2m , and we want to

combine them into a single piece of evidence. Hence, we compute

[]()
() ()

() ()∑

∑

∅=∩

Γ=∩

−
=Γ⊕

βα

βα

βα

βα

21

21

21 1 mm

mm

mm ,

where ∅≠Γ , and []() 021 =∅⊕ mm .

For example, suppose after matching the semantics to our rule
base, we arrive at two assertions: NU with mass 0.7 and Monet

with mass 0.2. Hence, 1m corresponds to our belief:

 {NU} 0.7
 Θ 0.3

and 2m corresponds to our belief:

 {Monet} 0.2
 Θ 0.8

Then we can compute their combination 3m using the rule of

combination above (presented as a table below):

 {NU} 0.7 Θ 0.5

{Monet} 0.2 { } 0.14 { Monet} 0.10

Θ 0.8 { NU} 0.56 Θ 0.40

3.1. Concept Disambiguation
Until now, after the rule-based, semantics-driven assertions and
the evidential combination, we arrive at a set of evidential inter-
vals for the propositions or concept names. For our disambigua-

tion process, we follow the two axioms of evidential interval
analysis:

Axiom 1 The higher the belief and the plausibility values, the
more credible the proposition is.

Axiom 2 The closer the belief value is to the plausibility value,
the more credible the proposition is.

 Axiom 1 follows naturally from the work of the Dempster-
Shafer theory. On the other hand, Axiom 2 punishes ignorance.
That is, if the agent thinks that a proposition is very plausible but
believes with little confidence that the proposition is true, then
the agent is ignorant about the proposition. Following from the
above two axioms, we devise a measure of credibility of a propo-
sition as:

() () ()
() ()Γ−Γ

Γ+Γ=Γ
BelPls

BelPls
yCredibilit .

During interpretation, the concept that yields the highest credibil-
ity will be the winning concept. Note that if the credibility of the
winning concept is below a certain threshold, then the interpreter
realizes that it does not understand or recognize the querying
concept. This provision prevents low-quality recognition.

At the end of this stage, the interpreter performs one of the fol-
lowing: (1) If the winning concept passes the credibility test, then
the agent supplies the querying agent with what it knows, i.e., the
experience cases under the winning concept. The translation will
also be recorded in the translation tables, or (2) If the winning
concept fails the credibility test, then the agent turns to the trans-
lator module of its system.

3.2. Concept Amalgamation
This process is triggered by the combination of (1) the lack of a
credible winning concept, and (2) the existence of a credible,
relevant non-singleton concept structure. The objective is to
promote non-singleton sets of concepts, such as { Basketball,
NU} , to a recognizable concept structure. For example, suppose
the set { Basketball, NU} has an evidential interval of [0.6 0.9].
Its credibility is 5.0. Suppose this passes our filter and the win-
ning concept fails.

The amalgamation process will register the conceptual complex
{ Basketball, NU} to a complex-relevant table, together with the
semantics that support the complex. Further, it will record the
translation and its credibility to the corresponding space under
the querying agent.

This provision self-motivates every agent to build and learn com-
plex concepts, which in turns increases the complexity and level
of understanding among the agents with distributed ontologies.

3.3. Belief System and Distributed Ontology Learn-
ing
Our agents conduct distributed ontology learning at different
times. When an agent interacts with the user, it handles user
submissions, performs inductive learning to obtain semantic
rules, and builds its concept database. Since these submissions
or experience cases are received sequentially, the learning is in-
cremental. During the interaction with other agents in the envi-

ronment, users can still submit both queries and new experience
cases to an agent. When new experience cases are submitted, an
agent revises its concept database through the belief system in the
following manner. If the new experience cases are submitted with
an existing concept name, then the agent essentially finds a trans-
lation between the concept name with new experience cases (evi-
dence) and the concept name with old experience cases. The
credibility of the translation is then used to re-weight mass of the
existing semantic rules and the new rules derived from the new
experience cases. This revision is then propagated to all related
translations in the table. On the other hand, when a query is sub-
mitted and the agent fails to recognize the concept of that query, it
may relay it to other agents. If another agent retrieves the relevant
experience cases and returns them, then the originating agent
learns that new concept using the retrieved experience cases as
examples, absorbing it into its concept base via belief system in a
manner similar to the aforementioned.

During interactions with other agents, an agent also learns to re-
direct tasks and re-formulate queries for better ontology under-
standing. The fundamental mechanism that enables such behavior
is through the maintenance of the translation tables in the system.
The presence of a unique translation table at each agent increases
the autonomy of the agents in the system, allowing each to special-
ize for specific sets of queries and experience cases. Further, an
agent is designed to relay a query that it cannot satisfy to other
agents for help. An agent may not satisfy a query when it does not
recognize the query concept, or does not find a relevant match, or
does not retrieve experience cases with high relevance values, or
does not find enough experience cases as required. As a result, the
agent can use its translation table to locate useful neighbors to
approach for help. If the concept query does not have a translation
but the agent does have a few lowly-relevant experience cases,
then it will supply those to its neighbors as examples. The key of
our utilization of this type of distributed learning is that each agent
has its own set of concepts to facilitate query accuracy and speed.
Communications are only necessary when agents need help.
Through communications, queries are relayed and concepts are
shared. Thus, the agents only learn necessary translations based
on their experiences, making the learning process efficient and
effective.

In conclusion, the belief system allows the agents to evolve their
own ontologies in the following ways: (1) infusion of new experi-
ence cases into the translation table via the concept hierarchies, (2)
propagation of new credibility values to all translation entries, (3)
joining terms to form complex concept names, and (4) exchange of
concepts between agents that is based on the collaboration behav-
ior between the agents (traffic congestion and agent activities).

4. REFERENCES
[1] Shafer, G. 1976. A Mathematical Theory of Evidence,

Princeton, NJ: Princeton University Press.

[2] Williams, A. B. and Tsatsoulis, C. 1999. Diverse Web
Ontologies: What Intelligent Agents Must Teach to Each
Other, Working Notes of the AAAI Spring Symposium Series
on Intelligent Agents in Cyberspace, Stanford, CA, Mar 22-
24, 115-120.

