Behavioral Matchmaking of Semantic Web
Services*

Zijie Cong and Alberto Fernandez

CETINIA, Universidad Rey Juan Carlos, Madrid, Spain

zijie@ia.urjc.es, alberto.fernandez@urjc.es

Abstract. Service matchmaking is an integral link of service discovery,
composition, invocation and other similar tasks under Service-Oriented
Architecture (SOA). Most current approaches measure the degree of
match of two services based merely on their I/O pairs which could leads
to false results. This paper presents an approach for matchmaking in Se-
mantic Web Services (SWS) that considers each service as a sub-graph
of the semantic network of the ontology formed by inputs, outputs, pre-
and post-conditions with contribution of syntactical information such as
keywords and textual descriptions. The similarity between services is de-
fined as the similarity between these graphs. The aim of this approach
is to reveal the internal work flow and intention of service, i.e. behav-
ior, thus it agrees with human intuition to a larger extent than existing
approaches.

1 Introduction

The original intention of adding semantic annotations to web services is to
improve the automation of service discovery, selection, invocation and inter-
operation by letting service descriptions to be machine-processable [12]. One
integral part of such automation is matchmaking among services.

Various approaches have been proposed in previous studies. Without con-
cerns about semantics of its components, one primitive method to calculate the
similarity of services is based on the syntactical information - e.g. keywords,
tag-clouds and textual descriptions.

For services with semantic information, inputs/outputs (I/O) matching is a
common method for measuring the similarity. Inputs and outputs of a seman-
tic service are instances of ontological concepts. The similarity of two services
is determined by the subsumption relation the taxonomy tree between corre-
sponding concepts of I/O pair. The result is a degree of semantic similarity,
such as EXACT, PLUG-IN, SUBSUMES and FAIL [11]. Some studies, such as [9],
aimed to achieve higher robustness and precision by combining both semantic
and syntactical approaches.

* Work partially supported by the Spanish Ministry of Science and Innovation through
grants TIN2009-13839-C03-02 and CSD2007-0022(CONSOLIDER-INGENIO 2010)

More recently, various graph based approaches have been proposed. In [7],
a service was considered as a composition of processes and thus could be rep-
resented as a finite-state machine (FSM), the similarity between services was
defined as the similarity between two FSMs. Like other similar graph-based ap-
proaches [6,5], it concentrated on structural similarity of services instead of the
semantic similarity of atomic units of functionality.

This paper presents a novel but preliminary approach for service matchmak-
ing. The main rational behind this approach is that a service could be considered
as a sub-graph (Service Behavioral Graph) of a semantic network which maps
input concepts to output concepts via elements specified in conditions, retrieved
from textual description, it reveals the behavior of services which could be a
more intuitive option for calculating the degree of match of services.

The rest of the paper is organized as follows. Section 2 shows the motivation
of this work with an example of 2 service descriptions using a shared ontology
with 20 concepts and 10 relations. The concept and main components of Ser-
vice Behavioral Graph are defined in section 3, algorithms for obtaining those
components are also shown. Section 4 describes the calculation of the degree of
match between two services and how it compromises with other studies. Finally,
in section 5 we conclude our current work with a discussion and future plans.

2 Motivation

Although an appropriate measurement of degree of match is difficult to define,
it is consensus that the result of matching should agree with human intuition.
Inputs and outputs sometimes may not provide sufficient information about
service’s behavior, and relying solely on them may lead to false results. An
example is presented in the rest of this section.

Figure 1 illustrates an ontology of publication with 20 concepts and 10 rela-
tions connecting them, this ontology is adopted from [1].

Every service description used in this paper is a 4-tuple (7, 1,0, @), where:

Sy is syntactical information of the service which may include keywords, tag-
cloud or textual description.

S(r) is a set of input concepts.

S(O) is a set of output concepts.

S(@) is a set of predicates that must be true after the execution of the service,
i.e. post-conditions.

Due to the diversity of specifications and implementations of conditions in
different service description approaches, in this paper, for the sake of simplicity,
we consider these conditions as a conjunction of predicates that are defined in
the ontology. A predicate is a binary relation between two concepts, such as
hasBirthday(Nowvelist, Date).

The preconditions are intentionally ignored as these conditions are usually
checked before the execution of the service thus they do not concern with the
actual behaviors.

’buys_‘
I '_,,JeGdS“ ‘
hgiSBirthdoy hdspace
; publishedBy.

datePubiished @

@ 3 @ writténBy isTitled
j "' @ isTied

“isTitled s

WritténBy @
ORI S

Fig. 1. An ontology of publications with 20 concepts and 10 relations, solid lines rep-
resent subClassOf relations.

contains

contains

Newspaper_article

To illustrate the problem with I/O matching approaches, we define two ser-
vices in figure 2. By using I/O matching approaches such as [11], the matchmaker
will not be able to distinguish between S; and Ss as their inputs and outputs are
identical, thus these two services matches exactly, even though the functionality
of those two services is different.

Therefore the aim of our approach is to overcome the above limitations by
exploiting the behavioral information of services.

3 Service Behavioral Graph (SBG)

To exploit the behavioral information of a service, we consider a service as a
function that maps its inputs to its outputs. In Semantic Web Services, where
inputs and outputs are ontological concepts, this mapping is usually defined by
relations in the same domain ontology. As an ontology can be represented by
a multi-relational graph where each vertex denotes a concept and each edge
denotes a relation between concepts, a service thus can be further considered as
a sub-graph of an ontology. More formally,

T = returns the birthday of a given novelist
I = {Novelist}
S1 =
O = {Date}
Q = hasBirthday(Novelist, Date)
T = published date of a novelist's earliest book
I = {Novelist}
So =
O = {Date}
Q= 0

Fig. 2. Services using the ontology of publication

Definition 1. (Service Behavioral Graph) Let G be an ontology in its graph
representation, G = (V,E) where V is the set of concepts and E is the set of
relations of heterogeneous types, where each relation is represented using a pair
< L,(V xV) >, where L is the label of the relation (e.g. hasBirthday). A service

S is denoted as Gg = (V/,E/> where V' C V and E C E. Elements of V' and

E are identified using the service description. This sub-graph of the ontology is
referred as Service Behavioral Graph (SBG).

Figure 3 shows the SBGs of S and Ss. These graphs can be discovered from
the ontology graph using critical elements and behaviorally correct paths, which
are defined in the following sections. Note that those graphs are different each
other despite the fact that their I/O descriptions coincide.

@ -- @ Behavioral Graph of S1
hasBirthday
------------------------ ---------------- Behavioral Graph of S2
datePublished writtenBy

Fig. 3. SBGs of S1 and S2

3.1 CRriticAL ELEMENTS

As we have mentioned in the beginning of this section the mapping from inputs
to outputs is defined by the relations in the domain ontology. This mapping is, in
fact, a set of paths from input concepts to output concepts, consisting of one or
more relations. There may exist multiple paths between a pair of I/O concepts,
therefore, finding proper paths is critical for describing the service’s behavior
correctly.

Such paths are determined by several components in the ontology which can
be concepts or relations, and are referred as critical elements in this paper.
Q(Post-condition) and T(Syntactical information) of service descriptions may
offer some clues to determine these critical elements.

Syntactical Information Syntactical information is valuable for revealing ser-
vice’s behaviors. For example, even though Sy(;,0) = Sz(1,0), the textual
descriptions (T) differ these two services at human-readable level. To find
the critical elements, syntactical information and ontological components’
identifiers (ID or labels) need to be processed using information retrieval
techniques [3] to transform them into a set of keywords with irrelevant words
and morphological variants removed. Then components with keywords ap-
peared in the syntactical information of the service are considered to be a
critical element. For example, in Sy, relation hasBirthday, concepts Novelist
are identified as critical elements because the words “birthday” and “novelist”
have appeared in Sy (7).

Post-conditions The post-conditions is a set of predicates that must be true
after the execution of the service, for example, conditions that are specified
in the ConditionalOutput or ConditionalEffect part of an OWL-S service
description. These predicates often connect input elements with output ele-
ments, hence they reveal important information about service’s behavior.

Figure 4 shows how critical elements can be determined and weighted. This
function takes two arguments: O is the domain ontology used by service and
S is the service description 4-tuple. Any postcondition which its domain and
range are from inputs and outputs separately is considered to be critical elements
with weight 1. Syntactical information such as textual descriptions are tokenized
and stemmed. A normalized weight computed using TF-IDF [8] technique is
assigned to each token. The TF-IDF weight measures the importance of certain
words and their corresponding ontological elements in service, the calculation
can be done with information of other services in the registry where service
advertisements are registered, most commonly a UDDI registry [4]. Ontological
elements corresponding to these tokens are considered as critical elements and
assigned with weight of its token.

1: function Critical Elements(O, S)
2: for all o € O do

3: o.weight = 0 > Initialize weights to 0
4: end for

5: for all g € S(gy do
6: if range, domain of ¢ are in S(;) and S(o) separately then
7

8

q.weight =1

: end if
9: end for
10: T «— TOKENIZE(S(1))
11: T — steM(T)
12: T — S(1)\Stoplist > Remove common words
13: for allt € T do
14: w «— TFIDF(t) > Calculate normalized tf-idf weight
15: E «— ONTOLOGYELEMENTS(O,t) N S(1,0)
16: for all e € E do
17: e.weight = w > Assign weights to the elements
18: end for
19: end for

20: return F
21: end function

Fig. 4. Algorithm for determining and weighting the critical elements

3.2 BEHAVIORALLY CORRECT PaTH (BCP)

To connect inputs with outputs, a path containing critical elements defined in
the previous section needs to be found, we refer this path as a behaviorally correct
path (BCP).

In semantic networks, concepts are usually connected by heterogeneous links,
including hierarchical relations as well as other relations. For similarity measur-
ing purpose, it is necessary to have a unique path between two elements, and
such path should not only contain the critical elements, but also be behaviorally
correct.

In [2], Aleksovski et al. considered a path to be semantically correct if and
only if no hierarchical links appear after a non-hierarchical one. For example,
in figure 1, a path {ShortStory, is_a, Book, writtenBy, Writer} is semantically
correct, while {ShortStory, is_a, Book, writtenBy, Writer, is_ a, Person} is not.

In practice, however, there is a high possibility that no semantically correct
path exists between two concept using Aleksovki’s definition. Therefore, for the
purpose of this paper, we define a behaviorally correct path as:

Definition 2. A Behaviorally Correct Path (BCP) is a path in a semantic net-
work between two concepts containing critical elements with maximum one turn
from non-hierarchical relation to hierarchical relation.

And two assumptions must be hold to ensure the existence of a BCP:

1. Any relation in an ontology is invertible.
Relations have directions from range to domain. This assumption implies

that the graph representation of an ontology is undirected as for each relation
there exists a inverse relation, e.g. if a relation contains(Newspaper, Article)
exists, although not all articles are contained in newspapers, we assume a
relation ContainedIn(Article, Newspaper) also exists.
2. All relations are inheritable from a super-concept to a sub-concept.

This assumption implies that if there exists a relation p between concepts z
and y, i.e. p(z, y), and is_a(z, z), then p(z, y). This eliminates the sequence
of subsumption relations that might be appeared in the beginning of a BCP
and also reduces the length of BCPs.

Together, definition 2, assumption 1 and 2, ensure that there always exist a
behaviorally correct path between two concepts.

1: function SBG(O, S)

2 SBG — 0

3 CE «— CRITICALELEMENTS(O, S)

4: if |[CE| > 0 then

5: for all 0 € 5oy do

6: Paths —

7 for all 7 € S(;) do

8: Paths.append(BCP from o to ¢ with maximum average weight)
9: end for
10: SBG.append(Path with maximum average weight in Paths)
11: end for
12: else
13: SBG = S(I) (@] S(o)
14: end if

15: return SBG

16: end function

Fig. 5. SBG Discovery

Figure 5 shows how a SBG is discovered. Firstly, if there are critical ele-
ments determined, for each pair of inputs and outputs, a BCP with maximum
average weight is used to represent their behavioral connection. As not all input
concepts contribute to the main behavior of the service, the path finding starts
from output concepts and for each output concept, only one input concept is
associated. The service behavioral graph is thus a set containing these paths.

If no critical elements can be identified, SBG will simply be a union of input
and output concepts.

The SBGs of S7 and S5 were depicted in figure 3

4 Service Similarity

Paolucci et al. defined four degrees of matching: EXACT, PLUG-IN, SUBSUMES
and FAIL, in their approach in [11] based on the hierarchical relation between

I/O pairs of service advertisement and request. They reflect the probability of
conducting operation correctly of an advertised service and the satisfaction of
its results with certain request. This approach guarantees the matched services
can be invoked and operated correctly at lowest level, we will use these degrees
as the baseline of our approach.

Algorithm in figure 6 computes the degree of match using approach from [11]
at the beginning. This step eliminates the services that cannot be invoked and
operated correctly even though their behaviors might be similar to certain extent.
Also, this step guarantees that in the worst case, if no critical elements were
found in the previous SBG discovery phase, i.e, SBGs are simply sets of input
elements and output elements, the result is equivalent to Paolucci’s approach.

1: function ServiceMatch(SBG®,SBG#)

2: hierarchical Degree «— HIERARCHICALMATCH(S®, §4)
3 behavioral Degree «— 0

4: if hierarchical = FAIL then

5: return < FAIL,—1 >

6: end if

7. if SBG" = S(]) or SBG* = 5(]) then

8: return < hierarchical Degree, —1 >

9: end if

10: for all Paths pr and pa in SBG® and SBG* do
11: degree «— MAXPATHMATCH(pr, pa)

12: if degree > behavioral Degree then

13: behavioral Degree < degree

14: end if

15: end for

16: return <hierarchicalDegree, behavioralDegree>

17: end function

Fig. 6. Calculation of degree of match

The result of our approach is a pair, for example using the services presented
in figure 2, the degree of match is <EXACT, 0.375>, the first element of this
pair is the degree of match using Paolucci’s approach, and the second element
is the behavioral difference of two services, this structure provides requester
more flexibility on interpreting the degree of match depends on their needs and
environment.

This difference is computed based on the differences of paths where -1 indi-
cates no behavioral matching has been done, 0 indicates an exact match. As a
path is a sequence of concepts and relations, the differences of two paths can
be defined as their edit distance. We use Levenshtein distance [10] in this paper
as presented in figure 7, other distance metrics could also be used here such as
Longest Common Sub-sequence (LCS).

: function PathMatch(P%, P*)
degree «— EprrDistack(Pf, P4)
if degree = 0 then

return 0

else
degree

return PA length+PR . length

end if

end function

Fig. 7. Distance between paths

5 Conclusion and Future work

This paper presents a novel but preliminary approach of calculating the degree of
match between two services. This approach intends to reveal the behavioral infor-
mation of services, and by comparing their similarity to achieve higher accuracy,
robustness and in agreement with human intuition. The main notion behind this
approach is that we consider a service as a sub-graph of semantic network that
connects its inputs concepts and output concepts via critical elements, referred
as Service Behavioral Graph (SBG). We use syntactical information and condi-
tions to determine the critical elements, and a SBG is discovered by exploiting
these elements.

Experiments with actual realistic test cases are necessary to access the prac-
ticability of our approach. One expectable limitation of our approach is that it
depends on the quality (in term of richness) of the ontology to a large extent
which is highly unstable in practice. Also, in open environments, services may
not use the same ontology to describe its functionality, so semantic alignments
need to be performed. Our future work includes implementation, experiments
and evaluation of this approach, also solving open issues such as efficient calcula-
tion of SBGs, reduction of the deviation caused by the instability of the quality
of ontologies and refine the degree of match.

References

1. Owls-tc version 2.2 revision 2. http://projects.semwebcentral.org/projects/owls-
tc/.

2. Z. Aleksovski, W. ten Kate, and F. van Harmelen. Exploiting the structure of
background knowledge used in ontology matching. In Ontology Matching Workshop
at International Semantic Web Conference (ISWC). Citeseer, 2006.

3. G.G. Chowdhury. Introduction to modern information retrieval. Facet, 2004.

4. L. Clement, A. Hately, C. von Riegen, T. Rogers, et al. UDDI Version 3.0. 2. UDDI
Spec Technical Committee Draft, 20041019, 2004.

5. J. Corrales, D. Grigori, and M. Bouzeghoub. Bpel processes matchmaking for
service discovery. On the Mowve to Meaningful Internet Systems 2006: CooplIS,
DOA, GADA, and ODBASE, pages 237254, 2006.

10.

11.

12.

D. Grigori, J.C. Corrales, and M. Bouzeghoub. Behavioral matchmaking for service
retrieval: Application to conversation protocols. Information Systems, 33(7-8):681—
698, 2008.

A. Giinay and P. Yolum. Structural and semantic similarity metrics for web service
matchmaking. In Proceedings of the 8th international conference on E-commerce
and web technologies, pages 129-138. Springer-Verlag, 2007.

K.S. Jones et al. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 60:493-502, 2004.

M. Klusch, B. Fries, M. Khalid, and K. Sycara. Owls-mx: Hybrid owl-s service
matchmaking. In Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the
Semantic Web, volume 142, 2005.

V. Levenshteiti. Binary codes capable of correcting deletions, insertions, and re-
versals. In Soviet Physics-Doklady, volume 10, 1966.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. The Semantic Web (ISWC 2002), pages 333-347, 2002.

K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web
services standards. In Proceedings of the International Conference on Web Services,
pages 395—401. Citeseer, 2003.

