
Using Multi-Agent Based Middleware to
Implement a Distributed Peer-To-Peer Semantic

Service Oriented Architecture

Daniel Bertinshaw

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland 1142, New Zealand

dber021@aucklanduni.ac.nz

Abstract. In this work we give the outline for a novel approach to se-
mantic web service based applications. This approach centers around the
use of so-called intelligent agents as the basis for the middleware layer.
We give a broad outline of our prototype architecture and preliminary
correctness results.

Keywords: Semantic Web Services, Service Oriented Architecture, Multi-
Agent System, Middleware, Service Composition

1 Motivation

The Semantic Web and Semantic Service Oriented Architectures[6, 4] promise to
create systems that can re-use components by composing the resources available
on the semantic web. The semantic web resources being pages of data or services
that process data.

This particular idea of composition of services provides an advancement over
the traditional notion of service oriented architectures: the services available can
be loosely coupled and automatically re-used in a dynamic fashion to achieve
ad-hoc tasks. These properties of re-used and ad-hoc automation in turn promise
to reduce workload on engineers, allowing the instrumentation of common and
simple tasks from a basic definition of the task itself.

The key to the possibility of the automated task composition is that the
services of the semantic web differ from their non-semantic cousins by having
documents in a machine readable format that describe functions the service
performs. This document allows automatic reasoning, planning and workflow
execution systems to inspect and decide if a service can be included in a dynamic
fashion.

The majority of these systems in place (such as WSMX and UDDI-based
systems) use some form of central repository to handle the publication and sub-
scription of a service, while keeping the integration (grounding) of clients and
providers distributed. This approach however has problems with maintaining the
scale of the central service registry as the number of available services increases.



2 Daniel Bertinshaw

A further problem we have identified with this approach is managing the in-
teractions of consumers and providers: integration happens in a tightly coupled
fashion outside of good design patterns.

2 Goals

The goal of our research is to build a system that allows dynamic composition of
services for ac-hoc tasks to be achieved in a fully distributed fashion, removing
the need for a central repository to find and compose the patterns. Additionally
we wish this system to be able to manage and broker interactions between ser-
vices within a distributed environment. This allows increasingly complex tasks
to utilise more physical computing resources of the system in an ad-hoc manner.
With these aims in mind we define four main goals to this research:

– 1) that there is no central system for service registration or lookup
– 2) that the planning and execution of a workflow of services can be dis-

tributed across the available physical resources of the system
– 3) that interaction between services and other resources is loosely coupled.
– 4) that the system is able to track and manage tasks being executed across

itself.

We anticipate that this will allow semantic service oriented architectures,
such as semantic grids, to efficiently carry out ad-hoc tasks while allowing the
timely inclusion of new services and data into tasks as they are assigned to the
system.

3 Approach

We have chosen to investigate the use of multi-agent systems as a form of mid-
dleware to enable the distribution of system capabilities and achieve the four
goals of this research as outlined previously. Multi-Agent Systems have been
used with semantic web applications in the past[3], but we propose to employ
them in the middleware and integration layers in a Semantic Service Oriented
Architecture (SSOA).

To take SSOA and incorporate agents into it, we propose the construction
of a novel architecture using a multi agent system as an intelligent middleware
layer that brokers the services based on their semantic descriptions and manages
the interactions between them.

In our architecture we have services, which are compiled code in the form of
annotated classes held locally or integration with remote services (with semantic
descriptions of the service being held by the agent in a local service registry).
This means every agent has a registry of its own services and knowledge that
it maintains. Should another agent require some capabilities it broadcasts this
requirement to the set of available agents. Those agents that have the ability
to fulfill the requirement propose solutions to the requesting agent, as shown in



Multi-Agent Middleware for Semantic Service Oriented Architectures 3

Fig. 1. This allows services to be represented by their agent as a snapshot of its
capabilities. If a service’s capability changes, so does the agent’s entry for that
service which makes the system tolerant to changing services.

organisation

organisation organisation

organisationagentagent

agent agent

service

service

service

service

service

service

service

service

Fig. 1. Our proposed Service Oriented Architecture, with multi-agent based middle-
ware layer

The management of interactions is done by sending a task requirement to an
agent along with the data that the task is to be performed on, or a description of
the data to be found. The agent then uses this description to automatically plan a
workflow incorporating discovery of relevant data and the use of relevant services.
By having the services and users communicate intentions and requirements to the
agents, the agent can utilise available resources according to a decision making
process. In this way the instructions to achieve a task need not be hard coded,
which further allows the system to be loosely coupled.

To provide a loose coupling mechanism for the services that the agents bro-
ker for we propose an API based on Java annotations that can be used to add
First Order Predicate Logic to the methods and data presented in a Java class.
Using annotations embeds the semantics within the source code, removing the
requirement of an external document for the semantics of the class. These anno-
tations are then transformed (by introspection using reflection at load time for
the class) into descriptions stored in a local repository that can be used by the
agent’s internal reasoner to add to task compositions if they match a required
sub-task.

The annotations of the services, as well as facts known about the world, are
used by the reasoning system of the agent to establish if a goal can be satisfied.
The ontology is a set of documents that express facts about the world, but is



4 Daniel Bertinshaw

Ontologies 
and Facts

Service manager

Service Service 
Description
Repository

Service Service

Workflow manager Reasoning Engine

Planning 
algorithm

Request InterpreterRequest Generator

Message Queue

Network

Fig. 2. Internal architecture of an agent

not a complete representation. Each agent has its own domain that it operates
in. If a goal cannot be achieved because an agent lacks complete knowledge, a
request to solve that problem is sent to the other agents of the collective. This
way, even if an agent does not have complete knowledge, the system does and
can use knowledge to reason if any agent has this knowledge. The reasoning
engine is responsible for checking that tasks can be understood by an agent
and to specify the plan requirement to the planning algorithm. This structure is
shown in Figure 2. This ensures that our system has perfect knowledge, which
is assured in centralised systems.

Using a multi-agent system to implement the middleware allows us to use
several existing solutions to issues that occur with the planning and execution of
ad-hoc tasks, and especially those that are intrinsic to distributed systems. These
include solutions to planning[1], communication[2], collaboration and execution
of tasks[5].

As multi-agent systems can be used to distribute the load of planning al-
gorithms, our approach meets goals 1 and 2: there is no central system, and
the agents can collaborate to plan and execute solutions to tasks. Since services
are invoked (based on descriptions) by the agent and never directly based on a
reference, this is also a loosely coupled system, satisfying goal 3. Lastly, agents
can also manage which services are executed, when and how often, according to
a set policy, which achieves goal 4.

This architecture scales to match the number of organisations in using the
system: as each organisation has an agent, the number of agents available in-
creases proportionally. This does not take into account load on any single agent



Multi-Agent Middleware for Semantic Service Oriented Architectures 5

though. Each agent is not an atomic construction, they are a single logical end-
point for data and single repository for data but are not constructed as a single
program on a single machine. In this way our architecture allows single agents
to adapt to heavy data usage.

4 Conclusions and Future Work

We have given a novel architecture that places the “intelligent” component of a
semantic service oriented architecture (the elements that performs the reasoning
and planning) into a middleware layer based on multi-agent systems. We an-
ticipate this will achieve the four goals we stated for an SSOA by reducing the
problem to a multi-agent system, which are known to be able to achieve the four
stated goals.

We have made initial mathematical verifications of this architecture and have
begun the construction of a prototype based on a robust set of open source
technologies. This prototype has yet to be tested for performance and consistency
in controlled experiments against systems that perform the same job of ad-hoc
task composition.

In future we plan to deliver a demonstrable prototype, based on an existing
real world domain. This prototype will be used for demonstration, testing and
tuning purposes.

We plan to evaluate the agent-service integration component for performance
and consistency by testing the performance of the agent as services and requests
increase. Additionally we plan to test the agent collaboration by simulating a
variable number of organisations solving tasks for a real world domain.

We aim to use our results to show the real world usefulness of this system.

References

1. Chen, Z.: Distributed collaborative production planning: Multi-agent system frame-
work and coordination technology. In: Information Management, Innovation Man-
agement and Industrial Engineering, 2009 International Conference on. vol. 3, pp.
619 –624 (26-27 2009)

2. Duan, L., Zeng, G., Huang, L., Feng, Y.: Xml-based multi-agent communication
system architecture. In: Genetic and Evolutionary Computing, 2008. WGEC ’08.
Second International Conference on. pp. 227 –231 (25-26 2008)

3. Hendler, J.: Agents and the semantic web. IEEE Intelligent Systems 16(2), 30 – 37
(2001)

4. Hendler, J., Lee, T.B., Miller, E.: Integrating applications on the semantic web.
Journal of the Institute of Electrical Engineers of Japan 122(10), 676 – 680 (2002)

5. Marc, F., Degirmenciyan-Cartault, I.: Multi-agent planning as a coordination
model for self-organized systems. In: Intelligent Agent Technology, 2003. IAT 2003.
IEEE/WIC International Conference on. pp. 218 – 224 (13-16 2003)

6. Mocan, A., Moran, M., Cimpian, E., Zaremba, M.: Filling the gap - extending service
oriented architectures with semantics. In: e-Business Engineering, 2006. ICEBE ’06.
IEEE International Conference on. pp. 594 –601 (oct 2006)


