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Abstract. Evaluation is a major issue in the development of systems,
sometimes as important as the implementation of a system itself. In the
Semantic Web area, and especially in the area of the storage systems that
provide a persistence layer for ontologies and instance data, evaluation
efforts have been intermittent and area specific. In this paper we propose
a new dataset for storage systems evaluation called Beazley dataset. The
complete dataset version includes more than 16 millions of triples and
35 queries. We evaluate dataset exploiting several storage models of the
state of the art storage systems.

1 Introduction

Evaluation is a systematic assessment of system properties against a set of pre-
defined criteria. Evaluation is a major issue in the development of systems, some-
times even as important as the implementation of a system itself. It has been
shown in the past that performance evaluation can help implementers to better
understand the sources of intractability and/or inefficiency in their systems, and
to propose novel optimization techniques in an effort to make their systems more
scalable in specific application scenarios.

Storage systems often called RDF stores provide a persistence layer for on-
tologies and instance data. They provide basic reasoning services such as com-
puting transitive closure of the subsumption hierarchies. Storage systems differ
from description logics (DL) reasoners that provide more complex reasoning ser-
vices but do not provide storage facilities. The main inference services in the
DL reasoners can be performed as conceptual satisfiability. For RDF stores, the
main inference service is query answering.

In the Semantic Web area, and especially in the area of storage systems,
evaluation efforts have been intermittent and area specific. There is no agreed
standard or methodology for systems evaluation. In the evaluation of the DL
systems artificially generated datasets served an important role [13] until a large
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number of the real-world ontologies has been developed. This real-world ontolo-
gies have been used in the large scale evaluation efforts [9]. The evaluation of
the storage systems are focused on the artificially generated datasets [12, 17,
10]. Thus, the evaluation of the storage systems will benefit from the real-world
datasets that will overcome the limitations of the state of the art generation
methods. The most common instance generator and evaluation suite that is
used by the Semantic Web community for storage systems evaluation is the
Lehigh University Benchmark (LUBM) [12]. Although, LUBM is used mainly
for testing instance retrieval and query answering algorithms, it also has many
shortcomings. First of all the ALEHIR+ DL used is significantly less expres-
sive than the DL underpinning OWL. Moreover, the data that are created for
each university are completely independent. Consequently, if one applies a clus-
tering method during loading it is possible to apply query answering over each
university independently.

In this paper we propose a new dataset for storage systems evaluation called
Beazley dataset. The dataset comprises real world archeological data gathered
in CLAROS initiative [15] and a set of queries used in CLAROS web cite ap-
plication. The dataset presents the information about archeological artifacts. It
instantiates CIDOC-CRM OWL DL ontology [8]. The complete dataset version
includes more than 16 millions of triples and 35 queries. We evaluate the dataset
exploiting both memory and disk-based storage models of the two state of the
art storage systems.

The paper is structured as follows. Section 2 provides a brief introduction to
the storage systems along with the datasets used for their evaluation. Section
3 provides a detailed description of the Beazley dataset. Section 4 provides a
detailed description of the dataset evaluation set up. Section 5 describes the
evaluation results. Section 6 concludes the paper.

2 Related Work

The majority of the evaluation efforts in the storage systems area were focused
on artificially generated datasets. They provide a mechanism to cover a class
of inputs in a scalable manner. The most prominent example is the Lehigh
University Benchmark (LUBM) [12]. LUBM consist of a small ontology, with 43
classes, 25 roles, 85 TBox axioms and 8 RBox axioms, and several Java classes
that can be used to create instance assertions (ABox) for this specific TBox and
RBox. The ontology describes universities, i.e. courses, students, departments,
publications as well as their interrelations. For example, a student is enrolled in
some courses that is taught by some academic staff, while academic staffs are
associated with publications, are affiliated with other universities, lead research
teams or are heads of departments. The DL of LUBM is ALEHIR+, nevertheless
it does not make heavy use of the constructors since there is just one transitive
role, 5 sub-role axioms and 2 inverse role axioms. The ABox is created following
the method described in [4]. Finally, the benchmarking suite also comes with 14
queries that are proposed for testing a system against the generated ABoxes.



Although, LUBM is used mainly for testing instance retrieval and query
answering algorithms, it also has many shortcomings. First of all the DL used is
significantly less expressive than the DL underpinning OWL. Moreover, the data
that are created for each university are completely independent. Consequently,
if one applies a clustering method during loading it is possible to apply query
answering over each university independently. An extension of LUBM to remedy
these problems was the University Ontology Benchmark (UOBM) [17]. UOBM
extends LUBM by adding more concepts and roles that are intended to connect
individuals from different universities. Although UOBM is still not large when
compared to ontologies such as NCI [11] or GALEN [21], it uses a relatively
expressive ontology language SHIN (D). Finally, a set of test queries is also
offered. Unfortunately, although UOBM does indeed make use of more complex
constructors and is more structurally complex it has not been widely accepted
by the Semantic Web community.

The Berlin SPARQL benchmark [5] focus on integration and visualization
data from various data sources. It is build around scenario that does not require
heavyweight reasoning. The class hierarchy is generated in random way. The
query mix includes 25 queries that represent navigation pattern in e-commerce
use case. SP2Bench [22] uses DBLP [16] bibliographic scenario. The ontology
used have 9 classes and 77 properties. The query mix includes 11 queries utilizing
various SPARQL language constructs. The Billion Triple Challenge [3] aims at
the evaluation of the Semantic Web applications to process a large quantities of
the RDF data that is represented by various schemata.

3 The Beazley dataset

The Beazley dataset [15] presents the information about archeological artifacts.
The RDF data instantiates CIDOC-CRM ontology [8]. The complete dataset
version includes more than 16 millions of triples. The frequency of the triples
in the dataset depending on predicate values fp = freq(D, p) is depicted on
Figure 1a. The frequency of the triples with a given subject value frequency
fsn = freq(D, sn), depicted on Figure 1b, varies depending on a predicate value
p. The fsn = freq(D, sn, is represented) and fsn = freq(D, sn, is reffered)
are depicted on Figures 1c, 2a. This makes Beazley archive dataset different from
RDF datasets produced using automatic generation procedures [12, 17]. In these
works the uniform distributions and, hence, frequencies are assumed. The fre-
quency of the triples with a given object value frequency fon = freq(D, on), de-
picted on Figure 2b, varies depending on a predicate value p and a subject value
frequency sn. The fon = freq(D, on, sn, has time span), fon ∈ [1, 30] is depicted
on Figure 2c. The fon = freq(D, on, took place), fon = freq(D, on, not after)
are depicted on Figures 3a, 3b. The query set used in CLAROS web cite applica-
tion [15] composed from 35 queries of various size and complexity. The different
queries are executed different number of times during the web application life
cycle. They could be classified into two large groups. The first query group QG1
comprises Q1-Q18 presented at Table 1. The queries from QG1 are executed at



Fig. 1. a) The frequencies of predicates; b) The frequencies of the triples with a given
subject value frequency; c) The frequencies of the triples with a given subject value
frequency for predicate = is represented



Fig. 2. a) The frequencies of the triples with a given subject value frequency for
predicate = is reffered; b) The frequencies of the triples with a given object value
frequency; c) The frequencies of the triples with a given object value frequencies in
[1, 30] for predicate = has time span



Fig. 3. a) The frequencies of the triples with a given object value frequency for
predicate = took place; b) The frequencies of the triples with a given object value
frequency for predicate = not after



most once. The second queries group QG10 comprises Q19-Q35. They are used
for filling the time lines in the web application. Therefore, they are executed up
to 10 times. The queries contain up to 21 variables, have up to 32 joins, use text
search, comparisons, boolean expressions, OPTIONAL and BOUND constructs.

4 The evaluation set up

We evaluated dataset using both disk and memory-based storage models of the
two state of the art storage systems: Jena TDB, Jena ARQ, Sesame-memory,
Sesame-native. Jena [18] is a Java framework for building semantic web applica-
tions. It includes OWL [19] and RDF [14] API, in memory and persistent storage
models, SPARQL [20] query engine. ARQ [1] is a general purpose query engine,
supporting SPARQL and other query languages, that can utilize several Jena
storage models. In our experiments we used ARQ in memory storage model.
TDB [2] is a high-performance native storage engine that exploits custom in-
dexing strategy. Sesame [7] is an open source Java framework for storage and
querying RDF data. Sesame supports SPARQL and SERQL [6] query languages,
memory-based and disk-based storage. We evaluated the systems exploiting their
user interfaces.

The evaluation has been performed on AMD Phenom II 2600 Mhz Processor
with 8Gb main memory installed.

The data used in the evaluation included Beazley dataset with 16 millions of
triples and its reduced version with 10 millions of triples. The dataset loading
time, query execution time and total query set times were measured. The query
per hour and second per query measures were calculated given that each query
in QG10 is executed 10 times while each query in QG1 is executed once. This
setting allowed to represent the CLAROS application query mix.

5 The system performance

The data loading times are presented in Table 2. The memory based models
ARQ and Sesame-memory were not able to load the complete Beazley dataset.
There was insufficient memory for ARQ. The loading into Sesame-memory were
terminated after 5 days. The reduced Beazley dataset version was loaded less
than in 1 hour all the systems. The Jena memory and storage based models were
more efficient in the data loading then the Sesame models.

The query answering times and the other query performance measures are
presented in Table 3.

The systems showed performance ranged from 1 millisecond to 74.8 hours per
query. The native Sesame storage model was more than 5 times more efficient
than its memory storage model. The ARQ was 2 orders of magnitude less efficient
than TDB. It was more then order of magnitude more efficient than TDB given
that query Q33 was excluded from the query set. This query took ARQ 74.8
hours to execute. Thus, it influenced on the total result. The other 34 queries
were completed in 270 seconds.



Table 1. The Beazley query set.

Variables Joins Text search Ordering Comparisons OPTIONAL BOUND

Q1 2 0

Q2 11 15 X X

Q3 11 15 X X

Q4 9 14 X X

Q5 6 7 X X

Q6 17 10 X X

Q7 1 2

Q8 1 2

Q9 5 2

Q10 9 14 2X

Q11 20 31 2X X X

Q12 11 19 2X X

Q13 7 12 X X

Q14 6 11 X

Q15 18 32 X X X

Q16 11 20 X X

Q17 11 20 2X

Q18 19 32 2X X X

Q19 10 14 X

Q20 14 22 X 2X

Q21 20 32 X X 2X

Q22 12 19 X 2X

Q23 13 22 X 2X

Q24 21 32 2X X 2X

Q25 17 28 2X 2X

Q26 12 20 X 2X

Q27 8 12 2X

Q28 14 24 X 2X

Q29 11 20 2X

Q30 11 19 X 2X

Q31 18 32 X X 2X

Q32 16 28 X X 2X

Q33 11 20 X 2X 2X

Q34 15 25 X X 2X X 2X

Q35 13 23 X 2X

Table 2. Loading times, seconds.

ARQ TDB Sesame-native Sesame-memory

Beazley-16Mt N/A 1445.68 1878.43 N/A

Beazley-10Mt 360.19 434.07 1087.14 2991.44



Table 3. Query answering times and aggregate performance measures on Beazley
dataset

Query answering times-16Mt,s Query answering times-10Mt,s

Sesame-native TDB Sesame-memory ARQ Sesame-native TDB

Q1 0.03 0.05 0.02 0.006 0.03 0.12

Q2 39.82 119.14 210.34 5.96 38.29 171.7

Q3 38.39 125.16 217.98 4.93 37.33 115.91

Q4 26.01 94.86 137.1 26.89 22.2 89.25

Q5 39.9 97.32 128.05 5.11 38.62 90.35

Q6 57.04 139.98 343.98 25.95 56.24 135.24

Q7 0.001 0.09 0.001 0.01 0.001 0.08

Q8 0.002 0.09 0.001 0.01 0.001 0.08

Q9 19.66 70.91 39.02 37.22 11.2 38.52

Q10 16.34 91.5 58.87 25.2 13.08 88.78

Q11 21.57 186.85 93.36 4.22 18.3 197.23

Q12 19.52 105.94 80.26 1.24 16.01 102.27

Q13 18.15 6.99 35.63 1.23 8.39 3.36

Q14 49.66 111.32 209.43 7.17 48.31 110.1

Q15 33.7 105.46 222.81 6.32 29.69 99.14

Q16 31.48 122.49 194.79 5.73 27.13 119.2

Q17 19.69 106.55 81.16 5.84 15.47 99.42

Q18 22.63 173.64 106.07 5.53 18.52 168.48

Q19 32 114 140.64 5.36 31.06 112.16

Q20 25.99 122.97 125.51 5.72 21.55 116.97

Q21 31.61 147.94 182.62 25.64 26.75 149.24

Q22 35.99 133.69 206.71 5.53 38.02 126.08

Q23 0.43 109.18 0.12 5.37 0.4 103.41

Q24 25.71 154.82 116.25 5.09 20.7 142.33

Q25 24.47 139.02 114.79 5.13 18.31 132.38

Q26 18.21 5.75 57.63 9.56 12.31 5.91

Q27 13.77 5.56 46.6 7.48 13.41 5.04

Q28 20.51 12.46 90.98 5.39 14.83 11.92

Q29 19.1 6.38 69.27 5.01 12.66 5.73

Q30 36.75 131.25 207.13 4.78 38.63 123.26

Q31 32.77 148.84 193.96 5.65 27.18 142.03

Q32 30.22 135.05 162.23 4.76 24.15 137.57

Q33 2.39 8.52 0.005 74.8h 0.007 2.41

Q34 3.33 12.91 0.005 4.95 0.008 4.86

Q35 0.48 111.27 0.12 5.01 0.4 100.23

Total 13.45m 52.63m 64.55m 74.87h 11.65m 50.84m

QpH 169.54 40.63 35.05 0.25 198.86 42.71

SpQ 21.23 88.59 102.68 14330.4 18.1 84.28



None of the systems was able to execute the complete query mix on the
complete dataset in less that 10 minutes what makes the CLAROS application
and, therefore, Beazley dataset challenging for state of the art storage systems.

The quality of the query answering results is affected by quality of the original
data input. Making improvements to the incoming data (which are obtained by
extraction from existing databases) is an ongoing activity, which the Beazley
Archive team are addressing by (a) improving the data extraction processes,
(b) by applying heuristics to clean up some of the data values (e.g. dates), (c)
highlighting inconsistencies that are detected by the extraction processes and
passing these back to the data originators for correction, and (d) use of thesauri
and authority lists to map terminology variations to common terms.

6 Conclusion

The query set tested in the paper was used in an initial development of the
CLAROS application. Naively constructed, it was designed mainly to provide
functionality rather than performance. The new version of the CLAROS ap-
plication will include an updated query set designed with partners from the
Jena team to identify bottlenecks and improve the queries. The goal of this ef-
forts is to redesign queries to achieve sub-second response times. The strategies
for the dataset improvement are (1) pre-calculation of certain path queries to
reduce run-time joins (roughly equivalent to ”materialized views” in relational
data), and (2) use of additional indexes associated with ”virtual properties” that
can reduce the need for in-memory sorting of results when processing SPARQL
queries (analogous to schema-defined indexes in relational databases). Essen-
tially, 4 techniques have been used:

1. reordering of queries so that more selective selective elements are evaluated
earlier (this can also be performed automatically by the ARQ query processor
in Jena);

2. ”materialization” of property paths and UNIONS in queries - adding ”short
cut” properties to the triple store, and use these properties in queries;

3. customized indexes for finding earliest- and latest- occurrences of a given
object type, and also for providing consistent ordering in other keyword-
based object access queries. These new indexes are not Lucene-based, as
originally intended, as Lucene handing of result sorting is less scalable than
had been anticipated. Instead, a simple arrangement of flat files named by
keywords, with contents sorted by the ordering key is used;

4. pre-calculation of object counts by various categories, so that counting queries
can run without having to access every matching object.

Our hope is that this kind of ad-hoc optimization work can suggest ways
forward for more principled ontology-based optimization of triple store access.
We intend that this revised system will be the basis of a public version of the
CLAROS application developed by academic groups who are focused on appli-
cation of the technologies rather than technology research.



We described a new dataset for storage systems evaluation called Beazley
dataset. The dataset proved to be challenging for state of the art storage sys-
tems. In fact, none from the systems evaluated was able to demonstrate the level
of performance needed for the real world application utilizing the dataset data.
The work suggests that Semantic Web technologies applied indiscriminately (or
naively) may not always yield acceptable performance, but significant perfor-
mance improvements are possible through judicious optimizations to the stored
data and queries used, without distorting the semantic coherence of the origi-
nal data. Performance improvement work to date has been ad hoc, but suggests
some strategies that might be considered for automated query optimization.
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