
Challenges in Linked Stream Data Processing: A
Position Paper

Danh Le-Phuoc, Josiane Xavier Parreira, and Manfred Hauswirth

Digital Enterprise Research Institute,
National University of Ireland, Galway

Galway, Ireland
{danh.lephuoc,josiane.parreira,manfred.hauswirth}@deri.org

Abstract. Recently, there has been efforts in lifting the content pro-
duced by stream sources, e.g. sensors, to a semantic level. In particular,
there is ongoing work in representing stream data following the standards
of Linked Data, creating what it is called Linked Stream Data. The ad-
vantages of Linked Stream Data are manyfold: adding semantics allows
the search and exploration of sensor data without any prior knowledge
of the data source, and using the principles of Linked Data facilitates
the integration of stream data to the increasing number of data collec-
tions that form the Linked Open Data cloud, enabling a new range of
applications.
However, the highly dynamic and temporal nature of Linked Stream
Data poses many challenges in making Linked Stream Data a reality
that users and applications can benefit from. In this position paper we
address the challenges in Linked Stream Data processing. We will focus
on data representation and storage, query model and query processing,
highlighting the main differences compared to Linked Data processing
and looking at the approaches that currently address these challenges,
showing what has been done and what is still needed, suggesting ideas
for future research.

Keywords: Linked stream, data storage, query processing, position pa-
per

1 Introduction

Stream data sources, in particular sensors, are very popular nowadays and can
be found everywhere, for instance in mobile phones (accelerometer, compass,
etc.), in weather observation stations (temperature, humidity, etc.), in the health
care domain (heart rate, blood pressure monitors, etc.), in devices for tracking
people’s and object’s locations (GPS, RFID, etc.), and in the Web at large, with
online communities services such as Twitter and Facebook delivering real time
data on various topics (RSS or Atom feeds, etc.), where users play the role of
citizen sensors [13].

Sensed data is often archived or streamed as raw data, but rarely associated
with enough metadata describing its meaning. Meaning of sensor data includes



2 D. Le-Phuoc, J. X. Parreira, and M. Hauswirth

the feature of interest, the specification of measuring devices, accuracy, measur-
ing condition, scenario of measurements, location, etc. Such metadata is essential
for search and exploration when the user is confronted with large numbers of
sensors and gigabytes of sensor data. The lack of metadata also makes the in-
tegration of sensor data with other data sources a difficult and labour-intensive
task.

There have been a lot of efforts in employing Semantic Web technology to
semantically enrich sensor data [8, 14, 16, 18, 21]. In order to allow easy integra-
tion with other data sources available in Linked Open Data (LOD) cloud, they
suggest that sensor data sources should be published following the Linked Data
principles [6] which, among other things, makes the data accessible through a
user-friendly URI, creating what is called Linked Data Stream [17]. However, the
state-of-the-art Semantic Web technologies are inadequate for enabling Linked
Data Stream processing, due to the highly dynamic and temporal aspects of the
data.

In this paper we address the challenges of Linked Stream Data processing,
focusing on data representation and storage, query model and query processing.
We highlight the main differences compared to Linked Data processing which
prevent standard techniques to be directly applied. Then, we move on the ap-
proaches that currently address these challenges, showing what has been done
and what is still needed, suggesting ideas for future research. The remainder of
this paper is organized as following. The section 2 focuses on the data represen-
tation and the need of new query models. The query processing and integration
with other data sources is addressed in section 3. Section 4 concludes the paper
and gives some final remarks on the topic.

2 Data Representation and Query Model

Linked Stream Data follows the standards of Linked Data, therefore we believe
that it should be represented based on RDF, a widely used standard for Linked
Data. A RDF representation of stream data, or RDF Stream, extends RDF by
adding temporal information. There is already ongoing work that follows this
principle: for stream data, CQL [2] defines a relational model as a bag of (pos-
sibly infinite) timestamped tuples. For RDF data, the counterpart of tuples are
triples, so approaches like StreamingSPARQL [7] and C-SPARQL [5] suggest to
add temporal labels to RDF triples to represent stream data as RDF Stream.
In a similar way, efforts like [19] suggest to annotate RDF triples with temporal
information. However, since there is no RDF standard that supports tempo-
ral data, different approaches diverge in their representation. To overcome this,
we suggest a general representation that applies RDF temporal notations [11]
for representing RDF Stream. With these notations, a RDF Stream data can
be denoted as a RDF temporal graph which is a set of temporal triples, the
counterpart of timestamped tuples. Adapting current approaches to this general
representation should be straightforward.

With the RDF Stream defined, we now need to model queries over Linked
Stream Data. Similar to stream data, queries are expected to be continuous,
i.e. they are likely to be valid for a certain time period. We suggest a query
model based on CQL. CQL consists of query fragments inherited from relational



Challenges in Linked Stream Data Processing: A Position Paper 3

query models, plus three new data mappings operators: relational-to-relational
mapping, stream-to-relational mapping, and relational-to-stream mapping. Fol-
lowing the same idea, we suggest to define operators to map RDF temporal
graphs to RDF graphs and vice versa. The idea of “snapshots” of RDF temporal
graphs enables the creation of finite RDF graphs from a temporal graph [11].
For this, sliding windows operators are defined over RDF streams as follows: as
RDF Streams can be mapped to RDF fragments, a query model for RDF Stream
can be built by extending SPARQL’s query pattern. By employing sliding win-
dow operators, a window-based graph pattern can be added to SPARQL [15]
to enable continuous query on RDF Stream. URIs are assigned to RDF Stream
data, as suggested by Sequeda and Cochor [17]. Assigning URIs to RDF streams
not only allows to access the RDF streams as materialized data but also enables
the query processor to treat the RDF streams as RDF nodes, such that other
SPARQL query patterns can be directly applied.

The suggested query model is simple yet quite powerful. To demonstrate
it we use the following query example: “whenever a car is within 2km of a
junction for which a speed sensor and a traffic camera is available, report the
car’s average speed and camera image”. For that we assume we have sensors
streaming images captured by traffic cameras and sensors that can track the
speed of cars passing by. We also assume that we have these two types of
sensors allocated along different streets, and that cars contain GPS sensors
that can stream the car’s current location. Finally, there is a metadata graph
http://sensors.deri.org/metadata containing all other information about
these sensors, such as geographic location. Figure 1 shows the example query
written using SPARQL query patterns and window-based graph patterns, where
http://sensors.deri.org/streams/mygps/ is the URI of the GPS location
stream and spatial:distant is a built-in function returning the distant between
two coordinates in kilometers.

SELECT ?junctionName ?snapShot AVERAGE(?speed) as avgSpeed
FROM NAMED <http://sensors.deri.org/streams/mygps/> [now] as ?gps
FROM NAMED ?trafficcamera [now] as ?junctionImage
FROM NAMED ?trafficsensor [RANGE 30 seconds] as ?carSpeed
FROM NAMED <http://sensors.deri.org/metadata>
WHERE {

GRAPH ?junctionImage {?camera cam:hasSnapShot ?snapShot}
GRAPH ?gps {?car geo:lat ?carLat.?car geo:long ?carLon}
GRAPH ?carSpeed {?car traffic:passbySpeed ?speed}
GRAPH <http://sensors.deri.org/metadata> {
?trafficcamera geo:locatedAt ?junctionLoc.
?traffisensor geo:locatedAt ?junctionLoc.
?junctionLoc geo:lat ?juncLat.
?junctionLoc geo:long ?juncLong.
?junctionLoc geo:name ?junctionName.
FILTER {spatial:distant(?carLat,?carLon,?juncLat,?juncLong)<=2}

}
}
GROUP BY ?speed

Fig. 1. Example of a continuous query over Linked Stream Data.

The query first gets the car’s current location (given by the GPS), and joins
it with the graph containing the metadata, which provides the identifiers for the
speed and traffic camera sensors at the junctions. Since the URIs of the traffic
camera streams and the traffic sensor streams needed are unknown and subject



4 D. Le-Phuoc, J. X. Parreira, and M. Hauswirth

to change (since they depend on the car’s location), they are represented as
variables in the graph query pattern. The sliding-window operators, [NOW] for
current snapshot and [RANGE] for snapshots within a time range, are applied
over the continuous traffic camera and speed stream. The result of these opera-
tors are materialized and represented as RDF graphs that can be processed by
the SPARQL query processor. Details of the proposed formalization for RDF
Streams and the model for continuous query over Linked Stream Data are pre-
sented in [12].

3 Query Processing

Even though our proposed query model allows queries to be executed using
standard query processors for triplestores, the execution is very inefficient, since
they do not support continuous queries. That means that each query would
have to be repeatedly issued as often as the updates on the streams, for as long
as the query is valid, every time checking if the new values satisfy the query’s
conditions. In some cases, as in the example query from previous section, the
query is valid for a long period of time, which make this approach prohibitive.
StreamingSPARQL has addressed this issue by having translation rules that
translate continuous queries to SPARQL algebras and sliding-window operators.
Although it gives a solution for handling continuous queries, this approach is
still quite inefficient, since triplestores are mostly based on relational database
storage, which are proved to be inefficient for data with high update rates [3].
To solution proposed by C-SPARQL combines triple stores with data stream
management systems (DSMS). When a continuous query arrives, it is first split
into static and dynamic parts. The framework orchestrator loads bindings of the
static parts into relations, and the query is executed by processing the stream
data against these relations. Even though it is more efficient than the method
used in StreamingSPARQL, C-SPARQL does not take advantage that Linked
Stream Data can be combined with existing Linked Data collections. Both stream
data management and triple storage systems are used independently as “black
boxes”, therefore C-SPARQL may miss out on additional potential for optimiza-
tion over the unified data. Both StreamingSPARQL and C-SPARQL solutions
are not very novel, but they rather extend/combine existing query processing
approaches. We suggest to look deeper into important aspects of continuous
query processing over integrated stream and non-stream data, such as memory
consumption, caching, and query optimization, to derive more efficient solutions.

A major issue in continuous query processing is memory consumption. It
is common that Linked Stream Data processing involves a large amount of
data that is likely not to fit into main memory. Therefore, intermediate results
need to be stored on disk and later reloaded for further processing. Since disk
reads/writes are generally expensive minimizing such operations becomes very
important. One approach to the problem is to apply dictionary encoding, which
is commonly used by triplestores [1, 9, 10]. Dictionary encoding maps node val-
ues (which can be URIs, blank nodes or literal string values) to integer values,
which reduces the size of each triple, allowing more triples to fit into memory.
The drawback of dictionary encoding is that the cost of keeping the dictionary
of mappings might be too high for very dynamic data.



Challenges in Linked Stream Data Processing: A Position Paper 5

In applications that involves a combination of many data sources, especially if
some of them are not stream sources, the performance of the query processor can
be greatly improved if some of the intermediate results are cached, for instance,
for the input data that do not change very often during the duration of the query.
Results reported in [12] demonstrate the benefits of caching. Even for the fast
changing stream sources, we can think of caching policies for intermediate results
that are shared among multiple queries. In both cases, a mechanism to decide
when and what to cache that adapts to the changes of the data is needed [4].

Traditional relational databases are equipped with query optimizers which
are responsible for finding the best execution plan. Such feature is also desirable
in Linked Stream Data processing. A query optimizer typically computes the
optimal query plan in the compiling phase using the statistical distribution of
the data. However, in context of stream data, this optimizing technique does not
yield satisfying results, as the distribution of the data changes during run-time.
The CQELS system [12] provides an adaptive cost-based query optimization
algorithm for dynamic data sources, such as stream data. This query optimizer
retains a subset of the possible execution plans and, at query time, updates their
respective costs and chooses the least expensive one for executing the query at
this given point in time. However, depending on the query, the search space
for finding the optimal plan might be too big, so heuristics are needed. One
suggestion would be to break the query into simpler sub-queries and optimize
them separately. In addition, combining caching and query optimization could
lead to improvements in the performance.

Further ideas to improve continuous query processing are controlling the
sampling rate of the input stream data and building stochastic/statistical model
for predicting data series. Both ideas aim at reducing the number of data that
needs to be retrieved for query evaluation. The former suggest to sample the
data from stream source in a slower rate than the data is produced. While this
results in lost of information, there are many applications in which sampling
might suffice. The latter consists in modeling the stream source, such that the
data values can be predicted, avoiding access to the stream source. In both cases,
a combination of prior knowledge derived from historical data, human knowledge
in the form of processing rules and reasoners is needed. In particular, reusing
domain knowledge represented as ontologies and rules, and performing reasoning
in continuous query processing is an open and interesting research area [20].

4 Conclusion

This position paper provides an overall picture of a new emerging research area,
Linked Stream Data processing. We have addressed the main challenges in this
area regarding data representation and storage, query model and query pro-
cessing. We have shown why standard Semantic Web technologies can not be
directly applied, and highlighted research that is currently being carried out to
solve these issues. However, there is still several open issues and our paper have
also suggested ideas for future research.



6 D. Le-Phuoc, J. X. Parreira, and M. Hauswirth

5 Acknowledgements
This work has been supported by the Science Foundation Ireland under Grant
No. SFI/08/CE/I1380 (Lion-2) and the Irish Research Council for Science, En-
gineering and Technology (IRCSET).

References

1. D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web
data management using vertical partitioning. In VLDB, pages 411–422, 2007.

2. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, 2006.

3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In PODS, pages 1–16. ACM, 2002.

4. S. Babu, K. Munagala, J. Widom, and R. Motwani. Adaptive caching for contin-
uous queries. In ICDE, pages 118–129, 2005.

5. D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus. An execution environment
for c-sparql queries. In EDBT, pages 441–452. ACM, 2010.

6. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Inter-
national Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

7. A. Bolles, M. Grawunder, and J. Jacobi. Streaming sparql extending sparql to
process data streams. In ESWC, pages 448–462, 2008.

8. E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov, and F. Ye. A
semantics-based middleware for utilizing heterogeneous sensor networks. In 3rd
IEEE international conference on Distributed computing in sensor systems, pages
174–188, 2007.

9. E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient SQL-based RDF
querying scheme. In VLDB, pages 1216–1227, 2005.

10. J. B. et al. Sesame: An architecture for storing and querying rdf data and schema
information. In Spinning the Semantic Web, 2003.

11. C. Gutierrez, C. A. Hurtado, and A. Vaisman. Introducing Time into RDF. IEEE
Transactions on Knowledge and Data Engineering, 19:207–218, 2007.

12. D. Le-Phuoc, J. X. Parreira, M. Hausenblas, and M. Hauswirth. Continuous query
optimization and evaluation over unified linked stream data and linked open data.
Technical Report DERI-TR-2010-09-27, DERI, IDA Business Park, Lower Dangan,
Galway, Ireland, 9 2010.

13. M. Nagarajan, K. Gomadam, A. P. Sheth, A. Ranabahu, R. Mutharaju, and
A. Jadhav. Spatio-temporal-thematic analysis of citizen sensor data: Challenges
and experiences. In WISE, pages 539–553, 2009.

14. H. Patni, C. Henson, and A. Sheth. Linked sensor data. In CTS, 2010.
15. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.

ACM Trans. Database Syst., 34(3):1–45, 2009.
16. A. Rodŕıguez, R. McGrath, Y. Liu, and J. Myers. Semantic management of stream-

ing data. In SSN, pages 80–95, 2009.
17. J. F. Sequeda and O. Corcho. Linked stream data: A position paper. In SSN,

pages 148–157, 2009.
18. A. P. Sheth, C. A. Henson, and S. S. Sahoo. Semantic Sensor Web. IEEE Internet

Computing, 12(4):78–83, 2008.
19. U. Straccia, N. Lopes, G. Lukacsy, and A. Polleres. A general framework for

representing and reasoning with annotated semantic web data. In AAAI, 2010.
20. G. Unel and D. Roman. Stream reasoning: A survey and further research directions.

In FQAS, pages 653–662, 2009.
21. K. Whitehouse, F. Zhao, and J. Liu. Semantic Streams: A Framework for Com-

posable Semantic Interpretation of Sensor Data. In EWSN, pages 5–20, 2006.


