Resolving Model Inconsistencies with Automated Planning

Jorge Pinna Puissant, Tom Mens
Université de Mons
20 Place du Parc
7000 Mons, Belgique
{jorge.pinnapuissant,
tom.mens}@umons.ac.be

ABSTRACT

Various approaches have been explored to detect and resolve
software model inconsistencies in a generic and scalable way.
In this position paper, we outline our research that aims to
use the technique of automated planning for the purpose of
resolving model inconsistencies. We discuss the scalability
results of the approach obtained through several stress-tests
and we propose several alternatives to the automated plan-
ning approach.

Keywords
inconsistency resolution, UML models, automated planning,
scalability

1. INTRODUCTION

In model-driven software engineering (MDE) [24,26], model
inconsistencies inevitably arise, because a (software) system
description is composed of a wide variety of diverse mod-
els, some of which are developed and maintained in parallel,
and most of which are subject to continuous evolution. Our
research focuses on the resolution of inconsistencies. The
inconsistency resolution activity is divided into the follow-
ing steps: (1) Select the inconsistencies that need to be re-
solved; (2) Identify possible resolution plans to resolve the
selected inconsistencies; (3) Perform a cost-benefit analysis
of the implementation of each of these resolution plans; (4)
Select and apply resolution actions, based on the previous
choices [25]. We focus on how to automate step (2) of the
inconsistency resolution activity: identification of possible
resolution plans. To do this, we propose to use the Au-
tomated Planning technique from the Artificial Intelligence
domain.

In this article we give an overview of different automated
planning techniques (Section 3). Based on a simple case
study (Section 4.1) we present an approach using a forward-
chaining heuristic planner to resolve inconsistencies (Sec-
tion 4.2). One of our requirements is that the time required
for resolving inconsistencies has to be sufficiently small so
as not to disturb the designer in his/her work. Therefore,
we investigate the scalability of the approach to larger soft-
ware models (Section 4.3). Based on these results we discuss
ways to improve the scalability of the proposed technique
(Section 4.4). We also discuss alternatives to automated
planning that may be more appropriate (Section 5).

Ragnhild Van Der Straeten
Vrije Universiteit Brussel
1050 Brussel, Belgium
Université Libre de Bruxelles
1050 Bruxelles, Belgique

rvdstrae@vub.ac.be

2. PROBLEM STATEMENT

State-of-the-art approaches on inconsistency resolution ex-
hibit several problems. In [18], resolution rules are specified
manually, which is an error-prone process. Automatic gen-
eration of inconsistency resolution actions would resolve this
problem. This is what is done by Nentwich et al. [19], by gen-
erating resolution actions automatically from the inconsis-
tency detection rules. The execution of these rules, however,
only resolves one inconsistency at a time. As recognised by
the authors, this may cause problems when inconsistencies
and their resolution are interdependent [17]. An additional
problem is the interaction of the resolutions with the syntac-
tical constraints imposed by the modelling language. Xiong
et al. [28] define a language in which it is possible to spec-
ify the inconsistency rule and the possibilities to resolve the
inconsistencies. This requires inconsistency rules to be an-
notated with resolution information. Almeida da Silva et
al. [1] propose an approach to generate resolution plans for
inconsistent models. The approach is based on the exten-
sion of inconsistency detection rules with information about
the causes of the inconsistency, and on the use of genera-
tor functions, which are manually written and are used to
generate resolution actions. Instead of explicitly defining or
generating resolution rules, a set of models satisfying a set
of consistency rules can be generated and presented to the
user. Egyed et al. [6] define such an approach for resolv-
ing inconsistencies in UML models. Given an inconsistency
and using choice generation functions, possible resolution
choices, i.e., possible consistent models, are generated. The
choice generation functions are dependent on the modelling
language, i.e., they take into account the syntactical con-
straints of the modelling language and they only consider
the impact of one consistency rule at a time. Furthermore
these choice generation functions need to be implemented
manually.

Our aim is to tackle the problem of inconsistency resolution
by generating possible resolution plans without the need of
manually writing resolution rules or writing any procedures
that generate choices. The approach needs to generate valid
models with respect to the modelling language and needs to
enable the resolution of multiple inconsistencies at once and
to perform the resolution in a reasonable time. In addition,
the approach needs to be generic, i.e. it needs to be easy to
apply it to different modelling languages. In this article we
investigate the use of Automated Planning for this purpose.

3. PLANNING TECHNIQUES

Automated planning is a technique coming from artificial
intelligence research. It aims to create plans, which are se-
quences of primitive actions that lead from an initial state
to a state meeting a specific predefined goal. To accomplish
this, the planner decomposes the world into logical condi-
tions and represents a state as a conjunction of literals. As
input the planner needs a planning environment, composed
of an initial state, a desired goal and a set of primitive ac-
tions that can be performed. The initial state represents
the current state of the world. The goal is a partially spec-
ified state that describes the world that we would like to
obtain. The actions express how each element of a state can
be changed. The actions are composed of a precondition and
an effect. The effect of an action is executed if and only if
the precondition is satisfied.

Classical planning is an automated planning subset that aim
to find a sequence of actions that reaches a desired state
in a finite, static, deterministic and fully observable world.
In general a planning approach consists of a representation
language used to describe the problem and an algorithm
representing the mechanism to solve the problem.

Fikes et al [7] developed, in 1971, a formal planning repre-
sentation language called STRIPS (STanford Research In-
stitute Problem Solver). In 1989, Pednault [21] developed
a more advanced and expressive language called ADL (Ac-
tion Description Language, not to be confused with Archi-
tecture Description Language). ADL has an improved ex-
pressiveness compared to STRIPS. In particular, ADL ap-
plies the open world principle: unspecified literals are con-
sidered as unknown instead of being assumed false. ADL
also allows to use negative literals and disjunction, whereas
STRIPS only allows positive literals and conjunctions. In
recent years a standard PDDL (Planning Domain Defini-
tion Language) [10] has been developed for the International
Planning Competition (IPC) of the International Conference
on Artificial Intelligence Planning and Scheduling (ICAPS).
PDDL is a generic language allowing to represent the syntax
of STRIPS, ADL and other languages. Even if PDDL cov-
ers all the functionalities of these languages, the majority of
planners only implement the STRIPS subset [14]. The most
recent version of PDDL is version 3.0 [9]. This language
is used in the competition to compare the benchmarks of
different planning approaches [23].

Two main approaches exist to solve classical planning prob-
lems [14]: (1) translating the planning problem into a prob-
lem that can be solved by a different approach (e.g. a
boolean satisfiability problem, a constraint satisfaction prob-
lem, or a model checking problem); (2) generating a search
space (which can be either a state space, a plan space, or a
planning graph) and looking for a solution plan in this space.
We will focus on this second approach only. Depending on
the direction in which the state space is traversed to look
for a solution, we can distinguish between:

Progression planning is a forward search that starts in the
initial state and tries to find a sequence of actions that
reaches a goal state. The problem of this algorithm is that it
does not exclude irrelevant actions. An action is considered
relevant if it can achieve the goal or one of the conjuncts of

the goal.

Regression planning is a backward state-space search that
starts in the goal state and searches a sequence of actions
that reach the initial state. This algorithm avoids the prob-
lems of the previous one by working only with relevant ac-
tions. The problem of this algorithm is that it is not always
obvious to find a possible predecessor of an action.

Another distinction can be made between total-order and
partial-order planning. With the former approach, the set
of actions that composes the strategy found by the algo-
rithm is strictly linear and ordered from the initial state to
the goal. This category of algorithms cannot execute dif-
ferent actions simultaneously and cannot take advantage of
the subdivision of a goal. Instead, partial-order planning
(POP) explores the plan-space without committing to a to-
tally ordered sequence of actions. POP works back from the
goal to the initial state and it can place two actions into a
strategy without specifying which comes first. As a result,
these actions can be executed in parallel and their order is
unimportant because they achieve different sub-divisions of
the goal [22,23]. Neither total-order nor partial-order is ef-
ficient without a good heuristic function that estimates the
distance from a state to the goal.

Many planners exist that implement some variant of a plan-
ner algorithm. In this article we use the heuristic state-space
progression planner called FF (for “Fast-Forward Planning
System” [12,13]). It is considered by [23] as the “The most
successful state-space searcher”, and was awarded for Out-
standing Performance at the AIPS 2000 planning competi-
tion and Top Performer at the AIPS 2002 planning compe-
tition. FF has been chosen not only because of its perfor-
mance, but also because it uses PDDL language with full
ADL subset support, including positive and negative liter-
als, conjunction and disjunction, negation, typing, and logic
quantification in the desired goal. This is crucial to our
approach, as will be explained in the next section.

4. AUTOMATED PLANNING IN ACTION

4.1 Case Study

Design models can be of different types (e.g. UML, Petri
nets, feature models, business process models). In this arti-
cle we restrict ourselves to UML class diagrams [20]. They
can suffer from many kinds of inconsistencies, such as struc-
tural and behavioural inconsistencies. Figure 1 illustrates a
simple class diagram containing two structural inconsistency
occurrences of type “inherited cyclic composition” and two
occurrences of type “cyclic inheritance” [27].

An inherited cyclic composition inconsistency arises when
a composition relationship and an inheritance chain form a
cycle that would produce an infinite containment of objects
upon instantiation. Both occurrences, ICC1 and ICC2, of
this inconsistency in Figure 1 arise with the same composi-
tion relationship, between Vehicle and Amphibious Vehi-
cle, but with different inheritance chains. The first occur-
rence ICC1 appears in the inheritance chain Vehicle < Boat
<— Amphibious Vehicle. The second inconsistency ICC2 oc-
curs in the inheritance chain Vehicle - Car < Amphibious
Vehicle. A cyclic inheritance inconsistency arises when an
inheritance chain forms a cycle. Figure 1 has two occur-

Vehicle
‘ Aircraft ’ ‘ Bicycle ' Motorcycle ‘ Boat ‘ ‘ Car ‘
) . Amphibious
‘ Helicopter ‘ Airplane ' Vehicle e

Figure 1: Class diagram with 4 inconsistency occurrences,
inspired by [27].

rences CI1 and CI2 of this type of inconsistency. The first
occurrence CI1 forms an inheritance cycle that involves the
classes Vehicle, Boat and Amphibious Vehicle. The sec-
ond occurrence CI2 forms an inheritance cycle that involves
the classes Vehicle, Car and Amphibious Vehicle.

All four aforementioned inconsistency occurrences share two
of the three classes that compose their respective inheri-
tance chains: Vehicle and Amphibious Vehicle. Because
of this overlap, it is possible to resolve more than one incon-
sistency occurrence with the same resolution action. For ex-
ample, removing the composition relationship between Ve-
hicle and Amphibious Vehicle solves the two inconsistency
occurrences ICC1 and ICC2. Removing the inheritance rela-
tionship between Boat and Amphibious Vehicle solves the
two inconsistency occurrences ICC1 and CI1. This clearly
illustrates that, in order to resolve model inconsistencies in
an optimal way, it is important to consider all inconsisten-
cies simultaneously. In [17,18], the impact of dependen-
cies between model inconsistencies and their resolution ac-
tions were studied using the notion of critical pair analysis
of graph transformation rules.

4.2 Planning for Inconsistency Resolution
Using the example of Figure 1, we illustrate how to cre-
ate a sequence of inconsistency resolution actions with au-
tomated planning. We require as input an initial state (the
inconsistent model), a set of possible actions (that change
the model) and a desired goal (the consistent model). Plan-
ning requires logic conditions as input, so the whole model
environment (e.g. model, meta-model, detection rules) is
translated into a conjunction of logic literals. The syntax of
PDDL is Lisp-like. Each logic literal is a tuple represented
between parentheses. The tuple starts with the name of
the literal, followed by pairs of variable names and their
type (separated by a “-”). There are no primitive types in
PDDL. More information about the PDDL syntax can be
found in [8].

The initial state is expressed as a conjunction of literals,
and represents the current world. In our case the initial state
will be the inconsistent model. We can choose between three
different representations of this initial state: (1) using the
complete model; (2) using a partial model that contains only
those elements that are involved in one or more inconsistency
occurrences; (3) using a partial model that contains only
those elements that are involved in a single inconsistency
occurrence. We exclude option (3) as it only allows us to
solve one inconsistency at a time, and it does not take into

account any dependency between inconsistency occurrences
or their resolution actions.

The metamodel for our class diagram is given below using
PDDL syntax. Each metamodel element is represented by
a unique id through which it can be referred.

(Class ?id - class_id 7name - String)
(Generalisation 7id - g_id 7label - String
?child_class - class_id 7?parent_class - class_id)
(Association_End 7id - ae_id 7?class - class_id ?role - String
7upper_mult - Cardinal ?lower_mult - Cardinal
?composite - Boolean)
(Association ?id - a_id ?name - String ?ass_end_1 - ae_id
?ass_end_2 - ae_id)
A partial model conforming to this metamodel is given be-
low. It contains only the elements that are involved in the
inconsistency occurrences. This is illustrated by the shaded
part of Figure 1.
(Class cl1 Vehicle)
(Class c5 Boat)
(Class c6 Car)
(Class c9 Amphibious_Vehicle)
(Generalisation g4 label4 c5 cl)
(Generalisation g5 label5 c6 c1)
(Generalisation g8 label8 c9 c5)
(Generalisation g9 label9 c9 c6)
(Generalisation gl0 labell0 c1 c9)
(Association_End ael c9 rolel star one non)
(Association_End ae2 cl role2 one one yes)
(Association al assl ael ae2)

The set of actions that can be performed to change a model
are represented in terms of a precondition that must hold
before the execution and the action to execute. In our ap-
proach, inspired by [2], the set of actions corresponds to the
elementary operations (basically, create, modify and delete)
of the different types of model elements that can be derived
from the metamodel. These elementary operations, com-
bined with the logic literals of the metamodel, allow us to
compute the list of all possible actions. As an example, the
specification of modify_Association_Name is given below.
(:action modify_Association_Name
:parameters (?id - id ?7name - String “?ass_end_1 - ae_id
7ass_end_2 - ae_id ?new_name - String)

:precondition (Association ?id ?7name 7ass_end_1 7ass_end_2)
:effect (when (not (= ?name ?new_name))

(and (not (Association ?id ?7name 7ass_end_1 7ass_end_2))
(Association ?7id 7new_name ?7ass_end_1 7ass_end_2)))

)

The desired goal is a partially specified state, represented
as a conjunction of literals using logic quantification. It spec-
ifies the objective that we want to reach, namely a consistent
model. To represent this consistent model we can use two
alternatives: (1) the negation of the inconsistency detection
rules; (2) or the negation of the inconsistency occurrences.
An inconsistency detection rule is a conjunction of literals
representing a pattern that, if matched in the model, detects
inconsistency occurrences.

The inherited cyclic composition inconsistency detection rule
using the PDDL syntax is given bellow. Observe that it only
specifies an inheritance chain involving three classes. PDDL
syntax does not allow to express transitive closure to make
the rule more generic.
(exists (?a - class_id ?b - class_id ?c - class_id)
(and
(exists (?7g - g_id ?Label - g_label)
(Generalisation ?g ?Label ?c 7a))
(exists (?g - g_id 7?Label - g_label)
(Generalisation ?g ?Label ?b 7c))

10

(exists (7ae - ae_id ?role - ae_role
?upper - upper_cardinal ?lower - lower_cardinal)
(Association_End 7ae 7a ?role 7upper ?lower yes))
(exists (?ae - ae_id ?role - ae_role
7upper - upper_cardinal 7composite - boolean)
(Association_End 7ae 7b ?role 7upper one_l 7composite))

)

The advantage of using alternative (1) above is that it can
be used to detect and resolve inconsistency occurrences at
the same time. Alternative (2) will only be able to resolve
inconsistency occurrences that have already been identified
previously. On the other hand, as we will see later, alter-
native (1) suffers from severe scalability problems. In both
alternatives we use logic negation to express the fact that
we do not want inconsistencies in the model. Because nega-
tion of the conjunction of literals is used we need a planning
approach that allows the use of disjunction and negative lit-
erals in the goal. This is one of the main reasons why we
have selected FF as a planning tool for our experiments.

The plan is a sequence of actions that reaches the desired
goal. It is generated automatically by the domain indepen-
dent planning algorithm. A complete resolution plan that
solves the four inconsistency occurrences of the motivating
example is shown in Figure 2. Remark that our approach
prohibits the generation of a resolution plan that leads to
ill-formed models (i.e., models that do not conform to their
metamodel).

delete_Generalisation :
(Generalisation gl0 labellO ci c9)
modify_Association_End_Lower_Multiplicity :

from: (Association_End ael c9 rolel star one non)

to: (Association_End ael c9 rolel star zero non)

Figure 2: Complete resolution plan that resolves all four
inconsistency occurrences.

4.3 Scalability Study

There are different ways in which to specify the input for the
automated planning algorithm. To specify the initial state,
we can either use the complete model or we can restrict the
search space by using a partial model that contains only
those elements that are involved in the inconsistency occur-
rences. To specify the desired goal, we can choose between
using the negation of the inconsistency detection rules or
using the negation of the inconsistency occurrences them-
selves.

In order to assess which of the above four choices produces
the best results, we compared the timing results of each
considered possibility. In order to remove noise, each ex-
periment was executed 10 times and the average time and
standard deviation was computed. All experiments were
carried out on a 64-bit Apple MacBook with 2.4 GHz Intel
Core 2 Duo processor and 4GB RAM, 2.9GB of which were
available for the experiment.

The experiments using the complete model as initial state
and the negation of the inconsistency detection rules as de-
sired goal and using the partial model as initial state and
the negation of the inconsistency detection rules as desired
goal, ran out of memory. Using the complete model as ini-
tial state and the negation of the inconsistency occurrences

as desired goal, the resolution plan of Figure 2 was gener-
ated in 14.84 seconds on average with a very low standard
deviation of 0.09 seconds. Using a partial model as initial
state, and the negation of the inconsistency occurrences as
desired goal, the resolution plan of Figure 2 was generated
in 0.268 seconds on average, with a standard deviation of
0.004 seconds.

To verify whether the proposed approach scales up to larger
models, we have stress-tested both of the successful experi-
ments (using the negation of the inconsistency occurrences
as desired goal). Again each experiment was executed 10
times and the average time and standard deviation was com-
puted.

First, we artificially augmented the size of the motivating
example of Figure 1 by adding an increasing number of iso-
lated classes to the model (from 1 class to 20 classes). Since
these classes are unrelated to the inconsistency occurrences
that the algorithm needs to resolve, the algorithm is still
able to find the same resolution plan and the partial model
is left untouched. However, the time it takes to generate a
plan increases as the model size increases.

Figure 3a illustrates the timing results if we use the com-
plete model as initial state. It takes only 15 seconds for
our initial example, but it takes more than 5 hours for the
model with 20 more added classes. A regression analysis re-
veals an exponential relation with coefficient of determina-
tion R? = 0.982, indicating a very good fit of the regression
model. Two other candidate regression models we verified
had a lower goodness of fit: 0.977 for a quadratic polynomial
model and 0.884 for a power curve. These results show that
using a complete model as initial state does not scale up to
larger models.

Secondly we studied the timing results when the size of the
partial model increases. The motivating example of Figure 1
contains an inheritance chain of classes for the two types of
considered inconsistencies. We artificially augmented the
size of the model by increasing the length of the inheritance
chains involved in the inconsistency occurrences. We did
this gradually, by adding between one and eight intermedi-
ate superclasses, and computing the timing results for each
partial model.

Figure 3b shows the timing results of carrying out this exper-
iment. The figure shows a strong increase in time to compute
the resolution plan as the size of the partial model increases.
The standard deviation was always below 2%, and less than
0.4% on average. A regression analysis reveals an ezponen-
tial growth (with coefficient of determination R? = 0.995) in
the time needed to find a resolution plan. Two other regres-
sion models we verified had a lower goodness of fit: 0.927 for
a quadratic polynomial model and 0.949 for a power curve.

We also verified whether the number of inconsistency occur-
rences to be resolved affected the timing results. To achieve
this, we reduced the desired goal by generating plans that
resolve only 2 or 3 inconsistency occurrences, respectively.
In all of these cases we found an exponential growth in time.
We obtained a goodness of fit R? = 0.991 for resolving 2
inconsistency occurrences, and R? = 0.992 for resolving 3

11

20000

15000

10000

5000

0
01 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20

(a) Using the complete model as initial state.

500

375

250

125

0 OO
0 1 2 3 4 5 6 7 8

(b) Adding intermediate superclasses to the partial
model.

0
01234546 7 8 91011121314151617 18 19 20

(c) Adding class attributes to the partial model.

Figure 3: Scalability timing results (the y-axis represents
the time in seconds).

inconsistency occurrences.

Finally, we verified whether the size of the metamodel affects
the timing results. To achieve this, we added a new element
to the metamodel:

(Attribute 7id - attribute_id ?class - class_id

?Name - String ?Type - Type)

This requires to add three new actions, to create, modify and
delete attributes, respectively. It did not affect the timing
results as long as attributes are not used in the initial state
and the desired goal.

As a next step, we increased the size of the initial state by
adding 1 to 20 attributes to the existing classes of the model.
The desired goal was not modified. The standard deviation
was 0,7% on average. The results are shown in Figure 3c.
For an initial state with 1 attribute added the time was 0.27
seconds. After adding 20 attributes it was 3.5 seconds. A
regression analysis revealed a quadratic polynomial with a
goodness of fit R? = 0.994. Two other regression models we
verified were an exponential model with R? = 0.982 and a
power model with R? = 0.763.

4.4 Discussion

The exponential timing results obtained through the exper-
iments described in the previous section, indicate that the
approach is not usable in practice. Using the approach to
resolve inconsistencies one by one would be feasible because
the partial model and desired goal will remain relatively
small. This is not a good solution, because it does not take
full advantage of automated planning. In addition, incon-
sistency occurrences and their resolution actions are often
interdependent. Another important limitation we encoun-
tered is the expressiveness of the PDDL syntax. It does not
offer important features such as transitive closure, primitive
types, numbers. In addition, literals cannot be modified
(they have to be deleted and added again). A third limita-
tion of our approach is that, currently, we generate only a
single resolution plan. The resolution of several inconsisten-
cies can give rise to several different resolution plans, i.e.,
different sequences of resolution actions leading to possibly
different consistent models.

Several improvements to the approach can be envisaged. A
first improvement is to adapt the planning algorithm so that
it generates several resolution plans among which the model
designer could choose. The scalability problem could be
adressed by implementing a domain-specific planner that
can be optimized by making it more specific and more per-
formant for the specific problem we want to tackle. In addi-
tion, since we are not constrained by the PDDL syntax, this
would solve the problems of expressiveness we encountered.
The timing results could be improved by using regression
planning as opposed to progression planning [23], as used
by FF. Progression planning depends mainly on the size of
the initial state and it does not exclude irrelevant actions.
Regression planning works only with relevant actions. Be-
cause of this, the search space will be significantly smaller.
Further experiments are needed to verify whether regression
planning will be more appropriate for our needs.

12

S. BEYOND PLANNING

Since the automated planning approach does not meet our
expectations, we would also like to study other techniques
coming from the domain of artificial intelligence for the pur-
pose of resolving modeling inconsistencies in an automated
way.

Logic-based approaches have been used for different but re-
lated purposes in inconsistency resolution. Marcelloni and
Akist [15,16] used fuzzy logic to cope with methodologi-
cal inconsistencies in design models. It remains to be seen
whether this approach can be generalised to resolve any kind
of model inconsistency. Castro et. al. [5] used logic abduction
to detect and resolve inconsistencies in source code. Some
preliminary results we carried out to apply this approach to
resolve inconsistencies in design models appeared promising,
but further work is necessary to assess whether the approach
scales up and works in practice. Almeida da Silva et al. [1]
implemented a Prolog program to generate resolution plans
for inconsistent models. The approach is promising but still
requires a lot of manual encoded input to specify the gener-
ator functions and the causes of the inconsistencies.

Harman [11] advocates the use of search-based approaches
in software engineering. This includes a wide variety of
different techniques and approaches such as metaheuristics
(e.g. variable neighborhood search [3,4]), local search al-
gorithms, automated learning, genetic algorithms [23]. We
believe that these techniques could be applied to the problem
of model inconsistency management, because it satisfies at
least three important properties that motivate the need for
search-based software engineering: the presence of a large
search space, the need for algorithms with a low computa-
tional complexity, and the absence of known optimal solu-
tions.

In order to assess the adequacy of all these different ap-
proaches to inconsistency management, there is also an ur-
gent need to define benchmarks allowing to compare them.
Such a benchmark should contain at least a set of shared
case studies on which to evaluate each approach; as well as
a set of clearly identified criteria enabling the comparison of
approaches and their quality.

6. CONCLUSION

In this article, we explored the use of automated planning, a
logic-based approach originating from artificial intelligence,
for the purpose of resolving model inconsistencies. We are
not aware of any other work having used this technique for
this particular purpose. The results of our experiments re-
veal that the approach is feasible but suffers from various
scalability problems. We have discussed ways in which the
scalability can be improved. We have also discussed alter-
native search-based techniques that may deal with inconsis-
tency resolution in a scalable way.

Acknowledgements. This work has been partially supported by (i)
the F.R.S. — FNRS through FRFC project 2.4515.09 “Research Cen-
ter on Software Adaptability”; (ii) research project AUWB-08/12-
UMH “Model-Driven Software Evolution”, an Action de Recherche
Concertée financed by the Ministére de la Communauté francaise
- Direction générale de l’Enseignement non obligatoire et de la

Recherche scientifique, Belgium; (iii) Avec le soutien de Wallonie

- Bruxelles International et du Fonds de la Recherche Scientifique, du
Ministere Francais des Affaires étrangeres et européennes, du Min-
istere de I’Enseignement supérieur et de la Recherche dans le cadre

des Partenariats Hubert Curien.

7. REFERENCES

[1] M. A. Almeida da Silva, A. Mougenot, X. Blanc, and
R. Bendraou. Towards automated inconsistency
handling in design models. In CAiSE 2010, Lecture
Notes in Computer Science. Springer, 2010.

[2] X. Blanc, A. Mougenot, I. Mounier, and T. Mens.
Detecting model inconsistency through
operation-based model construction. In Proc. Int’l
Conf. Software Engineering (ICSE), volume 1, pages
511-520, 2008.

[3] J. Brownlee. Variable neighbourhood search. Technical
Report CA-TR-20100206-1, The Clever Algorithms
Project http://www.CleverAlgorithms.com, February
2010.

[4] G. Caporossi and P. Hansen. Variable Neighborhood
Search for Extremal Graphs 1. The AutoGraphiX
System. Discrete Math., 212:29 — 44, 2000.

[5] S. Castro, J. Brichau, and K. Mens. Diagnosis and
semi-automatic correction of detected design
inconsistencies in source code. In IWST ’09:
Proceedings of the International Workshop on
Smalltalk Technologies, pages 8-17, New York, NY,
USA, 2009. ACM.

[6] A. Egyed, E. Letier, and A. Finkelstein. Generating
and evaluating choices for fixing inconsistencies in
UML design models. In Proc. Int’l Conf. Automated
Software Engineering, pages 99-108. IEEE, 2008.

[7] R. Fikes and N. J. Nilsson. STRIPS: A new approach
to the application of theorem proving to problem
solving. In 2nd International Joint Conference on
Artificial Intelligence., pages 608—-620, 1971.

[8] A. Gerevini and D. Long. BNF description of PDDL
3.0. http://zeus.ing.unibs.it /ipc-5/, October 2005.

[9] A. Gerevini and D. Long. Plan constraints and
preferences in PDDL3 : The language of the fifth
international planning competition. Technical report,
Department of Electronics for Automation, University
of Brescia, Italy, August 2005.

[10] M. Ghallab, A. Howe, C. Knoblock, and
D. McDermott. PDDL — the planning domain
definition language. Technical Report DCS TR-1165,
Yale Center for Computational Vision and Control,
New Haven, Connecticut, 1998.

[11] M. Harman. Search based software engineering. In
Computational Science - ICCS 2006, volume
3994/2006 of Lecture Notes in Computer Science,
pages 740-747. Springer Berlin / Heidelberg, 2006.
Workshop on Computational Science in Software
Engineering (CSSE’06).

[12] J. Hoffmann. FF: The Fast-Forward Planning System.
The AI Magazine, 2001.

[13] J. Hoffmann and B. Nebel. The FF Planning System:
Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253-302, 2001.

[14] S. Jiménez Celorrio. Planning and Learning under
Uncertainty. PhD thesis, Universidad Carlos III de
Madrid, 2010.

13

[15]

[16]

[17]

[18]

[20]

[21]

22]

F. Marcelloni and M. Aksit. Leaving inconsistency
using fuzzy logic. Information and Software
Technology, 43(12):725 — 741, 2001.

F. Marcelloni and M. Aksit. Fuzzy logic-based
object-oriented methods to reduce quantization error
and contextual bias problems in software development.
Fuzzy Sets and Systems, 145(1):57 — 80, 2004.
Computational Intelligence in Software Engineering.
T. Mens and R. Van Der Straeten. Incremental
resolution of model inconsistencies. In J. L. Fiadeiro
and P.-Y. Schobbens, editors, Algebraic Description
Techniques, volume 4409 of Lecture Notes in Computer
Science, pages 111-127. Springer-Verlag, 2007.

T. Mens, R. Van Der Straeten, and M. D’Hondt.
Detecting and Resolving Model Inconsistencies Using
Transformation Dependency Analysis. In Proc. Int’l
Conf. Model Driven Engineering Languages and
Systems (MoDELS), volume 4199 of Lecture Notes in
Computer Science, pages 200-214. Springer-Verlag,
October 2006.

C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency management with repair actions. In Proc.
25th Int’l Conf. Software Engineering, pages 455—464.
IEEE Computer Society, May 2003.

Object Management Group. Unified modeling
language: Super structure version 2.1, january 2006.
E. P. D. Pednault. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In st
International Conference on Principles of Knowledge
Representation and Reasoning (KR’89), pages
324-332, 1989.

J. S. Penberthy and D. S. Weld. Ucpop: A sound,
complete, partial order planner for adl. In 8rd
International Conference on Principles of Knowledge
Representation and Reasoning (KR’92), pages
103-114, 1992.

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2nd edition, 2002.
D. C. Schmidt. Guest editor’s introduction:
Model-driven engineering. IEEE Computer, pages 25 —
31, February 2006.

G. Spanoudakis and A. Zisman. Inconsistency
management in software engineering: Survey and open
research issues. In Handbook of Software Engineering
and Knowledge Engineering, pages 329-380. World
scientific, 2001.

T. Stahl and M. Vélter. Model Driven Software
Development: Technology, Engineering, Management.
Wiley, 2006.

R. Van Der Straeten. Inconsistency management in
model-driven engineering: an approach using
description logics. PhD thesis, Vrije Universiteit
Brussel, 2005.

Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and
H. Mei. Supporting automatic model inconsistency
fixing. In H. van Vliet and V. Issarny, editors, Proc.
ESEC/FSE 2009, pages 315-324. ACM, 2009.

14

