
A purely logic-based approach to approximate
matching of Semantic Web Services

Jörg Schönfisch12, Willy Chen12, and Heiner Stuckenschmidt2

1 SysTec-CAx GmbH, München, Germany
{joerg.schoenfisch,willy.chen}@systec-cax.de

http://www.systec-cax.de
2 KR & KM Research Group, University of Mannheim, Germany

heiner@informatik.uni-mannheim.de

http://ki.informatik.uni-mannheim.de

Abstract. Most current approaches to matchmaking of semantic Web
services utilize hybrid strategies consisting of logic- and non-logic-based
similarity measures (or even no logic-based similarity at all). This is
mainly due to pure logic-based matchers achieving a good precision, but
very low recall values. We present a purely logic-based matcher imple-
mentation based on approximate subsumption and extend this approach
to take additional information about the taxonomy of the background
ontology into account. Our aim is to provide a purely logic-based match-
maker implementation, which also achieves reasonable recall levels with-
out large impact on precision.

Keywords: semantic web services, approximate matching, approximate
subsumption, logic-based

1 Motivation

Web service discovery and matchmaking is a field of ongoing research. For se-
mantic web services, logic-based reasoning offers the possibility of high precision.
However, in general it achieves only poor recall levels. Due to this, most current
matcher implementations utilize a combination of logic- and non-logic-based, or
even only non-logic-based similarity measures.

The best performing matcher during 2009’s Semantic Service Selection con-
test3 S3, URBE [15], uses only non-logic-based matching. Most of the other
matchers we found so far (SAWSDL-MX2 [8], DAML-S Matcher [14], COCOON
Glue [1], SAWSDL-iMatcher3/13) utilize a hybrid strategy, merging the results
of a logic and non-logic matching step. However, they only support coarse de-
grees of a logic match, i.e., exact, plug in, subsumes, subsumed-by, intersection
and fail [22].

LOG4SWS.KOM [18] improves this approach by defining adaptive degrees
of match and assigning numerical values to them, which can easily be combined

3 http://www-ags.dfki.uni-sb.de/~klusch/s3/s3-2009-summary.pdf



2 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

with other numerical similarity values. These numerical values are determined
through the taxonomic distance of the concepts used to annotate the service offer
and request. As a fallback strategy, LOG4SWS uses WordNet4 to determine the
similarity of interface, operation or parameter names, if no concepts are available
or an error occurs during processing. It toop part non-competitively in 2009’s
S3 as a beta version and outperformed URBE and SAWSDL-MX2 on average
precision [18].

iSeM [7] is based on concept abduction [2], which is a similar notion of ap-
proximate subsumption to the one we use in our implementation. Consequently,
it also supports approximate and more fine-grained degrees of match. Through
concept abduction iSeM determines which properties of a request or an offer pre-
vent the subsumption from succeeding and ranks request-offer pairs according to
the loss of information by omitting those properties. Additionally it implements
non-logic-based similarity measures to further improve the ranking.

Another service matcher which directly takes the structure of the taxon-
omy into account when computing matches is F-Match [21]. Yau et al. compute
semantic similarity of concepts by their distance and relationship in the taxon-
omy as proposed in a graph matching approach by Zhong et al. [23] and use
this value, together with some others, for ranking the services. Their evaluation
based on randomly generated service offers and requests shows a surprisingly
high precision and recall of 100%.

Our matcher is based on the notion of approximate subsumption as proposed
in [19]. We extend this approach in three ways: our first addition utilizes infor-
mation about the taxonomy of the background ontologies to achieve a more fine
grained ranking. The other two extensions are aimed at lowering query response
times through a slight change in the definition of approximate subsumption and
optimized query execution order. Our goal is to improve recall through approx-
imation, but keeping high precision and a fast query response time. For our
matcher we assume web services to be annotated with semantic information
according to the SAWSDL standard [9].

This paper is structured as follows: In section 2 we define approximate sub-
sumption and give an example of its usage. The concept of approximate sub-
sumption as we applied it to semantic web services and our implementation is
described in section 3. We evaluate our implementation in section 4 and conclude
in section 5.

2 Approximate Subsumption

In this section we briefly describe approximate subsumption. In [19] S-Interpre-
tations [16] are applied to description logic, assigning each concept not in the set
S the top > or bottom ⊥ concept, depending on which interpretation is used.
Consequentially, concepts not in S will be ignored by a subsumption test or cause
it to fail. The interpretation which maps concepts to the top concept is called

4 http://wordnet.princeton.edu/



Purely logic-based Semantic Web Service matching 3

upper approximation I+
S and the interpretation mapping concepts to the bottom

concept is called lower approximation I−S . By applying these approximations to
the definition of standard subsumption ∀I : I |= C v D ⇔ (Cu¬D)I = ∅ (with
C and D being concept expressions), an approximate subsumption operator is
defined: v

S
:

∀I : I |= C v
S
D ⇔ (C u ¬D)I

−
S = ∅

It is shown that this approach has the property of generalized monotonicity,
making it possible to generate weaker version of the subsumption operator with
every approximation step by decreasing the size of S. This allows to rank a
result list based on the degree the operator had to be weakened to receive a
specific result. Possible strategies for altering S include contraction by removing
concepts sequentially or permutation by creating every possible combination of
concepts in S.

A great advantage of this approach is, that it can be implemented by syn-
tactic modifications of concept expressions and then be evaluated by standard
description logic reasoners [20]. The definition of the rewriting rules for theses
modifications for the lower approximation (.)− are as follows (with A being an
atomic concept):

(A)− →⊥ if A ∈ S (1)

(¬A)− →⊥ if A ∈ S (2)

(¬C)− → ¬(C)+ (3)

(C uD)− → (C)− u (D)− (4)

(C tD)− → (C)− t (D)− (5)

The definition of the upper approximation (.)+ is analogous, only equations
1 and 2 are adapted:

(A)+ → > if A ∈ S (6)

(¬A)+ → > if A ∈ S (7)

Applying these rewriting rules to the approximate subsumption operator we
get the following alternative definition:

∀I : I |= C v
S
D ⇔ (C)− ∩ ¬(D)+ = ∅

So to check for approximate subsumption we have to create the lower approxi-
mation of a service offer and the upper approximation of the service request and
test whether the intersection is equal to the empty set.

In our implementation we call this original definition of approximate sub-
sumption Simple strategy. The following gives an example of how this strategy



4 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

is carried out5: Lets consider a search application for pizza delivery services. The
user may specify different toppings he likes to have on his pizza, and the search
then returns a number of delivery services offering pizzas with these ingredi-
ents. For example a user wants a vegetarian pizza with Broccoli and Artichoke.
Unfortunately no delivery can satisfy this wish. Subsequently, the system ap-
proximates the request by creating two new request with Broccoli and Artichoke
replaced with > respectively. Executing these two new requests, the system
discovers pizza delivery services which offer Broccoli and Mandarine pizzas or
Artichoke and Mushroom pizzas, which both might be relevant to the user. The
next approximation step would approximate both Broccoli and Artichoke to >
and subsequently return every pizza with two vegetarian toppings.

3 Applying Approximate Matching to Semantic Web
Services

This chapter explains in more detail how we applied approximate subsumption to
semantic web services and how we implemented partial matchmaking for service
discovery and which extensions we made.

The implementation consists of two parts: The first part defines the web
service ontology, processes the service offers and creates requests represented as
concepts of the ontology. The second part, a generalized matchmaker, reasons
on this ontology and computes matches to the request based on its subsumption
relation to service offers.

The typical usage of our matchmaker is divided into an offline initialization
and classification of service offers, and the online processing of requests. During
the initialization semantic annotations are extracted from SAWSDL services and
added to a service ontology. This ontology is then classified with the help of a
description logic reasoner. After the initialization any number of request can be
issued to the matchmaker without further reclassification.

3.1 Extracting Semantic Annotations

In order to build an ontology of all known web services the semantic annotations
have to be extracted from the web service descriptions. A simplified version of
a web service with SAWSDL annotation is shown in Fig. 1.

The concepts, which are extracted from the web service annotations, are
added to a service ontology. This is a minimal ontology for describing a service,
modelled in OWL [5]. It is quite similar to other upper ontologies for Web ser-
vices, like OWL-S [12] or WSMO [10], but its only classes are Service, Operation,
Input and Output and the object properties hasOperation, hasInput and hasOut-
put connecting them. Other aspects of a service, like how to connect to it, or

5 To simplify this example we do not create the lower approximation of all offered
pizzas, but only the upper approximation of the request. Nonetheless, the general
procedure stays the same.



Purely logic-based Semantic Web Service matching 5

Fig. 1. Simplified excerpt from a SAWSDL-annotated Web service

information about availability or reliability, which are present in more complex
ontologies, e.g. OWL-S or WSMO, are not modelled in our prototype. Figure 2
shows how this looks like for the Web service example from above.

pizzaDeliveryServiceSearch SubclassOf

(hasOperation some opSearchByTopping)

opSearchByTopping SubclassOf

(hasInput only Topping) and

(hasOutput only Address) and

(hasInput some Topping or hasOutput some

Address)

Fig. 2. Excerpt from the service ontology showing a web service instance

While loading a service, the approximator also counts the occurrences of each
concept used to annotate its parameters, which is important when determining
the order in which they should be approximated (cf. approximation strategies).
Furthermore, it maintains a list of cumulated occurrences, which are the sum
of a concept’s and all of its sub concepts’ occurrences throughout the whole
service ontology. This number is a better indicator for how restricting a specific
constraint of the request is than the number of occurrences of a concept alone.
For example, OWLThing (the super concept of all concepts) and OWLNothing
(the sub concept of all concepts) will most likely never be used to annotate a Web
Service, so they both have a number of occurrence of 0. However, the cumulated
occurrence of OWLThing is the sum of all other concepts’ occurrences, whereas
the cumulated occurrence of OWLNothing is still 0. This means if a service
parameter is enforced to be of type OWLNothing, this is much more restricting,
than enforcing it to be of type OWLThing6.

6 Actually, a constraint for a parameter to be of type OWLNothing is unsatisfiable
and a constraint for a parameter to be of type OWLThing is always fulfilled



6 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

3.2 Creating and Approximating Queries

Query Creation A request is represented in the same way as a normal service
offer (cf. section 3.1). There are two possibilities of creating a new request:

– A Query-by-Example approach, by which an existing annotated service is
used to create a request from it. This can be useful, if someone wants to
find a replacement for an existing service, or services with duplicate abilities
should be found.

– Input and Output parameters are specified directly and a request is built
using these, for example when a user searches a service to fulfill a specific
task.

Query Approximation The Web Service Approximator creates queries using
permutations to change the S set. Two strategies define the approximation of
concept expressions: The first strategy determines the order in which concepts
are approximated, depending on their cumulated number of occurrences. This
strategy supports three different variants, influencing the ranking of the results
(cf. [17]):

– LESS: concepts are approximated in ascending order of their cumulated num-
ber of occurrences

– MORE: concepts are approximated in descending order of their cumulated
number of occurrences

– RANDOM: concepts are approximated in a random order

The second strategy defines how fine grained the approximation should be.
The Simple variant approximates each concept of the request by replacing it
with OWLThing, which is the approach in [19] described earlier. We extended
this strategy with a variant that takes the taxonomy of the domain ontology
into account:

Taxonomy Approach Instead of replacing a concept to be approximated with
OWLThing, we use its direct super concept according to the taxonomy. We call
this strategy Taxonomy. Our definitions of lower and upper approximation for
the Taxonomy approach are the following:

(A)− → directsub(A) if A ∈ S (8)

(¬A)− → directsub(A) if A ∈ S (9)

(A)+ → directsuper(A) if A ∈ S (10)

(¬A)+ → directsuper(A) if A ∈ S (11)



Purely logic-based Semantic Web Service matching 7

The intention behind the Taxonomy strategy is to create a much more de-
tailed ranking of results and therefore achieve a higher precision than with the
Simple variant. This approach benefits especially if ontologies with a deep tax-
onomy are used for annotations and if concepts from every level of the taxonomy
are used.

Revisiting the example of the pizza delivery service search, the first approx-
imations according to the Taxonomy strategy are the following: instead of re-
placing Broccoli and Artichoke with >, we use their direct superconcept, which
in this case is Vegetable for both. The search for pizzas with Broccoli and any
other Vegetable or pizzas with Artichoke and any other Vegetable now only finds
the delivery service offering Artichoke and Mushroom pizzas. The service deliv-
ering Broccoli and Mandarine pizzas is not found during the first approximation
step, as Mandarines are a Fruit and no Vegetable. This pizza is found during
the second step, when Vegetable is further approximated to VegetarianFood, of
which Fruits are naturally are subconcept. Thus, the Broccoli and Mandarine
pizza would be considered less relevant, as the request had to be further weak-
ened to retrieve it.

Note that the approximator always generates all possible approximations of
a request at once, avoiding duplicates by checking the parameters of each re-
quest. So for each super- or subconcept of a concept, respectively, a new request
is generated. If the concept does not have a direct super- or subconcept, respec-
tively, then no approximation is created. This is only the case for OWLThing
and OWLNothing, as every other concept has OWLThing as superconcept and
OWLNothing as subconcept.

Additionally, the approximator tries to avoid term collapsing [4] by prohibit-
ing queries whose terms are all approximated to OWLThing. Term collapsing is
a negative effect of approximate subsumption, which occurs if the approximated
concept consists of conjunctions and one term is changed to OWLThing, or if it
consists of disjunctions and one concept is approximated to OWLNothing, effec-
tively turning the whole concept into OWLThing or OWLNothing, respectively.

During the creation of approximations, we generate a graph which captures
the relations between the original request and its approximations. The root node
of the graph is the original request, its direct children are the approximations
created during the first step, their children are the approximations generate from
them during the second step, and so on. This graph is later used to optimize
the execution time of the matchmaker, especially when approximating along the
taxonomy, which produces a large amount of queries: Q ∈ O(NP ), with Q being
the number of created queries, P the number of parameters the request has and
N the maximum number of superclasses a concept has. So the number of queries,
and consequentially the execution time of the matcher, grows exponentially with
the number of parameters. However, web service have mostly only a couple of
parameters, so we hope to still calculate results in a reasonable amount of time.

The object representing an approximated query also stores the step in which
it was approximated and the sum of the cardinalities of all concepts which were
approximated to create this query. These two numbers are important to deter-



8 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

mine the position of each query’s results in the final aggregated result list, as the
partial matchmaker may process queries out of approximation order, and thus
their results can not simply be appended to the list.

Query-only Approximation A drawback of the definition of approximate
subsumption in [19] is the fact, that the concepts on both sides of the opera-
tor, in our case service requests and service offers, have to be rewritten. This
means the whole ontology containing the service offers has to be approximated
and reclassified by the reasoner for each request. Obviously, given an arbitrar-
ily large service ontology, this is not feasible in a reasonable amount of time.
We therefore changed the definition of the approximate subsumption operator
to only approximate the request, leaving the concepts of the service ontology
untouched.

∀I : I |= C v
S
D ⇔ CI ∩ (D)I

+
S = ∅

According to this definition we only apply the upper approximation to the
request and test for subsumption with the service offers.

Optimizations During Query Execution As mentioned before, the approx-
imation along the taxonomy produces a large amount of queries, leading to long
delays until the matchmaker returns the results. To reduce the number of queries
which have to be executed, we take advantage of the monotonicity property of
the approximate subsumption and the graph structure created when approxi-
mating a request. The approach is based on the observation, that if two different
queries, which were created during different steps and are related as ancestor /
descendant, produce the same result lists, then, due to the monotonicity, every
query between these two queries must produce the exact same result list and
subsequently need not be executed. Our matchmaker utilizes this property by
first executing the root and leave queries of the graph, and compares their re-
sults pairwise. If the results of a pair are equal, every query between this pair
are omitted, otherwise the graph is split in two parts, and again the top and the
bottom queries of this subgraphs are executed and compared.

Intersection Query After having executed the original query and all of its
approximations, we also add all service offers to the result list, which have at
least one concept in common with the request, no matter if it is used as input
or output parameter. Surprisingly, this has a quite large impact on the precision
of the Simple strategy, as we will show in the evaluation.

4 Evaluation

In this chapter we evaluate the performance of the implemented matcher. The
following points are considered:



Purely logic-based Semantic Web Service matching 9

– Retrieval performance of the implemented matcher compared to others
– Response time to user requests

We conducted the performance tests on a Mac Pro 3,17 running Windows
XP SP3 and Java 1.6.20.

4.1 SME2

The Semantic Web Service Matchmaker Evaluation Environment8 (SME2) is a
Java-based tool developed at the German Research Center for Artificial Intel-
ligence (DFKI) and is used during the Semantic Service Selection (S3) contest
to evaluate and compare the performance of matchmakers. It supports the ad-
dition of matchmakers and test collections as a plug-in; currently collections for
OWL-S and SAWSDL and the matchmakers written by the DFKI are publicly
available.

SME2 evaluates the matchers’ performance with standard performance mea-
sures of information retrieval [11]:

– Precision: Fraction of the retrieved results, which are relevant
– Recall: Fraction of all relevant documents, which are retrieved
– Fallout: Fraction of retrieved irrelevant documents.
– F-Measure: Weighted harmonic mean of Precision and Recall.

Furthermore, the average precision for each query is computed and other statis-
tics like execution time, query response time and memory consumption are
recorded.

We use SAWSDL-TC9, which is supplied with SME2, as test collection for
our matchmaker. It consists of 894 service offers and 26 service requests. For
each request the relevant service offers are specified, allowing the calculation of
the service measures mentioned above. The services are annotated with concepts
from several different ontologies from different domains, ranging from military
over education to health care and food.

The ontology with the extracted annotations of 894 services from SAWSDL-
TC contains 2149 named and 3261 anonymous classes (SubclassOf axioms). This
ontology is then classified by the matcher using a description logic reasoner
suitable for OWL.

4.2 Comparison of Retrieval Performance

This section compares the implemented matcher’s retrieval performance to that
of SAWSDL-MX2, which is, like SME2, developed at the DFKI. It implements
several possibilities for calculating matches [6]:

7 Two 2.8 GHz Intel Xeon Quad-Core processors, 2GB RAM
8 http://www.semwebcentral.org/projects/sme2/
9 http://projects.semwebcentral.org/projects/sawsdl-tc/



10 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

– Logic-based: computes matches based on the semantic annotations of input
and output parameters

– Text similarity: uses standard information retrieval methods for finding sim-
ilar descriptions

– Structural similarity: compares the structure of services: interfaces, bindings,
number of parameter, etc.

Additionally, SAWSDL-MX2 implements a machine learning feature to support
the weighting of each of this properties, when it ranks the result list.

Table 1 gives an overview of the matchers’ overall performance. The average
precision is the average of the average precision for every query. The query
response time is the time needed on average to execute a single query. The
number of executed queries is the number of requests issued to the reasoner.
This number is only available for our implementation.

Simple Taxonomy SAWSDL-MX2

∅ precision 65.52% 73.97% 70.50%
∅ query response time 1.06sec 15.15sec 3.18sec
# executed queries 153 2487 n/a

Table 1. Overall performance of Simple, Taxonomy and SAWSDL-MX2

Overall Precision and Recall First, we will compare the overall precision
and recall of our matcher utilizing the Simple and Taxonomy strategies and
SAWSDL-MX2 (Fig. 3).

For every level of recall, Taxonomy achieves a higher precision than Simple.
Because Taxonomy returns the same services as results as Simple does, and
only refines the ranking produced by it, both strategies deliver an almost identi-
cal performance at lowest and highest recall levels. Between those, Taxonomy
shows the advantage of the fine grained approximation of concepts, achieving a
precision which is up to 30% higher than Simple’s. The Taxonomy approach
also has the highest average precision of all 3 matchers. However, its precision
is worse than that of SAWSDL-MX2 at the first quarter of the result list, where
SAWSDL-MX2 is able to reach a precision of almost 100%. Overall, the preci-
sion of both our implementations decreases slower than SAWSDL-MX2’s, which
drops below Simple’s precision towards the end of the result list.

Overall Recall and Fallout The recall/fallout diagram (Fig. 4) shows the
same tendencies as the overall recall and precision, and again emphasizes the
good proportion between precision and recall of the Taxonomy strategy. It
returns less false positives than SAWSDL-MX2, which produces almost twice as
much at full recall.



Purely logic-based Semantic Web Service matching 11

Fig. 3. Recall/Precision of Simple, Taxonomy and SAWSDL-MX2

Influence of the Intersection Query Figure 5 shows the influence of the
intersection query on the performance of the Simple and Taxonomy approach.
The recall/precision curves for Taxonomy with and without the intersection
query show only a slight difference. For Simple, however, the intersection query
increases the precision significantly; by up to 10% at full recall. The beginning of
the curves is identical between the variants with and without intersection query,
because it only adds offers to the bottom of the result list, as mentioned before,
and does not change the ranking of previous results.

4.3 Response Time to User Requests

Besides the retrieval performance, for a real world usage of the matcher, it is
also important to deliver results in a reasonable amount of time [13].

query response time ∅ median std dev cv

Simple 1054ms 892ms 438ms 0.42
Taxonomy 15204ms 7292ms 25863ms 1.70
SAWSDL-MX2 3178ms 2313ms 1541ms 0.48

Table 2. Average and median value, standard deviation (std dev) and coefficient of
variation (cv) for the query response time of some variants.



12 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

Fig. 4. Recall/Fallout of Simple, Taxonomy and SAWSDL-MX2

Table 2 shows the average value, median value, standard deviation and co-
efficient of variation of the response times the matchers need for evaluating a
single request. These numbers show that a higher precision comes at the cost of
longer wait time for the users. Simple is quite fast with about one second on
average and SAWSDL-MX2 is not much slower, taking around three seconds to
deliver results; Taxonomy uses a lot more time: 15 seconds on average.

Figure 6 and the median value, standard deviation and coefficient of variation
show, that Simple and SAWSDL-MX have quite steady query response times,
which do not vary wildly. For Taxonomy, however, the response times show huge
differences. Fortunately, most times are lower than the average, as indicated by
the median value only being half of the average precision. For some queries,
Taxonomy is faster than SAWSDL-MX, for others, there are some outliers for
which execution took around two minutes.

In general, Simple is faster than SAWSDL-MX, which is in turn faster than
Taxonomy, what corresponds directly with their average precision.

Optimization of Query Response Time The response times of Simple and
Taxonomy are already improved through the optimization described in Section
3.2. Without it, Taxonomy would need 20 seconds on average to answer a
request (Table 3). The benefits for Simple are minimal, as it only produces a
small query graph. However, Taxonomy issues almost one third less queries to
the reasoner, saving as much time for a request.



Purely logic-based Semantic Web Service matching 13

Fig. 5. Recall/Fallout of Simple, Taxonomy and SAWSDL-MX2

Fig. 6. Query response time of WSA Simple, WSA Taxonomy and SAWSDL-MX2



14 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

Simple Taxonomy

# created queries 153 3680
# executed queries 130 2487
∅ savings/request 15% 32%

∅ response time savings 3% 33%
Table 3. Number of created and executed queries, and savings through optimizations

5 Conclusion

We presented our implementation of a purely logic-based approximate web ser-
vice matcher, which is based on approximate subsumption. The results of our
evaluation are promising, especially for our goal to increase recall and still main-
tain a high precision. Considering the recall, our approach even performs better
then all other matchers contending in the S3, and still achieves competitive pre-
cision. Our extensions aimed at decreasing query response time have generally
helped to achieve a reasonable speed for our matcher, despite the additional
executed queries. However, in some special cases our implementation still needs
too much time for executing all approximations.

Future goals are to improve query performance, where we will consider several
possibilities: As the approximated queries are independent from each other, they
could be executed concurrently, but unfortunately parallelization is supported
poorly by current reasoners. Another possibility to improve the perceived per-
formance of the matcher is the implementation of an anytime behaviour, to show
the user some first results and then refine or extend the list in the background.

Long term goals are the integration of user preferences in the approximation
and ranking process, e.g., black or white lists defining which concepts should or
should not be approximated. Furthermore, the matcher could create proposals
for combining several services, which together can fulfill the users request. To
improve the matchers performance in a heterogeneous environment, where ser-
vice are annotated with concepts from different, not formally related ontologies,
an ontology alignment [3] process could improve retrieval performance.

References

1. E. Della Valle and D. Cerizza. Cocoon glue: a prototype of ”wsmo” discovery
engine for the healthcare field. In Proceedings of the WIW 2005 Workshop on
WSMO Implementations, Innsbruck, Austria, June 6-7, volume 134 of CEUR-WS,
pages 1–12, 2005.

2. T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Abductive matchmak-
ing using description logics. In INTERNATIONAL JOINT CONFERENCE ON
ARTIFICIAL INTELLIGENCE, volume 18, pages 337–342. Citeseer, 2003.

3. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag New York Inc,
2007.



Purely logic-based Semantic Web Service matching 15

4. P. Groot, H. Stuckenschmidt, and H. Wache. Approximating description logic
classification for semantic web reasoning. In European Semantic Web Conference
(ESWC), Heraklion, Greece, May 29 - June 1, volume Volume 3532 of Lecture
Notes in Computer Science (LNCS), pages 318–332. Springer, 2005.

5. W3C OWL Working Group. OWL 2 web ontology language document overview.
Technical report, W3C, October 2009. http://www.w3.org/TR/2009/REC-owl2-
overview-20091027/.

6. M. Klusch and P. Kapahnke. Semantic web service selection with ”sawsdl-mx”.
In Rubén Lara Hernandez, Tommaso Di Noia, and Ioan Toma, editors, Workshop
on Service Matchmaking and Resource Retrieval in the Semantic Web (SMRR),
Karlsruhe, Germany, October 27, volume 416 of CEUR Workshop Proceedings,
2008.

7. M. Klusch and P. Kapahnke. isem: Approximated reasoning for adaptive hybrid
selection of semantic services. In Proceedings of 4th IEEE International Conference
on Semantic Computing (ICSC), 2010.

8. M. Klusch, P. Kapahnke, and I. Zinnikus. ”sawsdl-mx2”: A machine-learning ap-
proach for integrating semantic web service matchmaking variants. In ICWS ’09:
Proceedings of the 2009 IEEE International Conference on Web Services, pages
335–342, Washington, DC, USA, 2009. IEEE Computer Society.

9. J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. ”sawsdl: Semantic annotations
for wsdl and xml schema”. IEEE Internet Computing, November / December:60
– 67, 2007.

10. H. Lausen, A. Polleres, and D. Roman. Web service model-
ing ontology (wsmo). W3C member submission, W3C, June 2005.
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/.

11. C.D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.
Cambridge Univ Pr, 2008.

12. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. Owl-s: Semantic markup for web services. W3C member submis-
sion, W3C, November 2004. http://www.w3.org/Submission/2004/SUBM-OWL-
S-20041122/.

13. R.B. Miller. Response time in man-computer conversational transactions. In
AFIPS Joint Computer Conferences 1968, San Francisco, CA, USA, December
9-11, pages 267–277. ACM, 1968.

14. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Importing the semantic web
in ”uddi”. In Web services, E-Business, and the Semantic Web, (WES) CAiSE-
Workshop, Toronto, Canada, May 27-28, volume 2512 of LNCS, pages 815–821.
Springer, 2002.

15. P. Plebani and B. Pernici. Urbe: Web service retrieval based on similarity evalu-
ation. IEEE Transactions on Knowledge and Data Engineering, 21:1629 – 1642,
2009.

16. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artificial
Intelligence, 74(2):249–310, 1995.

17. S. Schlobach, E. Blaauw, M. El Kebir, A. Ten Teije, F. Van Harmelen, S. Bortoli,
et al. Anytime classification by ontology approximation. In Ruzica Piskac, Frank
van Harmelen, and Ning Zhong, editors, New forms of reasoning for the Semantic
Web, volume 291 of CEUR-WS, pages 60–74, 2007.

18. S. Schulte, U. Lampe, J. Eckert, and R. Steinmetz. ”log4sws.kom”: Self-adapting
semantic web service discovery for ”sawsdl”. In IEEE Congress on Services, Miami,
FL, USA, July 5-10, pages 511–518. IEEE Computer Society, 2010.



16 Jörg Schönfisch, Willy Chen, Heiner Stuckenschmidt

19. H. Stuckenschmidt. Partial matchmaking using approximate subsumption. In
Proceedings of the 22nd Conference on Artificial Intelligence (AAAI-07), pages
1459–1464, Vancouver, British Columbia, Canada, July 2007. AAAI Press.

20. H. Stuckenschmidt and M. Kolb. Partial matchmaking for complex product-
and service descriptions. In Proceedings of Multikonferenz Wirtschaftsinformatik
(MKWI 2008), Special Track on Semantic Web Technology in Business Informa-
tion Systems, Munich, Germany, February 26-28, 2008.

21. S.S. Yau and J. Liu. Functionality-based service matchmaking for service-oriented
architecture. In International Symposium on Autonomous Decentralized Systems
(ISADS’07), Sedona, USA, March 21-23. IEEE Computer society, 2007.

22. A.M. Zaremski and J.M. Wing. Signature matching: a tool for using software
libraries. ACM Transactions on Software Engineering and Methodology (TOSEM),
4(2):170, 1995.

23. J. Zhong, H. Zhu, J. Li, and Y. Yu. Conceptual graph matching for semantic search.
In International Conference on Conceptual Structures: Integration and Interfaces
(ICCS), Borovets, Bulgaria, July 15-19, volume 2393 of LNCS, pages 92–106, 2002.


