
Evaluating semantic data infrastructure
components for small devices

Andriy Nikolov, Ning Li, Mathieu d’Aquin, Enrico Motta

Knowledge Media Institute, The Open University, Milton Keynes, UK
{a.nikolov, n.li, m.daquin, e.motta}@open.ac.uk

Abstract. Existing benchmarks for semantic data management tools
primarily focus on evaluating the capability of tools to process large-
scale data. In use case scenarios involving small-scale and mobile devices,
the data volumes are typically smaller, however, the ability to operate
with limited computational resources becomes important. In this paper,
we describe the experiments we performed to evaluate components of se-
mantic data infrastructure for devices with limited computational power.

1 Introduction

Performance is an important criterion for selection of semantic infrastructure
components such as data stores, rule engines, and query engines. So far, the de-
velopment effort has primarily focused on large-scale data processing scenarios.
In such scenarios, the tools are assumed to have access to considerable com-
putational resources (powerful servers and even clusters of machines) and are
expected to process large volumes of data. Because of this, evaluation bench-
marking tests (e.g., the Berlin SPARQL benchmark [1] for triple stores or Open-
RuleBench [2] for rule engines) are usually conducted on powerful machines and
involve large datasets. With the widespread use of small-scale and mobile de-
vices, new scenarios appear in which computational resource limitations become
important. For example, in the scope of the SmartProducts project1, the fo-
cus is on “smart products” (e.g., cars and kitchen appliances), which are able
to communicate with the user and between themselves and to apply embedded
“proactive knowledge” to assist the users with their tasks. In this scenario, it is
important to choose semantic data processing tools, which not only require less
time to process data, but also require less computational resources to produce
results (in particular, memory).

Semantic data processing infrastructure for smart products involves two main
components: a triple store which stores RDF data and a rule engine which is
able to make inferences based on these data and solve user tasks. In this pa-
per we discuss the experiments conducted to select appropriate components to
support our use case scenario. We especially focus on the particularities related
to evaluating such components when targeting small, resource-limited devices.

1 http://www.smartproducts-project.eu/

raul
Texto escrito a máquina
Proceedings of the International Workshop on Evaluation of Semantic Technologies (IWEST 2010). Shanghai, China. November 8, 2010.



This includes in particular assessing not only the response time of the tools,
but also their average resource consumption for different amounts of data. The
rest of the paper is organised in the following way. In section 2, we discuss the
requirements imposed by our use case scenario and the reasons for our prelim-
inary choice of tools as solutions. Based on these requirements, we build test
datasets to perform comparative tests. Section 3 summarises our earlier experi-
ments comparing performance of RDF triple stores on small- and medium-scale
datasets. Section 4 describes the experiments we performed with two selected
rule engines (Jess2 and BaseVISor3) and discusses their results. Finally, section
5 discusses the directions for future work.

2 Requirements

The SmartProducts project envisages a scenario where user appliances (e.g.,
a cooking guide, a car computer) make use of embedded proactive knowledge
in order to communicate and cooperate with humans, other products, and en-
vironment. Proactive knowledge includes knowledge about the product itself
(features, functions, dependencies, e.g., oven’s maximal temperature), its envi-
ronment (e.g., other devices in the kitchen, food items stored in the fridge), its
users (e.g., health profile), and the usage context (e.g., a cake is being prepared
for a birthday party). This knowledge is formally described using ontologies, con-
tained in a semantic data store, and utilised using formal reasoning mechanisms.
The data management infrastructure must support these functionalities.

When selecting existing tools to reuse within this infrastructure, two kinds
of requirements has to be taken into account:

– Functional requirements related to the desired capabilities of the tools.
– Pragmatic requirements related to the computational resources needed by

the tools.

In order to support its required tasks, a smart product needs to possess several
reasoning capabilities. First, in order to make use of semantic data represented
in RDF, its inferencing engine must support inferencing based on ontological
axioms expressed in RDFS or OWL. Second, and even more important, in order
to exhibit situation awareness and react to the changes in the environment, the
inference engine has to support reasoning with custom-defined rules. As a result
of rule firing, not only the knowledge base can be updated with new facts, but
an arbitrary action can be triggered: e.g., starting a user interaction. Thus, for
our scenario we considered general-purpose rule engines (in particular, Jess and
BaseVISor) rather than OWL-DL reasoners based on description logic.

The pragmatic requirements are imposed by the choice of the hardware plat-
form. Smart products are assumed to be implemented based on devices with
reasonable computational capabilities, high-speed networking, and Linux oper-
ating system support (e.g., Gumstix4 or smartphones). The actual hardware

2 http://www.jessrules.com/
3 http://vistology.com/basevisor/basevisor.html
4 http://www.gumstix.com/



parameters may vary within each device class: for instance, the newest Overo
gumstix models use a 600MHz processor and 256 MB RAM. The new models of
smartphones (like Xperia X10 from Sony Ericsson) can reach 1GHz CPU speed
and 1 GB memory.

3 Comparison of triple stores

As possible candidates, we considered three widely used triple stores: Jena5,
Sesame6, and Mulgara7 (some others, targeted at large-scale data, were excluded,
e.g., Virtuoso8, 4store9). To compare the triple stores, we constructed a bench-
mark dataset consisting of small- to medium-sized ontologies retrieved from the
Watson search server10. The sets of ontologies to be used for testing semantic
tools have been built following two main requirements. First, they had to cover
ontology sizes from very small (just a few triples) to medium-scale ones (hun-
dreds of thousands of triples). These medium-scale ontologies represent the limit
of what the best performing tools can handle on small devices. Second, they had
to take into account that, especially at small-scale, size is not the only parameter
that might affect the performance of semantic tools. It is therefore important
that, within each set, the ontologies vary in size, but stay relatively homogeneous
with respect to these other characteristics.

We first devised a script to build sets of ontologies from Watson grouping to-
gether ontologies having similar characteristics, therefore building homogenous
sets with respect to these characteristics. The parameters employed for building
these groups are the ratios properties, individuals, and classes, and the com-
plexity of the ontological description, as expressed by the underlying description
logic (e.g., ALH). As a result of this automatic process, we obtained 99 different
sets of ontologies. We then manually selected amongst these sets the ones to be
used for our benchmarks, considering only the sets containing ontologies with
appropriate ranges of sizes.

Table 1. Triple store test results (test set 53): Jena (TDB), Sesame (native), Mulgara

Jena Sesame Mulgara

Avg. loading time/triple (ms) 1 1 2

Avg. memory/triple (KB) 1 0.16 0.43

Avg. disk space/triple (KB) 0.17 0.1 32

Avg. query time/Ktriple (ms) 232 43 1291

5 http://jena.sourceforge.net/
6 http://www.openrdf.org/
7 http://www.mulgara.org/
8 http://virtuoso.openlinksw.com/
9 http://4store.org/

10 http://watson.kmi.open.ac.uk/



To test the triple stores, we applied the following procedure:

1. Loading an ontology into the data store.
2. Running test queries.
3. Measuring the disk space taken by the data store.

We developed 8 test SPARQL queries applicable to a wide range of ontologies
(e.g., selecting all rdfs:label values or selecting all properties of all instances of
all classes). The metrics we used included average loading time, memory, disk
space, and query response time per single triple. The results for one of our test
sets containing the widest range of dataset sizes are provided in Table 1. The
dataset contains 21 different ontologies in the range between 3208 and 658808
triples. In more details, our benchmark and tests for triple stores are described
in [3]. Based on the tests, we could make several observations concerning the
performance of the tools.

In general, Sesame was found to outperform both Jena and Mulgara for
small-size datasets, although its advantage tends to decrease with the growth of
the dataset size. It is interesting to note that in the large-scale benchmarking
tests [1] Sesame generally performed worse than other tools. One of the causes
for this was the fact that Jena and Mulgara allocate larger amounts of resources
straight from the start (especially Mulgara), while an “empty Sesame” is light-
weight. In other terms, the “fixed cost” associated with processing ontologies
with Sesame is significantly lower than the one of Jena and Mulgara, whereas
the “variable cost” appears to be higher.

This clearly demonstrates that benchmarks targeting different scales, and
considering different dimensions as available resources (i.e., not only time), are
crucial. Indeed, in resource-limited environment, the best tool at a given scale,
may not be the right one at another scale. Here, it appears clearly that Sesame
is a strong candidate to be used on a small device, due to its low fixed cost,
while, for the same reason, it might become inadequate as devices get bigger.

4 Comparison of rule engines

Based on the functional requirements, we focused on the usage of rule engines im-
plementing the Rete algorithm [4]. We considered two initial options: a general-
purpose rule engine (Jess) which we could then adapt for the usage of RDF
data and a rule engine designed for dealing with RDF data (BaseVISor). In
the case of a general-purpose engine, the advantages were the possibilities to
use both forward and backward-chaining rule processing and to define arbitrary
facts (n-ary relations) as opposed to only triples. The latter feature was con-
venient for defining intermediate facts, which were used during reasoning and
removed from the working memory afterwards. To represent RDF data, we used
the standard approach initially proposed in [5]: representing each RDF triple
with a Jess fact (triple (subject ?s) (predicate ?p) (object ?o)) and implementing
OWL inferencing with Jess rules. For Jess, we used two rule processing strate-
gies: forward-chaining and hybrid (forward- and backward-chaining). With the



forward-chaining option, all data potentially relevant for the task are loaded into
the working memory at the start. This option maximises the processing speed
at the expense of memory usage. With the hybrid approach, only a minimal
amount of data needed to trigger the reasoning are loaded into the working
memory. Backward-chaining rules are used to load information from the triple
store into the rule engine working memory when needed. For data loading, we
used an approach similar to [6]: using calls to Java functions which executed
SPARQL queries on a triple store and translated results as Jess facts. This ap-
proach allowed saving the working memory but consumed more time.

For testing, we used the recipe selection task from one of our use cases. In
this task, the RDF dataset included a set of recipes (with their ingredients),
a set of user preferences, and information about available ingredients. Based
on this information, the task of the rule engine was to use rules to provide a
ranking of recipes which could be proposed to the user. In an example scenario,
we used a dataset which, after calculating the OWL-DL inferences, contained
about 280000 triples. The rule base included rules which evaluated whether a
recipe in the dataset satisfied a specific type of constraint imposed on one of
the recipe parameters: e.g., ingredients, cooking time or nutritional value. For
example, “IF the user has a preference P for ingredient X AND recipe A contains
X, add a fact declaring that A satisfies X”. As a result, the rule base produced a
ranking of recipes based on the number of satisfied constraints. The test set of 21
rules was originally composed for Jess in the forward-chaining mode. Then, these
original rules were adapted for two other cases. For the Jess hybrid mode, rules
for uploading data from the triple store were added. For BaseVISor, Jess forward-
chaining rules were translated into the BaseVISor native format. Auxiliary n-ary
relations created during inferencing were represented by several triple facts.

Table 2. Reasoner test results: Jess and BaseVISor

Jess (forward) Jess (hybrid) BaseVISor

Engine run-time (s) 81 302 4.7

Memory usage (M) 290 60 160

We tested the performance in three cases on a PC laptop with a 791MHz Intel
Core 2 Duo CPU and 2GB memory. The results are shown in Table 2. It can be
seen that BaseVISor outperformed Jess in the forward-chaining mode in terms of
both runtime and memory consumption, apparently, because of its specific sup-
port of triple facts. The hybrid mode required substantially less memory, because
unnecessary data was not loaded. However, loading data at runtime required 3
times longer than in the forward-chaining case. Although in the forward-chaining
case more data had to be loaded from the start, it took less time because assert-
ing new facts did not require checking rule activations. In general, BaseVISor
was found to provide a good trade-off between time and memory cost.



5 Conclusion and future work

In this paper, we briefly overviewed two benchmarking tests realised as part of
a specific scenario related to the realisation of smart products: products embed-
ding knowledge and smart behaviours. For this reason, the major particularity
of these two studies is that they were targeting small devices, i.e., hardware and
software environments where strong limitations might apply on the resources
available. Through these two tests, we demonstrated the importance of bench-
marks specifically designed for resource-limited environments, mainly for two
reasons: (i) because, in small devices, other dimensions than response time and
scalability should be assessed, including for example storage space and memory
and (ii) because semantic tools can achieve different levels of performance at
different scale. In our tests, we showed in particular how some of the tools that
would be judged best at a large scale would actually perform rather badly when
working with smaller datasets, and strong hardware limitations.

More importantly, these two elements made emerge the need for a new, more
flexible type of benchmarks. Indeed, almost in all cases, the selection of a given
tool is not only a matter of performance, but represents a trade-off between
performance and the availability of resources. For this reason, the comparison of
semantic technologies should not be an absolute measure, a ranking of the tools,
independent from the environment where they apply, but should rather work as
guides to elaborate this trade-off for particular scenarios and environments. In
other terms, benchmarks such as the ones presented here should evolve to become
guidelines supporting developers in selecting the right set of tools, depending on
their requirements and constraints.

6 Acknowledgements

Part of this research has been funded under the EC 7th Framework Programme,
in the context of the SmartProducts project (231204).

References

1. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. IJSWS 5(2) (2009) 1–24
2. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An analysis of the per-

formance of rule engines. In: WWW 2009, Madrid, Spain (2009) 601–610
3. d’Aquin, M., Nikolov, A., Motta, E.: How much semantic data on small devices?

In: EKAW 2010, Lisbon, Portugal (2010)
4. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence 19 (1982) 17–37
5. Mai, J., Paslaru-Bontas, E., Lin, Z.: OWL2Jess: A transformational implementation

of the OWL semantics. In: Parallel and Distributed Processing and Applications -
ISPA 2005 Workshops. (2005) 599–608

6. Bak, J., Jedrzejek, C., Falkowski, M.: Usage of the Jess engine, rules and ontology
to query a relational database. In: International Symposium on Rule Interchange
and Applications. (2009) 216–230




