
Utilizing the Relationships Between Inconsistencies for
more Effective Inconsistency Resolution

Alexander Nöhrer
Institute for Systems Engineering and

Automation
Johannes Kepler University Linz, Austria

alexander.noehrer@jku.at

Alexander Egyed
Institute for Systems Engineering and

Automation
Johannes Kepler University Linz, Austria

alexander.egyed@jku.at

ABSTRACT
During software modeling, engineers are prone to making
mistakes. State-of-the-art tool support can help detect these
mistakes and point to inconsistencies in the model. They
even can generate fixing actions for these inconsistencies.
However state-of-the-art approaches process inconsistencies
individually, assuming that each single inconsistency is a
manifestation of an individual defect. This paper presents
our vision of the next steps in inconsistency resolution. We
believe that inconsistencies are merely expression of defects.
That is, inconsistencies highlight situations under which de-
fects are observable. However, a single defect in a software
model may result in many inconsistencies and a single in-
consistency may be the result of multiple defects. Incon-
sistencies may thus be related to other inconsistencies and
we thus believe that during fixing, one should consider the
clusters of such related inconsistencies. The main benefit
of clustering inconsistencies is that it becomes easier to de-
tect the defect the bigger the cluster. This paper discusses
the idea in principle, provides some qualitative aspects of its
benefit, and gives an outlook on how we plan to realize our
vision.

Categories and Subject Descriptors: I.6.4 Simulation
and Modeling: Model Validation and Analysis

General Terms: Algorithms, Human Factors, Verification.

Keywords: User Guidance, Grouping and Clustering, In-
consistencies

1. INTRODUCTION
C. W. Johnson and C. Runciman already wrote in 1982 [6]

“It is important to distinguish between an error diagnosis
and error reporting. Correct error diagnosis must rely upon
the programmer as it may depend upon intentions that are
not expressed in his program. The compiler’s job is correct
error reporting using a form and content of reports most
likely to help the programmer in error diagnosis. We can
compare error reports to the symptoms of a sick patient:
the location at which the error is detected is not necessarily
its source.”

This is analogous to the modeling world, where incon-
sistencies are the symptoms (rules and/or constraints that
are violated) which are caused by defects (the sources of
symptoms that need fixing) in the model. It is thus the
job of the designer to identify the defects by exploring the
choices for fixing the inconsistencies – one of these choices (if
complete) for each inconsistency inevitably must involve fix-
ing a defect. Thus, inconsistencies are the sheer symptoms

of a defect, but usually involve other model elements that
when changed could also resolve the inconsistency. In ac-
cordance, fixing inconsistencies individually could mean fix-
ing the symptoms only but not the defects (i. e., much like
temperature-lowering medication merely “fixes” the symp-
tom – the fever – but not the cause – an infection). Much
like a good doctor attempts to identify all symptoms about
a sickness to then hypothesize about the cause, a good soft-
ware modeler should identify relationships among inconsis-
tencies to reason about the cause(s) (defects) for these incon-
sistencies. Perhaps a key difference here: software models
typically contain many defects.

A lot of research has been conducted to avoid and help
detect and correct inconsistencies. The issue that inconsis-
tencies are not self-contained is largely ignored in literature
but of essential importance, it is far more important to fix
the cause than just the symptoms. After all, the goal of en-
gineers is not just to resolve one inconsistency at a time but
in the end to get a consistent model. In order to get a consis-
tent model, all defects have to be resolved. Of course some
inconsistencies can only be resolved by fixing the underlying
defects, but those defects often cause additional inconsisten-
cies at other locations. In certain situations this even could
be reversed, meaning that several defects cause the same
inconsistency. An example for such an situation would be
a requirement change in a already consistent model. This
requirement change could require a set of model changes con-
flicting with the present requirements. As a consequence the
first change would introduce an inconsistency without being
the defect itself, instead the other model elements that are
required to be changed are the defects. This also relates
to the need of tolerating inconsistencies [1], since prevent-
ing them in this case would significantly change the typical
work flow. So the challenge lies in determining where the
defects are located and how to fix them, not just their symp-
toms, whilst not being too concerned with not causing new
inconsistencies since they could be required to achieve the
engineer’s goals.

We present our vision and proposed approach of how to
exploit interrelations between inconsistencies for resolving
them in this paper. It is our believe that using this informa-
tion will result in fewer, concrete fixes and provide guidance
to engineers for locating the defects. Additionally we ad-
dress open issues and discuss steps that in our opinion have
to be taken to provide some insights in the qualitative as-
pects of this approach. However we are ignoring techniques
for including semantic analysis of constraints and generelly
information on how the inconsistencies were created for the

39



Figure 1: Several Inconsistencies in an UML model

of a Light and a Switch

time being, at this point we just plan to investigate if incon-
sistencies are related and how this fact can be used to our
advantage before combining it with other technologies.

This paper is structured as follows: In Section 2 we de-
scribe the scenario and problem we address. This is followed
by the vision of how we want to tackle the problem in Sec-
tion 3. In Section 5 we discuss the state-of-the-art and re-
lated work. In Section 4 we describe in detail how we plan
to realize our vision. Finally we draw a conclusion and give
an outlook to future work in Section 6.

2. SCENARIO AND PROBLEM
During modeling, engineers are prone to making mistakes.

State-of-the-art tool support can help to detect these mis-
takes and point to inconsistencies in the model. For exam-
ple, Figure 1 shows a simple UML model describing a Light

with a Switch containing three inconsistencies:

I1 A violated model constraint (C1 ) that states that the
Light class has to have at least two operations named
activate and deactivate.

I2 A violated meta-model constraint (C2 ) that states that
state-chart actions must be defined as an operation
in the owner’s class. In this case the owner of the
state-chart class is Light and Light has no activate

operation defined.

I3 A violated meta-model constraint (C3 ) that states that
collaboration message actions must be defined as an
operation in receiver’s class. In this case the receiver’s
class is Light which has no activate operation de-
fined.

Typical tool support for fixing these inconsistencies will only
look at each inconsistency individually and generate fixing
actions for each of them [4, 5, 8, 7]. Current state of the
art has produced interesting solutions for suggesting fixes to
inconsistencies. There is the pioneering work of Nentwich
et al. [8] that demonstrated how to generate fixing actions
for inconsistencies (one inconsistency at a time). They dis-
tinguished abstract and concrete fixes where abstract fixes

in essence identified the locations where to fix (e.g., change
the name of the turn-on method) and concrete actions in
addition identify how to fix that location (e.g., change the
name of the turn-on method to activate). However, the
fixing of inconsistencies also has side effects onto other de-
sign constraints: negative side effects if the fixing causes
new inconsistencies or positive side effects if the fixing of
an inconsistency also fixes other inconsistencies. While the
existence of these side effects has been widely published, to
date they have not been exploited much. Existing state of
the art, either attempts to minimize negative side effects (a
heuristic that is not at all guaranteed to be the right strat-
egy) or focuses only on visualizing them. If the goal is to
avoid negative side effects (i. e., avoid additional inconsis-
tencies) then possible fixes for the above model would be:

I1 The first inconsistency could be fixed by adding the op-
eration activate to the class Light (F1 ), or changing
its operation turn-on to activate (F2 ). Of course the
model constraint C1 could be changed to fit the model
(F3 ).

I2 The second inconsistency would also be fixed with fixes
F1 and F2. Additional fixes would be to change the
inconsistent action in the state-chart to turn-on (F4 )
or to deactivate (F5 ), or simply remove it (F6 ). And
again also the meta-model constraint C2 could be
changed (F7 ).

I3 The third inconsistency again could be fixed with fixes
F1 and F2. Additional fixes would be to change the
inconsistent message in the collaboration diagram to
turn-on (F8 ) or to deactivate (F9 ), or simply remove
it (F10 ). And of course the meta-model constraint C3
could be changed (F11 ).

Looking at these inconsistencies individually results in sev-
eral equally viable fixing actions. To choose one of those fix-
ing actions for each individual inconsistency automatically is
not reasonable as all are viable. Clearly, the decision on how
to fix an individual inconsistency should be made by the soft-
ware engineer. Since the example given is a fairly small and
comprehensible model, it should be no challenge for an engi-
neer to figure out that all inconsistencies can be resolved by
either choosing fixing action F1 or F2. In larger, more com-
plex models, such “ideal” fixing actions cannot be identified
manually as easily, and as a consequence automated support
is needed. Nonetheless, even the “ideal” fixing actions with
the least number of changes and/or the fewest negative side
effects are not necessarily the fixes the software engineers
intends. For example, if a model is fully consistent but a
requirement change requires a set of model changes, then
the first change likely causes inconsistencies because the set
of model changes are not yet finished. The fix with the least
number of changes and fewest negative side effects is then
often a simple undo to restore the initial, correct state – a
minimal, consistent solution, however, clearly an incorrect
one with respect to the intended requirements change.

Even though this paperfocuses on modeling with the UML
, we previously also investigated the concept of tolerating
conflicts in other domains. In [9] we discussed different fixing
strategies in the domain of decision-making and product-
line engineering especially. From our experiences in these
domains, the same basic principles discussed in this paper
are valid. If decision makers pick conflicting decisions, those

40



Figure 2: Examples of different Interrelations be-

tween Inconsistencies

decisions are often involved in several related rule violations
in the decision model (symptoms).

3. VISION
As mentioned in the introduction, fixing inconsistencies

should not focus on fixing them individually because they
are only the symptoms of defects. Software modelers should
identify relationships among inconsistencies to reason about
the cause(s) (defects) for these inconsistencies.

Looking at a group of inconsistencies instead of a single
one provides more information about the defect and should
prove to be useful in reasoning about possible fixes: 1) by
reducing the number of possible fixes and thus more eas-
ily identifying the defect(s) at hand and 2) by understand-
ing how many defects are involved and what combination of
changes are necessary fix them. The latter aspect in particu-
lar is challenging because fixes for defects do not necessarily
involve single changes to a model but may require sets of
changes. While the set of changes is a subset of the changes
of the individual inconsistencies, the combinatorial explosion
in what combination of changes of the individual inconsis-
tencies to consider would be hard to decide manually. A
fixing action in this scenario thus involves all the changes to
fix the defect(s) involved and thus all its/their inconsisten-
cies. Depending on the number of inconsistencies that are
investigated at a time, this could mean a significant scalabil-
ity improvement when only searching for fixing actions with
a number of changes considerably smaller than the num-
ber of inconsistencies. In addition, the search for fixes that
involve single changes only, could be used to determine if
inconsistencies are related and if one or more defects caused
the inconsistencies under investigation respectively.

Figure 2 shows two sets of inconsistencies that are differ-
ent in terms of their relationships. An ellipse represents the
fixing actions of a single inconsistency which are depicted
as black dots. Fixing actions that are located in the over-
lapping areas of the ellipses are fixing actions shared among
several inconsistencies. These fixing actions could fix all in-
consistencies involved – however, it is not necessarily true
that there is a single concrete fix for every fixing action in
case the fixing action is abstract. On the left hand side of
Figure 2, a scenario with three inconsistencies and an over-
lap among all of them is shown. In this case, there exist
two possible fixing actions to resolve all three inconsisten-
cies (overlap among all three ellipses). This implies that
those inconsistencies are related, however it does not nec-
essarily imply that these fixes are indeed the only correct

Figure 3: Overview of Fixes for the Example from

Figure 1

fixes the software engineer should consider. In other words
the cause for those three inconsistencies is possibly a single
defect in which case one of the two fixing actions must be
taken. However, if multiple defects cause the inconsistencies
then other combinations of fixing actions are also possible.
On the right hand side a different scenario is shown. We can
see that both I1 and I2 are related to I3 but they are in no
relation to each other. In this scenario it is safe to say that
there are at least two defects as there exists no single fixing
action that could resolve all three inconsistencies at hand.

In the example described in Section 2, all three described
inconsistencies are related, they all can be fixed by either
choosing fixing actions F1 or F2 as is apparent in Figure 3
(assuming the constraints are correct and therefore fixes F3,
F7, and F11 are irrelevant and grayed out). In this exam-
ple, we even have the special situation that fixing I1 in any
case resolves all three inconsistencies. Additionally if the de-
signer decides that there are multiple defects, the number of
combined fixing actions is reduced by the fact that F1 and
F2 respectively always have to be part of the solution. Fur-
thermore, choosing F2 to change the operation name from
turn-on to activate in the class Light, excludes fixes F4
and F8 as they would require the operation turn-on to be
present in the class Light.

To summarize we think that calculating fixes for more
than one inconsistency at a time, especially if they are in-
terrelated, is highly beneficial. Possible positive effects are:

1. A reduction in the number of possible fixing actions,
through reasoning with more facts in the knowledge
base (notice that knowledge about relationships among
inconsistencies reduces the number of fixing actions).

2. As a consequence an increase in scalability since the
calculation can be cut-off as soon as a combined solu-
tion is not achievable any more.

3. More precise fixing actions since the impact of the
changes onto a larger amount of model elements is al-
ready considered.

4. Supporting designers by unburden them of having to
know about interrelations when choosing a fixing ac-
tion.

4. PROPOSED APPROACH
We propose to realize our vision stepwise. First of all we

will use the choice generation technique described by Egyed
et. al. [5] to better characterize fixes for individual incon-
sistencies (i. e., to compute concrete fixes for given abstract

41



fixes). As a second step, we will investigate overlaps among
inconsistencies. Initially, we will require the software engi-
neer to identify relationships among inconsistencies; how-
ever, we will also develop heuristics to help the engineer.
Questions we plan to answer are:

• How often occur interrelated inconsistencies in real
world examples?

• How many choices for fixing an inconsistency can be
excluded considering these interrelations? How strong
is this reduction?

• Can abstract fixes become constrained fixes (con-
strained fixes being abstract fixes with some restric-
tions, for example the location is known and some pos-
sibilities of how to fix the inconsistency at that location
have been excluded) or constrained fixes concrete fixes
respectively? If yes, how often does this happen?

If the above mentioned qualitative aspects prove to be use-
ful, as a next step we plan to investigate how the choice
generation can be improved and sped up by considering the
interplay among related inconsistencies already during the
choice generation. For that we will rely on concepts and
algorithms from CSPs (Constrained Satisfaction Problems).
We also think some sort of grouping of actions the user can
take will be necessary to reduce the amount of information
we have to deal with. This grouping for example could be ac-
cording to the effect on other inconsistencies or consistency
rules in general.

As a final step we are planning to automatically deter-
mine which inconsistencies are related. On the one hand for
certain consistency rules it could easily be defined on the
meta-level, on the other hand for situational and not so ob-
vious relations an online determination could be necessary.
Online meaning in this case that the determination would
occur while engineers are using the modeling tool. Our basic
idea for this task until now is:

1. Get all model elements of one inconsistency that are
involved during the evaluation of the consistency rule.

2. Look for other inconsistencies that share model ele-
ments with the one under investigation and repeat this
step for those inconsistencies.

3. Do a pairwise search for fixes with a cardinality of one.
If there are none handle those inconsistencies as none-
related. If there are fixes search for overlaps with other
pairwise search results to form inconsistency clusters.

Additionally we want to incorporate the concept of trust into
our reasoning, this concept was already described in [9]. The
concept basically states that some pieces of information ob-
served through user behavior can be trusted. Such pieces
of information are not evident from the model itself. An
example would be that design decisions that introduce an
inconsistency and are not undone must be important to the
user and therefore can be assumed to be correct. Of course
this assumption could only hold if it would be apparent
to the user that an inconsistency was just created through
tool support like instant consistency checking as described
in [3]. This sort of trust would for example benefit engi-
neers in including new requirements into consistent models.
As already mentioned the first change of a series of model

changes could cause several inconsistencies. Even with con-
sidering all those inconsistencies while searching for fixes the
result will probably be an undo, since it is the simplest fix.
However combined with trusting this first change the search
would continue and hopefully come up with changes that
are required by the requirements change anyway.

5. RELATED WORK
The problem of resolving inconsistencies has received con-

siderable attention in the last two centuries. In this section
we give a brief overview of work that has been done in this
research area. On the one hand, in order to resolve incon-
sistencies, they have to be detected and tolerated. Almost
20 years ago, Balzer argued that inconsistencies should be
detected and communicated to the developers; however, de-
velopers should not be hindered in continuing their work
despite the presence of inconsistencies [1]. However at some
point those inconsistencies have to be resolved, preferably
with the support of automated techniques.

First off all, to resolve inconsistencies they have to be de-
tected. However the knowledge if the whole model or a sin-
gle constraint is consistent, is not enough to produce fixes.
As Nentwich et. al. for example stated in [7], it is impor-
tant that trace links from the inconsistency to the model
element(s) in question exist. In their work they propose
to use first-order logic to express consistency rules and are
able to provide trace links between inconsistent elements.
Performance also is an issue when checking for consistency
and approaches like the incremental consistency checking
approach by A. Egyed [3] addresses this issue.

For generating fixing or repair actions several approaches
exist. On the one hand, Xiong et. al. propose writing ad-
ditional “fixing procedures” for each constraint, in order to
produce fixes when needed [11]. On the other hand Nen-
twich et. al. describe in their work [8] a method for gener-
ating interactive repairs from first order logic formulae - the
same formulae that they already used to detect inconsisten-
cies [7]. Another approach described by Egyed et. al. in
their paper [5] shows how to generate choices for fixing an
inconsistency without having to understand such formulae
which can be complex in case conistency rules are written
in programming languages. These approaches look at other
model elements already defined in the model and use them
as choices. This generated choices are then reduced by look-
ing at the impact of each choice [4, 2] and removing those
that would cause additional inconsistencies.

Despite the considerable progress on research for fixing
inconsistencies, to the best of our knowledge no approach
looks at more than one inconsistency at a time. However
the need for a more “global” approach during consistency
checking itself is demonstrated by Sabetzadeh et. al. in [10]
but not used for fixing yet. Additionally Nentwich et. al.
already stated in their work [8], that one of the biggest chal-
lenges is not to look at one single inconsistency but to look
at inconsistencies from a more “global” point of view. This
notion is also in accordance with our vision that a more
“global” view should be beneficial for fixing inconsistencies.

6. CONCLUSIONS AND FUTURE WORK
In this work, we presented our vision of the next steps in

inconsistency resolving, namely to not look at them individ-
ually but in clusters of related inconsistencies. We described

42



the potential we think this approach can have for resolving
inconsistencies and hope that we can substantiate it in the
near future. As a result we hope we can further improve the
user guidance during modeling. Once we have evaluated and
validated the qualitative properties of searching for fixes for
several inconsistencies at once, we are planning to explore
the scalability properties.

Open questions that also would be interesting to inves-
tigate are: Are there different relationships between incon-
sistencies? Can more conceptual parallels be found to the
compiler community and used? To what degree can cluster-
ing algorithms be applied? From a user guidance point of
view it would be interesting to investigate how important
qualitative aspects can be utilized. For example if the user
tells the system that certain inconsistencies are related, but
no common fix can be found. As stated before this would
imply that those inconsistencies are not related. How is this
piece of information useful to the user and can it be used to
guide the user to a satisfying solution?

Acknowledgments
This research was funded by the Austrian FWF under agree-
ment P21321-N15.

7. REFERENCES
[1] R. Balzer. Tolerating Inconsistency. In ICSE, pages

158–165, 1991.

[2] L. C. Briand, Y. Labiche, and L. O’Sullivan. Impact
Analysis and Change Management of UML Models. In
ICSM, pages 256–265. IEEE Computer Society, 2003.

[3] A. Egyed. Instant consistency checking for the UML.
In L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
editors, ICSE, pages 381–390. ACM, 2006.

[4] A. Egyed. Fixing Inconsistencies in UML Design
Models. In ICSE, pages 292–301. IEEE Computer
Society, 2007.

[5] A. Egyed, E. Letier, and A. Finkelstein. Generating
and Evaluating Choices for Fixing Inconsistencies in
UML Design Models. In ASE, pages 99–108. IEEE,
2008.

[6] C. W. Johnson and C. Runciman. Semantic Errors -
Diagnosis and Repair. In SIGPLAN Symposium on
Compiler Construction, pages 88–97, 1982.

[7] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: A Consistency Checking and
Smart Link Generation Service. ACM Trans. Internet
Techn., 2(2):151–185, 2002.

[8] C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency Management with Repair Actions. In
ICSE, pages 455–464. IEEE Computer Society, 2003.

[9] A. Nöhrer and A. Egyed. Conflict Resolution
Strategies during Product Configuration. In
D. Benavides, D. Batory, and P. Grünbacher, editors,
VaMoS, volume 37 of ICB Research Report, pages
107–114. Universität Duisburg-Essen, 2010.

[10] M. Sabetzadeh, S. Nejati, S. M. Easterbrook, and
M. Chechik. Global consistency checking of
distributed models with TReMer+. In W. Schäfer,
M. B. Dwyer, and V. Gruhn, editors, ICSE, pages
815–818. ACM, 2008.

[11] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and
H. Mei. Supporting Automatic Model Inconsistency
Fixing. In H. van Vliet and V. Issarny, editors,
ESEC/SIGSOFT FSE, pages 315–324. ACM, 2009.

43




