Consuming multiple linked data sources:
Challenges and Experiences

Tan C. Millard, Hugh Glaser, Manuel Salvadores and Nigel Shadbolt

School of Electronics and Computer Science
University of Southampton, UK
{icm, hg, ms8, nrs}@ecs.soton.ac.uk

Abstract. Linked Data has provided the means for a large number of
considerable knowledge resources to be published and interlinked util-
ising Semantic Web technologies. However it remains difficult to make
use of this ‘Web of Data’ fully, due to its inherently distributed and of-
ten inconsistent nature. In this paper we introduce core challenges faced
when consuming multiple sources of Linked Data, focussing in particu-
lar on the problem of querying. We compare both URI resolution and
federated query approaches, and outline the experiences gained in the de-
velopment of an application which utilises a hybrid approach to consume
Linked Data from the unbounded web.

Keywords: Linked Data, SPARQL, URI Resolution, Federated Query

1 Introduction

The vision of the Semantic Web is centred around the transition from a network
of loosely interlinked text documents — the existing World Wide Web, suited pri-
marily for human consumption — to a rigorously described and tightly interlinked
‘Web of Data’, intended for machine interpretation and automated processing.

In the past 5 or so years, the Linked Data community has worked hard to
realise this vision. Combined with the push for ‘Raw Data Now’!, significant and
increasing numbers of datasets are becoming available as Linked Data resources,
as witnessed by the evolution of the Linked Data ‘cloud diagram’.

However the main emphasis of these efforts has largely been focussed on pub-
lishing existing datasets, whereas the task of dataset integration and enrichment
through cross-linkage has taken a lesser role until more recent years. While the
cloud diagram may give the impression of nicely integrated data, analysis has
shown that it is more sparsely connected than one might first think® [11].

Furthermore there are significant challenges in consuming multiple sources
of Linked Data, due primarily to its distributed nature, and unfortunately there
are still only a few applications or services which make use of the Web of Data

! http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
2 http://lod-cloud.net/
3 http://blog.larkc.cu/?p=1941

http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
http://lod-cloud.net/
http://blog.larkc.eu/?p=1941

in the envisioned manner of accessing a generic homogeneous resource. While
there are many examples of Linked Data being put to good use, they tend to be
focussed on accessing a specific dataset, or pre-defined set of resources, utilising
the benefits of easy access rather than the full power of data integration and
interoperability. Querying the distributed resources which form the Web of Data
is non-trivial, and still remains a largely unsolved problem.

This paper firstly explains challenges concerned with utilising the Web of
Data in a distributed fashion, before outlining the experiences gained and meth-
ods employed in overcoming some of these issues during the development of the
RKB Explorer platform and application [4,5].

2 Challenges in consuming Linked Data

Accessing the wealth of information provided in the Web of Data presents a wide
range of challenging problems, not least of which include resource discovery, con-
solidation, and integration across a distributed environment in which little may
be known regarding the makeup and content of the various sources which may
be available. There are also many largely unresolved issues regarding versioning,
changesets and the potentially dynamic nature of dataset content [13].

2.1 Co-reference

Co-reference, the problem of duplicate identifiers, is a critical issue within Linked
Data. While it may be thought that the URI scheme used to identify resources
will give a single ID for any given concept, in reality it gives many identifiers,
potentially one or even more per source dataset.

While it is theoretically possible for all data providers to use a single URI
globally to represent a concept, eg http://example.com/id/Einstein, in prac-
tice this is not a viable reality for several reasons.

Firstly, in the infancy of Linked Data, no such URIs existed; hence data
publishers had to invent their own. The introduction of dbpedia.org went some
way to resolving this bootstrap issue, giving identifiers for a broad range of
concepts and entities from Wikipedia, and this has proved to be a common ‘hub’
in the Web of Data. However, it is difficult and time consuming for publishers
to identify a ‘better’ or more common URI for a concept they are describing.

Indeed, many Linked Data sources have been created via exports or on-the-fly
conversions of existing datasets, and utilise existing internal names or IDs; cross-
linking to equivalent resources in other datasets often becomes an afterthought
or separate follow-on activity. In fact, using external identifiers can significantly
complicate the publishing of Linked Data, as it may add a layer of complexity to
the publishing process. In addition, internal business processes of the unit that
owns the data will be intimately concerned with identifiers, and disturbing these
by introducing the need to consider external identifiers can be very expensive.

Furthermore, commercial or governmental interests are unlikely to adopt
external or ‘foreign’ URIs from other datasets in their data, as they may have

concerns of ‘ownership’ or the potential for a foreign resource not under their
control to be changed or disappear. In many situations there may be doubt over
the exact meaning or context in which an identifier and its description applies;
for example does your notion of ‘London’ correspond exactly to my definition?

In such situations it is often the case that the easiest and most appropriate
course of action for a data publisher is to mint their own URISs representing their
understanding of each concept, entity or location, and to provide a simple label
or description of that resource under their own domain space which they can
control and maintain. Publishers or others can then (it is hoped) tie their local
identifiers up with more generic or commonly used identifiers, hence forming
the important cross-linkages within the Web of Data; however this task has not
always received the attention and maintenance effort it deserves.

All of these issues compound the prevalence of multiple identifiers for re-
sources within the Web of Data, leading to the issues of data discovery and
having implications on the manner in which resources can be queried and con-
solidated as detailed in the following sections.

As early adopters of Linked Data, and in taking the less convenient but prin-
cipled approach of storing and publishing different content sources separately,
the team at Southampton have long been concerned with addressing the issues
of co-reference identification and management. In more recent years, with the
increasing availability, overlap and cross-linking of information in the Web of
Data, these problems are now coming to the fore.

It is our belief that co-reference data should be treated as a first class entity,
held and managed separately from the data itself. As a result, we have created
a ‘Co-reference Resolution Service’ (CRS), which is described fully in [3]. In
essence one or more CRS instances can be used to maintain sets of URIs that are
deemed to be equivalent within a specific context. When queried with a URI, the
CRS will return details of all other equivalent URIs. It is this technology which
underpins the popular sameAs.org service, the leading source of co-reference
data on the Semantic Web.

2.2 Ontology Mapping

There are many different sources of information within the Web of Data, ex-
pressed in a wide variety of different vocabularies. Due to similar reasons as
to why common agreement of identifiers is not as prevalent as one might have
thought, there are often a multitude of ontologies used to represent knowledge
within Linked Data resources.

While the Linked Data infrastructure enables data items to be combined
from across multiple sources, it is more often than not left to the end applica-
tions or consumers of the data to interpret the meaning of the different knowledge
representations employed. This situation may improve over time as particular
vocabularies become more established and gain popularity, however it is safe
to assume that there will remain a number of ways in which resources are de-
scribed, especially common concepts such as people, locations, organisations and

topics or taxonomic classifications. These will correspond to the diversity of the
organisations own and themselves consume the data.

The field of ontology mapping is a well established research topic, and so we
shall not dwell on it here other than to say it remains a challenging issue that is
not yet fully resolved, often requiring manual intervention and alignment between
representations [8] or collaborative tools [1]. However the ability to interpret data
from multiple vocabularies is a crucial element in the interoperation and transfer
of knowledge across and between sources within the Web of Data. Mapping or
translation services are likely to play a key part in the future development of
applications and services which consume Linked Data from multiple sources.

2.3 Aggregation from distributed sources

Let us consider a trivial example: find all the people who a given individual
claims to know. We may thus be looking for all triples that match the pattern:

ex:JoeBloggs foaf:knows 7x

There are two main approaches for accessing the Web of Data: the ubiquitous
Linked Data URI resolution required by the founding principles, or the often
more convenient direct access to SPARQL endpoint(s) if they are known.

A first sensible step for a system answering this request would be to resolve
the URI ex:JoeBloggs and determine if any foaf:knows relationships exist.
Alternatively, a SPARQL based approach may issue the obvious query to all
known/configured endpoints; however it should be noted that provisioning a
publicly available endpoint can be computationally expensive, complex queries
often return partial results or time out, and service outages are not uncommon.

In fact, in a pure Linked Data world, where a URI appears in the subject
position of the triple pattern, it is only necessary to either resolve the URI, or
query such a SPARQL endpoint, since the endpoint is only standing as a proxy to
serve the RDF for the URI. Of course, a consumer of Linked Data may choose to
look for foaf :knows triples elsewhere, which leads to the complexities described
below (Section 2.4). In this section we are only concerned with the simple case.

It is quite possible that Joe Bloggs is described in more than one dataset,
using different URIs, so a co-reference service such as sameAs.org may be con-
sulted, returning one or more identifiers equivalent to ex:JoeBloggs. Each of
these new URIs can now be considered using the same method. Assuming that
we only consider the one vocabulary, we may now have results for ?x from each
subject URI and/or endpoint. Depending on the intended use, it may be suffi-
cient to simply perform a union over these results and return them to the client.
However it is possible that the same information has been duplicated in more
than one dataset, for example two sources may imply that Joe Bloggs knows
David Smith. In some scenarios, such as citation counting analysis, this replica-
tion of knowledge should be considered only once, even though it is represented
multiple times using different identifiers and potentially in a different vocab-
ulary. In addition to co-references in the subject position, there may well be
co-references within the results.

Even in the simplest of cases, careful consideration must be given as to where
URI expansion should be performed to potentially increase the number of subject
resources queried, or equivalent vocabulary /predicate terms, along with the need
to collapse responses from various datasets to nominated or preferred identifier
to alleviate the issue of co-references in the final result.

2.4 Resource discovery

The example query used in the above section was straightforward, and could
be answered by simply resolving the requested subject URI and optionally each
known co-referent identifier. Let us now consider the following seemingly trivial
query, to determine who lives near London —

SELECT ?who WHERE { ?who foaf:based near dbpedia:London }

In this case, the known resource is in the object position of the query, and we
are asking for matching subjects. This presents a problem when accessing the
Web of Data through URI resolution, as the URIs to resolve are not immediately
obvious. Again, the first logical step is to resolve the dbpedia:London URI,
which, if it returns a full concise bounded description, may indeed yield matching
triples identifying resources within the dbpedia dataset that are near London.
However, in the Web of Data, publishers are encouraged to re-use resources and
cross link concepts, resulting in a large number of documents scattered across
the Linked Data cloud which link to dbpedia:London. Note that these are not
bi-directional, there is no means of traversing the reverse direction from the
object to discover all subjects.

To overcome these resource discovery issues, a number of 3rd party services
can be employed. Semantic Web search engines, such as Sindice.com, index
Linked Data resources that are found by link-traversing spiders or bots. Such
services may be able to return a list of documents in which a given URI exists,
however functionality varies between the services and each may require a different
access mechanism. Furthermore the number of results returned may be large
(approx 20K for dbpedia:London) and without any ordering, prioritisation, or
even an indication of where in a document the requested URI exists. As a result,
such services must be used with caution, with careful attention paid to the
number of resources that a client is willing to access or resolve.

In a more specialised field, domain specific ‘backlinking’ services may be
employed to index triples across datasets enabling a lookup to discover subject
resources that have triples containing a specified URI in the object position
[12]. Backlinking services may additionally hold information about the subject
resources they index, such as recording the rdf:type(s) and/or rdfs:label.
These facilities may greatly reduce the number of URIs that would otherwise be
performed unnecessarily by simply consulting a search engine, as the scope can
be limited to only those types of resource which are of interest.

Finally, when taking a SPARQL based approach to accessing Linked Data
resources, a different set of resource discovery problems arise. Without having

to perform URI resolution, it makes little difference as to whether unbound
variables are in the subject or object positions. Rather the discovery problem is
determining which SPARQL endpoint(s) to consult in answering a given query.

The Vocabulary of Interlinked Datasets (voiD) is an emerging ontology that
describes the contents and composition of Linked Data resources. voiD docu-
ments, expressed in RDF, contain properties which outline the main themes
or subjects of the dataset, the ontologies being used, statistics relating to the
number of triples, classes, and instances, and cross-linkages to other datasets.
Additional useful features may be included, such as the availability and location
of a SPARQL endpoint, and regular expressions defining the URI patterns in
use within the dataset.

A voiD service* may collect a number of voiD documents in a single reposi-
tory, and serviced by a SPARQL endpoint or REST API facilitate queries to be
made which easily identify those datasets which are likely to hold information
regarding a certain resource or topic. As a result, such services can be used to
help identify valid SPARQL endpoints for use with a given query, although there
is no guarantee they will yield results.

2.5 Queries spanning multiple datasets

With the increasing wealth of dataset cross-linkage, by means of direct inclusion
of ‘foreign’ URIs, owl:sameAs links, and co-reference services, the Web of Data
is becoming more tightly interwoven. This leads to a situation in which SPARQL
queries cannot readily be executed as their constituent triple patterns span across
multiple datasets.

Consider the example in Figure 1, where some activity a:Activityl is stated
as having two related documents in other datasets, namely b:Doc1 and c:Doc2.
One may wish to ask the question, ‘who has authored documents related to this
activity’, as expressed in the following simple SPARQL query —

SELECT ?p WHERE { a:Activityl eg:related ?d . 7d eg:author 7p }

If all of the triples from namespaces a:, b: and c: were contained within the
same dataset and serviced by a single SPARQL endpoint, then this query would
be trivial. However, if as in the case shown in Figure 1 where each namespace is
a separate dataset, then the above query cannot be executed by standard means
even if each dataset provides an endpoint, as no one store contains all the facts
required to answer the query.

This query can however be executed by means of repeated URI resolution,
where the query is evaluated in stages. The first pattern can be evaluated by
resolving a:Activityl, yielding pointers to the two documents b:Docl and
c:Doc2. Each of these URIs can then be resolved from their respective datasets
to find the authors. It may also be possible for a similar step-by-step approach
to be employed in conjunction with the available SPARQL endpoints, where the

* http:/ /void.rkbexplorer.com/

http://void.rkbexplorer.com/

b:Doc1 a:Activity1 c:Doc2

eg:related-doc \\\‘ egrelated-doc

ieg:aulhor eg:author/\

2 29

b:Benjamin c:Charles c:Camilla

Fig. 1. An example of dataset inter-linkage, referencing ‘foreign’ URIs.

initial query is broken down and each step executed against the relevant domain
endpoint.

The benefits and pitfalls of the URI resolution and SPARQL approach are
discussed in the next section.

3 Related work

The problems of distributed query are not new, indeed for many years the
database community have successfully produced high performance systems with
data spread across a cluster of nodes. However, there are a number of important
differences to note between such systems and the Web of Data. Firstly, in a
database cluster, all storage elements are under the control of one organisation.
They are almost always co-located, and connected by a fast network. All aspects
of the data partitioning are carefully controlled, often with detailed statistics
calculated and maintained to help inform the planning and execution of queries.

Conversely in the Web of Data, each node or dataset may be under different
control. There may be network lag, and often there are no statistics available at
all describing the size or makeup of the data.

We shall briefly consider two projects which have attempted to overcome
the problems of distributed query within the Web of Data: The Semantic Web
Client Library, which takes a URI resolution based approach, and DARQ, which
utilises a federated SPARQL approach.

3.1 Semantic Web Client Library

The Semantic Web Client Library (SWCL) is an attempt to solve the problem
of executing arbitrary queries over Linked Data resources [7]. The aims of the
SWCL are to provide access to the entire Web of Data as if it were a single RDF
graph, and to enable the execution of SPARQL queries over this graph.

Given a SPARQL query, the SWCL sets about retrieving the RDF by URI
resolution that is considered to be necessary to provide the results, storing the

resolved documents into a single RDF cache, over which the SPARQL query is
finally performed. In this sense it is firmly in the Linked Data world — all RDF is
fetched via HT'TP using Linked Data resolution, and no remote SPARQL queries
are executed. It is therefore unable to fetch RDF data that is not exposed as
Linked Data, excluding that which is only available via a SPARQL endpoint.

A key factor within the SWCL is the determination of how much RDF to
dereference before attempting to execute a query on the local cache. Initially any
URIs present in the query are resolved, along with any pre-determined graphs
that are specified to be fetched. A second phase of resolution is then performed,
dereferencing those URIs that were discovered in the first round of returned
graphs. The query is executed in stages, with further resolution steps performed
on intermediary results as required.

The SWCL can execute complex queries over large portions of the Semantic
Web, utilising many different data sources. However, there are high overheads
of performing significant numbers of HTTP resolutions, and indeed much time
can be wasted in transferring, parsing and importing data which is not required
to answer the query. For example, in executing a query which asks for the email
address for all members of a university, it is likely that the URI for each individ-
ual would be resolved. Each such resolution will potentially return a large and
complex document detailing all aspects of each individual’s activities, including
their publications, interests, and teaching duties, where all that was required
to answer the query was a single triple containing their address. There is no
way to predetermine the quantity of data that will result when resolving a URI,
or standard means to restrict or filter the data returned — an issue facing any
Linked Data resolving client.

Futhermore, if the ontological relationship was <person> works-at <uni>,
and resolving the university URI does not return a symmetric concise bounded
description, then there may be resource discovery problem, requiring a fall-back
to utilise a search engine.

Due to the expense of performing numerous URI resolutions, and depending
on the queries executed, performance with SWCL can be generally poor.

3.2 DARQ

DARAQ is in some sense at the opposite end of the spectrum from the SWCL.
Where the SWCL accesses all the Linked Data by HTTP resolution, DARQ
relies solely on querying remote SPARQL endpoints [10]. The aim is to provide
perhaps the ideal facility for distributed query — an application presents the
DARQ engine with a SPARQL query, and the system analyses it and plans
and transparently executes the required individual queries over all the required
SPARQL endpoints.

However, there are a number of shortcomings. DARQ requires a SPARQL
endpoint for all resources it consumes, whereas a large proportion of the Web
of Data is available only as resolvable URIs. Furthermore, a significant barrier
is that in order to use a SPARQL endpoint, DARQ requires a detailed Service

Description to describe the capabilities of that endpoint, and details of the pred-
icates and resources contained within it to inform the query planning engine.
This both requires significant (and computationally intensive) statistical work,
and also limits the endpoints available to those that have been registered and
for which the Service Descriptions are defined.

While the approach appears promising, unfortunately development on the
DARQ project appears to have stopped around 2006. This lack of ongoing de-
velopment also means that it is not compatible with the later versions of various
libraries on which it is dependent. Finally, it should be noted that DARQ does
not deal with the full range of the SPARQL query language.

4 Experiences gained with RKBExplorer

As part of the ReSIST project® the team at Southampton were tasked with
providing a range of knowledge management technologies to both support the
activities of the project and enhance dissemination of the outputs. We chose
to utilise a semantic approach, compliant with the emerging Linked Data best
practises. It was particularly exciting to be putting the web into Semantic Web,
at a time where the majority of Semantic Web research was focussed on storing
or caching large quantities of data all in one repository.

One of the core outputs of this work was the production of the RKBExplorer
application®, which uses community of practice (CoP) style analyses to identify
different types of resource that are related to a given person, publication, project
or research topic. It provides a simple user interface giving a coherent view over
a multitude of data sources, with little indication of the underlying semantic
infrastructure [4,5].

During the project, we produced more than 20 different Linked Data sources,
each hosted separately as a sub-domain of rkbexplorer.com. Focussing largely
on academics, their institutions and scholarly works, there was significant overlap
between a number of datasets, hence our early work on co-reference [3].

However given our distributed datasets, and co-reference knowledge, we re-
quired a solution to enable the RKBExplorer application to interact with our
‘web’ as if it were a single entity. The identification of other resources related
to the given focus resource is achieved by means of a domain and type specific
configuration, defining queries that represent the relationships which indicate
relevance between two types of resource. A hybrid approach was developed to
enable efficient execution of such queries, drawing on both federated SPARQL,
URI resolution and co-reference expansion. The resulting system has a number
of limitations, but offers excellent performance in the intended purpose, so long
as queries are carefully constructed.

In RKBExplorer, thousands of queries can be performed for a single CoP,
looking at 100Ms triples from 30+ local stores and other remote SPARQL end-
points and URI resolution. Where performance is sometimes slow for very well-

® ReSIST, EU Network of Excellence, 2006-2008. http://resist-noe.cu/
5 http://www.rkbexplorer.com /explorer/

http://resist-noe.eu/
http://www.rkbexplorer.com/explorer/

connected resources, sophisticated caching and refresh infrastructure means that
users rarely wait very long while they browse.

Firstly, a generic query library was created which attempts to execute a
SPARQL query in the best manner possible, as follows: Internal configuration
details a number of available SPARQL endpoints, both local and externally. If
a query contains URIs from only one dataset, the query is simply passed to
the appropriate endpoint, if known. In the situation where either no endpoint is
known, or there are URIs from multiple domains, then the URIs are resolved via
HTTP and stored in a local cache repository over which the query is then made.
Later versions utilise the voiD store to identify additional relevant endpoints.

This facility enables very simple queries to be submitted and transparently
executed by the library by whichever means is most suitable. It does not provide
any co-reference or cross-repository functionality; these capabilities lie within
the carefully structured operation of the CoP engine.

Pair-wise configuration files specify how to relate one type of resource to
another, each containing a number of searches or ‘rules’” which prescribe rela-
tionships that support a notion of relatedness between those types of resource.
In the example below we pass four arguments: the input URI, identifying the
currently focussed resource; two query ‘snippets’; and a weighting to be applied
to results of this rule.

doCOP (
$inputURI, // input
"%targetURIY, eg:related-doc 7intermediate", // snippet 1
"%intermediate’, eg:author 7result", // snippet 2
5 // weighting
)3

This rule is executed as follows. Firstly the input URI is expanded to a set of
all equivalent identifiers. The first query snippet is fired replacing %targetURIY,
for each URI in the target set, resulting in a set of ?intermediate bindings.
For the second phase, each intermediary result undergoes similar co-reference
expansion, before replacing %intermediate in the second query snippet before
execution. Note that we constrain ourselves to two query snippets, however each
may contain more than one triple pattern.

The resulting set of ?result values represents resources that are related
to the initial $inputURI. To prevent false counting the result set is checked
for co-references, with duplicates removed. Each URI result is then scored by
attributing the weighting specified for the rule. Subsequent rules in the configu-
ration are then considered, which may further increment the score for individual
URIs, before finally sorting all results by their total score to give an ordered
notion of ‘relatedness’.

Each query is executed as appropriate by the library, usually via a SPARQL
endpoint. While the process may involve a large number of queries in total,
they are usually very simple ‘atomic’ statements or simple triple patterns which
can be performed very quickly. A key benefit of segregating the rule into two

phases is the handling of co-reference equivalences, and due to the multi-phase
execution results can span multiple repositories. Indeed, the example discussed
in Section 2.5 can be handled by this system.

While this hybrid system cannot execute arbitrary queries across multiple
datasets, the CoP engine with carefully constructed queries can perform complex
analyses in a very efficient manner over distributed resources. Performance is
much improved over using a URI-only based approach such as SWCL [9], and
detailed DARQ-like statistics are not required to configure endpoints (indeed
with the voiD store, endpoints can be dynamically included). The system is
successfully used by the RKBExplorer application, performing many hundreds
of queries to deduce related resources for each subject viewed.

To tackle the issues of ontology mapping, specific datasets can be configured
within the RKBExplorer platform to be accessed by URI resolution through
an on-the-fly mapping service [6]. Work has also been undertaken on re-writing
SPARQL queries [2] to achieve similar cross-vocabulary data inclusion.

5 Future work

The key drawback of the CoP engine system is the hard-coded limitation of a
two-phase query execution. Work is underway to improve the flexibility, in a
more DARQ-like fashion by breaking an arbitrary query down into constituent
triple patterns and executing them separately. The current prototype is some-
what naive in the order of triple execution, which can lead to poor performance
with some queries where there are a large number of intermediary resources to
be joined or filtered. The system would benefit from a more intelligent query
planning algorithm, yet this requires details of either the data makeup in each
repository, or perhaps typical patterns to be expected when using particular
vocabularies or predicates.

voiD documents are increasing in number as dataset publishers recognise
their importance, and tool support for automatically generating such descrip-
tions improves. However one issue in using a voiD store to identify relevant
endpoints is the prevalence of URI patterns from common hubs — the major-
ity of Linked Data sources may contain references to datasets such as DBPedia.
Hence when determining which endpoints may match a given DBPedia URI, the
voiD store is likely to return a large number of endpoints, some of which may
actually only contain a handful of URIs from that domain, making a successful
match rather unlikely.

Nevertheless, voiD documents are increasingly containing more statistical
information regarding the datasets they describe, which may both help inform
query planning and enable prioritisation of endpoints in the voiD store.

Finally, further work is required with regards to investigating the trade-offs
between performance and query completeness when dealing with the distributed
resources on the Web of Data. At each stage of a query execution plan, decisions
must be made as to whether co-reference expansion or collapse is performed,
and/or how many resources are considered for querying or URI dereference.

6 Conclusions

In this paper we have introduced the major challenges in consuming linked data
from multiple sources, namely co-reference, resource discovery, and the issues
involved with spanning queries over multiple endpoints. We have outlined our
experiences in building an application which utilises the unbounded Web of Data,
employing a hybrid query engine to execute restricted format queries efficiently.
The benefits and drawbacks of this system have been discussed, and similar
systems have been compared. Finally we looked forward at our ongoing work in
developing a more generic solution to facilitate distributed query over Linked
Data resources, highlighting key issues and potential solutions.

7 Acknowledgements

This work has been supported with finance and time by many projects, organi-
sations and people over the years, most recently the EnAKTing project funded
by the UK’s EPSRC under contract EP/G008493/1.

References

1. Correndo, G., Alani, H., Smart, P.R.: A community based approach for managing
ontology alignments. In: 3rd International Workshop on Ontology Matching (2008)

2. Correndo, G., Salvadores, M., Millard, 1.C., Glaser, H., Shadbolt, N.: SPARQL
Query Rewriting for Implementing Data Integration over Linked Data. In: 1st
International Workshop on Data Semantics (DataSem 2010) (2010)

3. Glaser, H., Jaffri, A., Millard, I.C.: Managing Co-reference on the Semantic Web.
In: WWW2009 Workshop: Linked Data on the Web (LDOW2009)

4. Glaser, H., Millard, I.C.: RKBPlatform: Opening up Services in the Web of Data.
In: International Semantic Web Conference (2009)

5. Glaser, H., Millard, I.C., Jaffri, A.: RKBExplorer.com: A Knowledge Driven In-
frastructure for Linked Data Providers. In: European Semantic Web Conference

2008)

6. g}laser, H., Millard, I.C., Sung, W.K., Lee, S., Pyung, Kim, You, B.J.: Research on
Linked Data and Co-reference Resolution. In: International Conference on Dublin
Core and Metadata Applications (2009)

7. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL Queries over the Web of
Linked Data. In: International Semantic Web Conference (2009)

8. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review 18(1), 1-31 (2003)

9. Querying: RKBExplorer -vs- SWCL, http://www.rkbexplorer.com/blog/7p=43

10. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:
European Semantic Web Conference (2008)

11. Rodriguez, M.A.: A Graph Analysis of the Linked Data Cloud. CoRR (2009)

12. Salvadores, M., Correndo, G., Szomszor, M., Yang, Y., Gibbins, N., Millard, I.C.,
Glaser, H., Shadbolt, N.: Domain-Specific Backlinking Services in the Web of Data.
In: Web Intelligence (2010)

13. Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker, S.: Towards Dataset
Dynamics: Change Frequency of Linked Open Data Sources. In: WWW2010 Work-
shop: Linked Data on the Web (LDOW2010)

http://www.rkbexplorer.com/blog/?p=43

	Consuming multiple linked data sources: Challenges and Experiences

