
Semantics-based Plug-and-Play Configuration of

Sensor Network Services

Mukaddim Pathan, Kerry Taylor and Michael Compton

CSIRO ICT Centre, Canberra, ACT 2601, Australia

{mukaddim.pathan, kerry.taylor, michael.compton}@csiro.au

Abstract. A sensor network is expected to provide effective delivery of its

services by taking an appropriate action based on one or more situations that it

senses in the environment. However, due to the dynamism of application

requirements and user context, it is often required to re-configure services from

a sensor network to meet specific application needs. This paper is an attempt to

enable dynamic adaptation of sensor network services to environmental changes

with minimal human intervention. We propose a semantics-based architecture

that uses a publish/subscribe pattern to enable self-configuration of sensor

network services and potentially alleviate the heavy burden of programming

sensor networks. We envisage an environment with the plug-and-play concept,

where sensor networks, sensor nodes and sensors are dynamically reconfigured,

ensuring minimal disruption to the delivery of higher order information

services. We thus allow a client application to interact with the system and

uniformly access sensor services, yet hiding the complexity of the system.

1. Introduction

Recent years have witnessed the emergence of computationally-enabled sensors,

along with the rapid development and deployment of applications that use sensor data

[1, 39]. A sensor network perceives the environment, monitors different parameters

and gathers data according to an application purpose. The capabilities of a sensor

network are not just limited to observing and forwarding raw sensor readings. Sensor

networks revolutionize sensing in a wide range of application domains. They provide

different services, ranging from home automation to process monitoring, healthcare

analysis, weather forecasting, military situation awareness, and traffic control.

Sensor networks are often used in uncontrollable environments, whereby users

may not have precise information about the sensing data or network characteristics

[2]. Moreover, these properties can change over the lifetime of a network deployment,

due to events such as signal quality degradation, isolated failures, resource addition,

and sensor movement. As a consequence, sensor services must be re-configured to

make use of the new context information and resources. There should be the provision

to autonomously adapt, i.e. self-configure, the sensor network services according to

application scenarios and context, with enhanced accessibility and reusability.

The self-configuration feature in a sensor network would enable autonomous

structuring of contextual information and resources thus making them available to

services. It is proposed as one of the means to make a system scalable and robust in

the presence of changes, supporting dynamic adaptation [17]. It also allows service

customization and supports employing semantic technologies. A self-configurable

sensor network service can be built through a combination of process changes,

technology evolution, architecture and open industry standards.

Although there are several research works in the autonomic computing [12, 22],

model-driven engineering [31, 38], overlay networks [21], service computing [20,

36], and sensor network [2, 5, 7] domains to deal with the self-* properties of a

system, there is the need for a detailed architecture for self-configuration of sensor

services. Our research is a step towards addressing this issue by enabling a sensor

network to understand the general and specific context it operates in, i.e. the physical,

environmental and application-specific context. The underlying focus is to orchestrate

system activities according to an individual context, so as to provide a range of self-

configurable services that are not possible with the current sensor configurations.

We propose a rich and powerful semantics-based architecture to recognize relevant

environmental changes and thus assist the self-configuration of sensor network

services. The need for a bottom-up sensor network description is addressed by taking

advantage of the W3C SSN-XG ontology1. This OWL [11] ontology defines sensing

concepts as axioms in the TBox and grounded data about particular configurations as

ABox instances. In addition, a semantic-based publish/subscribe approach is followed

for self-registration of configuration details such that high level network services, e.g.

databases, reporting services and user-specified tasks, may be informed of changes of

significance to them so they can adapt their behavior accordingly. For example, with

the aid of our approach, the introduction of an additional thermistor to a sensor node

measuring soil temperature may cause an application program to be recompiled and

re-deployed on the sensor network to use the additional capability. The main

contributions of this paper are:

1. An architectural description for self-configuration of sensor network services in

order to alleviate the heavy burden of programming sensor networks.

2. A semantic-based publish/subscribe approach as a building block to support

dynamic service adaptation to changes.

3. An approach for client applications to interact with a wide range of services in a

common way, thus providing a transparent view of the system complexity.

The rest of this paper is structured as follows. Section 2 sets the stage by detailing

design considerations and our approach for self-configuration of sensor services. It is

followed by a comparative analysis of related work to highlight the novelty of our

work. The proposed architecture and associated research challenges are presented in

Section 4 and Section 5, respectively. The system model is detailed in Section 6 and

implementation plan follows next. The paper is concluded in Section 8.

2. Self-Configuration of Sensor Network Services

The self-configuration ability can assist a sensor network service to dynamically adapt

to the changing environment, including the deployment of new components or the

1 http://www.w3.org/2005/Incubator/ssn

removal of existing ones, or sudden changes in the system characteristics. These

variations can happen either as random, periodic events or gradual evolutionary

changes in the system. The underlying principle for building self-configuring sensor

network services is to provide fundamental mechanisms upon which other networking

and system services may be spontaneously specified and reconfigured [20]. To make

a sensor network service self-configurable, the following conditions must be met:

 The tasks involved in the configuration of a service are automated.

 The automation process is initiated based on situations that can be observed or

detected in the sensor network system.

 An authoritative entity in the sensor network must possess sufficient knowledge

of sensor network service configuration, resources, policies, and observed data.

On satisfying these conditions, it is possible to assemble the automated functions in

a set of composed processes to allow a sensor network service to be self-configurable.

These processes can be governed to collect necessary details from the system, analyze

them to determine the required configuration changes for a sensor service, create a

plan or action sequence specifying the necessary changes, and perform those actions.

2.1. Our Approach

Semantic technologies [28] are often used to enable sensor network services and

applications by providing a universally accessible platform that allows data to be

shared and processed by automated tools, and by providing machine-understandable

semantics of sensed data for automatic information processing and exchange. The use

of semantic technologies assists the integration of heterogeneous sensor resources that

need to interoperate, and support the automation of service configurations. This

semantic-based approach can provide a powerful way to express the context and

sensor capabilities, thus serving the vision of self-configuration of sensor network

services. It is particularly applicable as the full service description of a sensor network

system can never be known in advance.

To enable self-configuration of a sensor service, it is required to: i) define the

service configuration in a standard, machine readable format; ii) publish the definition

via a registry in order to make it discoverable; and iii) support a protocol to

communicate with client applications. We follow a semantic-based publish/subscribe

approach to list the available configurations. A repository provides necessary

information about the underlying sensor networks in terms of observations,

measurements, and sensor capabilities to be used for facilitating the self-configuration

activities when certain events occur. The publish/subscribe interactions well adapt to

the needs of self-configuration of sensor services. The main goal of such a mechanism

is the decoupling of publishers and subscribers in time, space and synchronization.

An ontology [8] can be used to describe various aspects of a sensor network

service and bridge the gap between services (re)usable in various scenarios and

requirements in the context of an individual client application. An ontology provides a

medium for capturing and reusing the knowledge and experience gained from prior

efforts, it thus leads to a great level of automation at the semantic level. Our approach

may also involve using ―smart-sensors‖ capable of self-describing and directly

providing intermediate features and capabilities using ontology so as to seamlessly

enable activity recognition when placed into an existing infrastructure.

Dynamic adaptation copes with changes in sensor configurations and application

context. When there are changes, the runtime information is fed into the related self-

configuration context ontology using a feedback mechanism. The changes trigger the

execution of self-configuration logic for dynamic adaptation via monitoring, analysis,

planning and execution. With this approach, we aim to achieve extensibility,

performance, and scalability and lay a foundation for the self-configuration activities.

3. Related Work

Several research works focus on semantic-based dynamic service adaptation, sensor

configuration programming and the creation of context-oriented overlays. In this

section, we first cover the programming approaches in existing literature, and then

provide a comparative analysis of related research work.

3.1. Programming Models

Existing literature [23, 32] reports several approaches for programming a sensor

network. In full-image code update [30], a monolithic binary image of an entire

application is generated to fit into a single packet and is distributed by the source to

all nodes within a broadcast domain. Partial-image code update [13] calculates code

differences to be integrated into the program image and deliver them to target nodes.

It provides similar flexibility as full-image update, however, at a significantly lower

cost. In a node-level approach, programs are generally assembled on a server by

combining application specific code, library routines, configuration information, and

operation system into a single image that can be delivered to a node. Some

middleware performs dynamic update by replacing or reconfiguring components with

the use of Virtual Machines (VMs). VMs provide a more cost efficient approach to

update application level functionality of the system. However, the VM scripts are

highly restricted in the flexibility of updates [2]. The Marcoprogramming approach

involves writing a single program for the entire network, rather than for individual

nodes in the network. The program is then de-globalized by the compiler to convert it

into elements for distributing to individual nodes [19, 32]. There also exists work

using semantic representations based on an ontology to support the programming of a

heterogeneous sensor network [33].

In our work, we endeavor to use declarative macroprogramming approach for an

overlay architecture to enable self-configuration of sensor network services. This is

due to the flexibility and convenience of programming overlays in a highly compact

and reusable form [21]. The programmer specifies the logic of the program, typically

in some variant of first order logic. Then it is left up to the execution engine to supply

a control flow that implements the logic. Specifically, we aim to use Snlog [6], a

deductive declarative programming language, which is derived from declarative

models for building overlays. We believe that our approach promises the advantages

of ease of specification and code reuse.

3.2. Overview of Related Systems

Most existing methodologies for system and service configurations are focused on a

specific engineering technique. Some of them are largely not extensible and do not

support dynamic adaptation to the specific characteristics of individual application

scenarios and context.

Semantically-enabled Heterogeneous Service Architecture and Platforms

Engineering (SHAPE) [31] provides an integrated development environment that

brings together the Model-Driven Engineering (MDE) methodology with the Service-

Oriented Architecture (SOA) paradigm. The Real World Internet [25] project focuses

on the management, scalability, and heterogeneity of devices and users. It aims to

facilitate the dynamic creation of context and actuation services from elementary

sensing, actuation, processing and reuse of sensor resources for a large number of

applications. The OPPORTUNITY [27] project aims to build goal-oriented sensor

assemblies that are spontaneously arising and self-organizing to achieve a common

activity or context recognition goal. Hydra [41] follows a semantic Web-based self-

management approach, supported by a set of self-management context ontologies.

The CONNECT [29] project focuses on enabling automated protocol mediation

through a formalization technique to enable seamless system composition. The SANY

consortium [14] provides a standard open architecture and a set of basic services for

integration of sensors, sensor networks, and sensor services. It also recognizes the

OGC’s Sensor Web Enablement (SWE) [3] as one of the key technologies to support

self-organizing and self-healing in sensor networks.

While our work is related to these research projects, we differ in that the service

customization and configuration techniques in the above projects are limited to low-

level technical aspects, whereas we seek to insulate client applications from the low-

level details. Some of the above works use SensorML or XML-based descriptions of

sensor configurations, which is not usable in our context due to not supporting

reasoning and vocabulary of semantic descriptions. In addition, we seek to provide a

comprehensive mapping of the SSN-XG ontology and OGC SWE standards. Many of

the design considerations, i.e. structural and operational requirements, for our

architecture are similar to that of ORCHESTRA [36], which provides a service-

oriented spatial data infrastructure. Our work also has some similarity to the P2

system [21] that uses a declarative logic language to express overlays in a highly

compact and reusable form.

In recent years, a few research work have explored the use of semantics for sensor

networks and publish/subscribe systems, such as semantic-based service framework

for query processing [18], sensor plug and play [4], semantic filtering in an XML-

based publish/subscribe infrastructure [35], an ontology-based publish/subscribe

system [37], semantic-enabled publish/subscribe middleware [9, 26], and semantic-

based publish/subscribe systems [24, 40]. While they are appealing, none of them

focuses on the self-configuration aspect as we do. Many of them do not make use of

reasoning or domain knowledge in ontologies to aid the identification of semantically

relevant service configurations and matching them to subscribers. Moreover, most of

them suffer from scalability limitations with the increase of system size, and usually

do not work well under a large number of application subscriptions and a high volume

of service configurations. In our work, we aim to address these limitations.

4. The Architecture

The aim of self-configuration is that the service will re-configure itself so as to again

either satisfy the changed application context, scenario, and/or environment. The

requirement specification for a self-configurable sensor network service is not only

functional behavior, but also those non-functional properties such as response time,

performance, reliability, security, and that requirement may well include optimization.

Based on the design considerations (Section 2.1), in Figure 1, we present an

architecture for self-configuration of sensor services, comprising three key layers:

Sensor network physical infrastructure: At this layer, heterogeneous sensor nodes

are assembled and are placed at distributed locations. Each sensor node contains a

battery power source, wireless communications, computation unit, multiple sensing

modality, and memory. Sensor nodes produce a large amount of environmental data.

Collected data from sensor networks are often archived or streamed as raw data, but

can be annotated with metadata, by an application-specific data enrichment service

from the upper layer. Meaning of sensor data includes the feature of interest, the

specification of measuring devices, accuracy, scenario of measurements, and location.

Application-Specific Network
and System Services

Self-Configurable
Sensor Services Overlay

Sensor Network
Physical Infrastructure

Analyze

Plan

Execute

Authoritative
Entity

Semantic-Based
Sensor Service
Configurations

Monitor
Service Lookup

(Application requirements

and user context)

Sensor Node Composition

(Rules and policies)

Dynamic Adaptation
(Decision theory and

self-configuration)

Sensor Data

Repository

Manager

Sensor

Network

Management

Distributed

Query

Processing

Data-Centric

Routing

Location

Services

Information

Dissemination

and Caching

Data and

Query

Aggregation

Security and

Privacy

Quality

Control

Addressing,

Naming and

Binding

Registry

<Subscription>

Service
Subscriber

(Client
Applications)

<Publish>

Fig. 1. Architecture to enable self-configuration of sensor network services.

Application-specific network and system services: This layer provides network

and systems services to support self-configuration. Among others, they may include

data-centric routing, attribute-based addressing mechanisms, location services,

naming and binding services, information dissemination and aggregation, caching and

security services. These services would use simpler communication interfaces and

abstraction than the raw communication interface. They should aid to enhance the

overall performance, such as throughput and delay.

Self-configurable sensor network services overlay: This layer forms the basic

functionalities of a semantic-based publish/subscribe system. At the heart of this layer

are an Authoritative Entity (AE) and a central registry. The registry publishes sensor

capabilities and semantic-based service configurations according to an ontology, and

allows client applications to subscribe to them. The registry can be user defined in-

memory, governance repository or database-driven. AE interacts with this registry

and governs the operations of sensor network services. A semantic matching

capability [35] is deployed to notify matched subscribers about published service

configurations. Upon receiving notification on an observed change, a sensor network

service adapts to the modified context, i.e. self-configure itself, by going through

monitoring, analyzing, planning and execution processes. These processes are

managed by AE. We detail on these processes in the next section.

4.1. Self-Configuration Management

The automated processes provided by AE to manage self-configuration are:

Monitoring process: It provides active monitoring to collect, aggregate, filter and

report details gathered from a sensor network system. The data collected by this

process may include information about application scenarios, context, service

configuration, status, offered capability and throughput. Some of the data is static or

changes slowly, whereas other data is dynamic, changing continuously over time.

Analyzing process: It provides the mechanisms to correlate and model complex

situations, e.g. time series forecasting and queuing models, to allow AE to learn about

the system and help predict future situations. For example: the requirement to enforce

a change may occur when the analyzing process determines that there is a modified

service configuration to meet the application context.

Planning process: It provides a mechanism to construct the actions needed to

satisfy an application context. It takes on many forms ranging from a single command

to a complex workflow. It generates the change plan, a set of modifications for

services, and logically passes the change plan to the execution process.

Execution process: It provides the mechanisms to control the execution of a plan

with considerations for self-configuration. Once a plan is generated corresponding to

a change request, some actions may need to take place to modify the configuration of

one or more services. This process is responsible for carrying out the procedure that

was generated by the planning process through a series of actions.

The above processes can be tied with three fundamental mechanisms employed

within AE. They are—service lookup to keep track of the availability of service

configurations; sensor node composition to provide abstractions of the hierarchical

composition of the sensor network, thus simplifying dynamic reconfiguration of

services; and dynamic adaptation to utilize information from the lookup and

composition services for re-configuration. Through a distributed implementation of

these mechanisms sensor services can be enabled to dynamically adapt to changes,

e.g. device addition, failure and degradation, movement of sensor nodes, and variation

in tasks and network requirements in the sensor network system.

4.2. A Usage Scenario

As a usage scenario of the self-configuration service architecture, we consider the

Phenonet project [10]. The project deploys a 40-node, distributed sensor network

(Figure 2) to monitor crop growth. Amongst other parameters the network observes

air and soil temperature, soil moisture, light intensity, solar radiation, and a variety of

water quality parameters. The plant scientists involved in this project are interested in

comprehensive sensor readings, based on a number of environment and water quality

parameters, to run on yield and measure performance after frost, heat and drought.

The observed micromet data is passed through various scientific models to analyze

the heritability of traits in pre-breeding and breeding. The resulting data is relevant to

a number of clients, such as plant biologists, environmental researchers, plant

breeders, farmers, and funding bodies. Client applications require different services

from the sensor network and they query it to retrieve data. The sensor network

services may vary configuration as the result of environmental changes or other

interesting phenomena. We envision that a semantic-based publish/subscribe system,

running in conjunction with the network and data stores, will match the right

capabilities to client applications, allowing them to add and remove subscriptions

dynamically as the service configurations change.

(a)

(b)

Fig. 2. Real time sensor observations: (a) Phenonet GUI; (b) sensed data.

Consider, for example, a standing query (a conjunctive query over terms and

properties from the ontology) submitted by a client application that is checking for

temperature threshold values. The query represents interest in the data underlying the

queried concepts. In this case, the observed properties (Figure 2) are sensor locations,

sensor accuracy and sensor manufacturer. If any change occurs in some part of the

network or the ontology itself, on which the query is built, the query will be required

to change as well. A client application would thus subscribe to concepts, properties

and named individuals in the query. The system then monitors change to the ontology

and service configuration and notifies subscribers of changes that logically or

structurally affect them. The dependence on a change can be direct or indirect

(implied), since the ontology is a logical object.

From the sensor network perspective, a fundamental example is when the network

is configured and programmed automatically using an ontology [33], with the

ontology treated as data loaded into a query interface. In this case, if terms in the

ontology are moved or redefined, or if additions are made either to the ontology or the

capabilities of the network, the query interface and its associated compilation

procedure will be notified and the reconfiguration will be reflected in the client

interface to take advantage of the changes.

An application service that allows the definition, and automated orchestration of

new sensors and services in terms of the concepts (sensors and existing services) in

the ontology [34] can work as part of the network configuration described above or by

building compositions on top of the network’s capabilities. If the composite sensor

application service is defined as a concept in the ontology, the concepts and roles used

in the definition and construction of a new sensor can subscribe to it. If change occurs

in any part of the ontology or network, on which the new sensor depends, the

composition service can be notified to reconstruct the composite sensor from the

updated definitions and network capabilities.

5. Research Issues and Engineering Challenges

Several research and engineering challenges are associated with the lifecycle of a self-

configuring a sensor network service. They lie in the observed measurements, in the

construction of sensor service configurations, in the generation and selection of

alternative configurations and action plans, and overall in the operational activities for

ongoing adaptation during the lifetime of a sensor network. This lifecycle (Figure 3)

begins with the design and implementation, proceeds to installation, configuration,

monitoring, upgrading, and ceases in decommissioning of a sensor service.

Self-
Configuration
Management

Monitoring
Service
Upgrade

Implementation

Installation and
Configuration

Decommission/
Replacement

Fig. 3. Lifecycle of a self-configurable sensor network service.

Implementation: This phase involves service design, testing and verification. The

runtime infrastructure should leverage distributed components to create an optimal

configuration according to both application requirements and context. It should also

allow uniform access to data by applications, irrespective of the data format, source or

location. An ontology can be used to represent context and sensor capabilities.

Installing and configuring: This phase involves bringing up a service to an

operational state with minimal user involvement. It requires explicitly stating a user

subscription to correspond to a published configuration in a formal request language.

To enable this, a sensor service will entail a bootstrapping process that begins with the

configurations registering itself with the AE. The service may also interact with AE to

discover other services and dependencies it needs to complete its initial configuration.

Monitoring: This phase is included in the self-configuration management,

governed by AE. It involves monitoring configuration changes for sensor network

services. This is an essential stage for enabling self-configuration ability for a service.

When coupled with event correlation or decision theory, the monitored information is

useful for problem identification and recovery during system faults.

Service upgrade: The self-configuring sensor network services may require

upgrading them from time to time. They may subscribe/interact to an alert service that

provides information on the availability of relevant upgrades and decide for

themselves when to apply the upgrade, possibly with guidance from AE.

Decommission/replacement: Alternative to an upgrade process, sensor network

services could be implemented afresh as part of a system upgrade, removing outdated

services only after the new ones obtain a proper working status.

Lifecycle management: AE performs simultaneous activities to schedule and

prioritize operations. A user interacts with a service via an appropriate interface

provided by AE and retrieves the service description directly from the service. As per

the node composition rule, the sensor service is configured and invoked according to

application scenarios and context. During the lifetime of the system, services are

dynamically reconfigured in response to sensed observations and system changes.

govern

invoke access

has 1..*

has 1..*

Service 1 Service N. . .

Interface

Unit of reusability

Operations Code Blocks
State

variable

Fig. 4. Abstract model for a self-configurable sensor network service.

6. System Model

Figure 4 presents an abstract model for a self-configurable service. In our model, we

formally capture the structure and run-time behavior of a sensor network service. The

structure is defined by the service configurations and status in the system, whereas the

run-time behavior is defined by the activities that execute service actions. We assume

that the state of a sensor service is observable and that the results of actions influence

the observables and state variables. Service types are specified in terms of one or

more interfaces, whereby one interface may be attached to several configurations. An

interface characterizes the behavior of a service and enables a common approach to

represent the capabilities of a sensor service. We consider interfaces to be the unit of

reusability. A self-configurable service is represented by a tuple <C, V, T>, where:

 C is the set of code blocks to perform service functionality Г , where is

the set of inputs and is the set of outputs of a sensor network service and Г

defines a valid input-output set. A code block c C makes use of state variables

v V. Code blocks in the system are invoked through system operations, t T.

One operation can invoke several code blocks.

 V is the set of state variables in the system, accessed through the code blocks. It

can be expressed as < , >, where is the set of sensors to provide services and

 is the set of constraints set that controls access to the sensor and its services.

Constraints are based on state and/or context, and can control who invokes the

sensor service, when and how they are invoked and configured.

 T is the set of operations for self-configuration that are executed by sequentially

invoking code blocks in the system, based on the system state changes by

manipulating the system variables in V.

 begin

 ...

1: initial system configuration

2: for each service

3: workload, usage pattern and system measurement

4: if change identified = TRUE

5: do construct and parameterize configurations

6: if application context is met

7: continue

8: else if application context is not met

9: explore alternative configuration

10: evaluate and select best configuration

11: put best configuration into effect

12: else

13: degrade service and report exception

14: end if

15: end if

16: end for

 ...

 end

Fig. 5. Pseudo-code for the self-configuration procedure.

6.1. Self-Configuration Procedure

Figure 5 illustrates the procedure for self-configuration. Through online observations

of state variables, e.g. sensor locations, accuracy, manufacturer, capability, service

parameters are estimated. A change in the system condition or workload results in an

alternation of parameters, after which the service status for those changed parameters

are evaluated. It is determined whether a service under the changed condition meets

the application context. If the current configuration is appropriate, nothing has to

change (line 1-7). Otherwise, alternative configurations are explored and adaptive

action plans are generated. Thereafter, the best alternative is selected and put into

effect. In the face of failure, service is degraded with reporting exception (line 8-16).

7. Implementation Plan

To realize our architecture, we require methods to define service configurations,

publish them for subscription and communicate with applications (Section 2.2). It

calls for the use of the standards-based semantic technologies. Our approach involves

expressing the sensor service overlay using a declarative language, such as Snlog, and

executing the resulting specification to construct and maintain it. This approach is

appealing, as it allows concise overlay specification, yet providing enough detail to be

executed with performance and robustness acceptable to sensor applications [21].

As the cornerstone of the proposed architecture, we intend to build a semantic

publish/subscribe component using an Enterprise Service Bus (ESB), such as WSO2.

It provides fundamental services for complex architectures via an event-driven and

standards-based messaging engine (the ―bus‖). The reasons for using an ESB are

increased flexibility, decentralization, faster integration to existing systems, and

distributed deployment. WSO2 ESB provides a built-in repository to store service

configurations and metadata. A significant feature of the semantic publish/subscribe

component will be its ability to support flexible subscriptions.

A part of the central registry module (Figure 1) will represent the complete sensor

network configuration modeled using the W3C SSN-XG sensor ontology, expressed

in the Web Ontology Language (OWL). By computing the ontology subsumption

hierarchy with a reasoner, the registry, under governance of AE, will generate a topic

hierarchy of classes and properties that is made available for subscription.

Client applications are generally interested, and dependent on, only a portion of the

complete sensor network ontology. For initialization, a client application may submit

a number of conjunctive queries to AE to obtain sensor configuration data from the

registry. Alternatively, the client may describe its interest as a reference to a module

of the ontology. From these requests, the interest of the client can be summarized as

the classes and properties mentioned in the query, or the highest classes and

properties in the module, respectively. This interest is reflected as a subscription to

the named topics managed in the WSO2 ESB topic hierarchy—future configuration

changes to the network will be published on this topic channel but pre-existing

messages should be discarded by the client.

When the central registry is updated to reflect a change in the underlying sensor

network configuration, client applications will be informed of changes of interest to

them through messages generated and labeled according to the topic hierarchy. In this

case, differences in the updated ontology have been computed by AE and the

corresponding set of affected topics is extracted as classes and properties mentioned

in the difference list. It is not straightforward to compute the difference between

ontology versions in an expressive ontology such as those in OWL. In some cases,

database-style tracking of updates over ABox instances is sufficient. More generally,

we intend to use methods for discovering the logical succinct difference between two

ontology versions [15-16], Although not yet solved for all description logics (and

possibly not decidable for some), it is a promising new method to automatically

compute the difference in the implications between two DL ontologies.

In our context, for TBox changes, we will cautiously overestimate the impact of

changes. Specifically, we intend to compute exact or overestimated changes, thus also

notify additional subscribers who need not have been notified. As a result, we prevent

leaving subscribers with an inconsistent view of the system and ontology state, due to

the errors in change estimations. A client application only receives notification from

AE when the updated configuration corresponds to a topic to which it subscribes. A

subscriber then responds by resubmitting its original request for configuration data

from the registry, and recompile, reconfigure or reload as appropriate for its context.

While we envisage that the use of semantics will greatly improve the power and

flexibility of the matching process, one possible issue could be the overhead caused

from the ontology update, thus leading to the computation of logical difference and

new subsumption hierarchy creation. However, given the fact that the topic hierarchy

changes infrequently, the overhead caused from ontology update is not a major

concern. On the other hand, ontology changes confined to the ABox may occur more

frequently in practice but are relatively easily computed.

8. Conclusion and Future Work

We have presented an architecture to enable self-configuration of sensor network

services. A semantics-based publish/subscribe approach, based on a plug-and-play

concept, has been employed to assist the self-configuration process. The architectural

approach will offer the required level of abstraction and generality to integrate to an

existing system. A list of associated research challenges has also been identified to

proceed with the practical implementation. We intend to implement the approach

presented in this paper within a real-world sensor network deployment, such as the

Phenonet project. Our work relates to the intelligence of a sensor network system to

operate autonomously with minimal user intervention in different application

scenarios and context. We envisage that this semantics-based approach will not only

provide a conceptual foundation for self-awareness in sensor networks, but also will

allow a sensor service to describe, use and adapt its behavior to its current context

with the use of semantic technologies. Our future work will proceed in this direction.

Acknowledgement

We thank the members of the Phenonet project, in particular, Doug Palmer, Peter

Lamb, Robert Furbank, Xavier Sirault, Leakha Henry, and Christopher Swain. This

work is funded in part by National Collaborative Research Infrastructure Strategy

(NCRIS) and the High Resolution Plant Phenomics Centre (HRPPC), Australia.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor

networks," IEEE communications magazine, vol. 40, no. 8, pp. 102-114, 2002.

[2] R. Balani, C. C. Han, R. K. Rengaswamy, I. Tsigkogiannis, and M. Srivastava, "Multi-

level software reconfiguration for sensor networks," Proc. International Conference on

Embedded Software (EMSOFT'06), pp. 121-130, ACM Press, NY, USA, 2006.

[3] M. Botts, G. Percivall, C. Reed, and J. Davidson, "OGC® sensor web enablement:

Overview and high level architecture," GeoSensor Networks, pp. 175-190, 2008.

[4] A. Bröring, K. Janowicz, C. Stasch, and W. Kuhn, "Semantic challenges for sensor plug

and play," Web and Wireless Geographical Information Systems, LNCS, vol. 5886, pp.

72-86, 2009.

[5] N. Bulusu, J. Heidemann, D. Estrin, and T. Tran, "Self-configuring localization systems:

Design and experimental evaluation," ACM Transactions on Embedded Computing

Systems (TECS), vol. 3, no. 1, pp. 24-60, 2004.

[6] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and I. Stoica, "The

design and implementation of a declarative sensor network system," Proc. 5th

International Conference on Embeded Networked Sensor Systems (SenSys'07), p. 188,

ACM Press, NY, USA, 2007.

[7] L. Clare, G. Pottie, and J. Agre, "Self-organizing distributed sensor networks," The

Proceedings of SPIE, vol. 3713, no. 229, pp. 229–237, 1999.

[8] M. Compton, C. Henson, H. Neuhaus, L. Lefort, and A. Sheth, "A survey of the semantic

specification of sensors," Proc. 2nd International Workshop on Semantic Sensor

Networks (SSN'09), 2009.

[9] F. Facca, S. Komazec, and M. Zaremba, "Towards a semantic enabled middleware for

publish/subscribe applications," Proc. IEEE International Conference on Semantic

Computing (ICSC'08), pp. 498-503, IEEE CS Press, Los Alamitos, CA, USA, 2008.

[10] B. Furbank, X. Sirault, and D. Deery, "Phenonet: A distributed sensor network for field

crop phenotyping," Proc. 1st International Plant Phenomics Symposium : from Gene to

Form and Function, 2009.

[11] P. Hitzler, M. Krötzsch, B. Parsia, P. Patel-Schneider, and S. Rudolph, "OWL 2 Web

ontology language primer," W3C Recommendation, http://www.w3.org/TR/2009/REC-

owl2-primer-20091027, 2009.

[12] IBM, "An architectural blueprint for autonomic computing," White Paper, June 2005.

[13] J. Jeong and D. Culler, "Incremental network programming for wireless sensors," Proc.

1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks (SECON'04), pp. 25-33, 2004.

[14] M. Klopfer and I. Simonis, SANY-an open service architecture for sensor networks:

SANY Consortium, 2009.

[15] B. Konev, D. Walther, and F. Wolter, "The logical difference problem for description

logic terminologies," Automated Reasoning, Lecture Notes in Computer Science, vol.

5195, pp. 259-274, 2008.

[16] R. Kontchakov, F. Wolter, and M. Zakharyaschev, "Can you tell the difference between

DL-Lite ontologies," Proc. 11th International Conference on Principles of Knowledge

Representation and Reasoning, pp. 285–295, 2008.

[17] J. Kramer and J. Magee, "Self-managed systems: An architectural challenge," Proc.

International Conference on Future of Software Engineering (FOSE'07), pp. 259-268,

2007.

[18] L. Li and K. Taylor, "A framework for semantic sensor network services," Proc.

International Conference on Service Oriented Computing (ICSOC'08), pp. 347-361,

2008.

[19] L. Li and K. Taylor, "Generating an efficient sensor network program by partial

deduction," Proc. 11th Pacific Rim International Confernece on Artificial Intelligence

(PRICAI'10), 2010.

[20] A. Lim, "Distributed services for information dissemination in self-organizing sensor

networks," Journal of the Franklin Institute, vol. 338, no. 6, pp. 707-727, 2001.

[21] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica,

"Implementing declarative overlays," ACM SIGOPS Operating Systems Review, vol. 39,

no. 5, p. 90, 2005.

[22] D. Marsh, R. Tynan, D. O'Kane, and G. P O'Hare, "Autonomic wireless sensor

networks," Engineering Applications of Artificial Intelligence, vol. 17, no. 7, pp. 741-

748, 2004.

[23] L. Mottola and G. P. Picco, "Programming wireless sensor networks: Fundamental

concepts and state of the art," ACM Computing Surveys, 2010. To Appear.

[24] M. Petrovic, I. Burcea, and H. Jacobsen, "S-ToPSS: Semantic Toronto publish/subscribe

system," Proc. 29th VLDB Conference, pp. 1104-1107, 2003.

[25] M. Presser, P. Daras, N. Baker, S. Karnouskos, A. Gluhak, S. Krco, C. Diaz, I.

Verbauwhede, S. Naqvi, F. Alvarez, and A. Fernandez-Cuesta, "Real World Internet,"

Position Paper, Future Internet Assembly, 2010.

[26] J. Qian, J. Yin, D. Shi, and J. Dong, "Exploring a semantic publish/subscribe middleware

for event-based SOA," Proc. IEEE Asia-Pacific Services Computing Conference, pp.

1269-1275, IEEE CS Press, Los Alamitos, CA, USA, 2008.

[27] D. Roggen, K. Förster, A. Calatroni, T. Holleczek, Y. Fang, G. Tröster, P. Lukowicz, G.

Pirkl, D. Bannach, and K. Kunze, "OPPORTUNITY: Towards opportunistic activity and

context recognition systems," Proc. Third IEEE WoWMoM Workshop on Autonomic and

Opportunistic Communications, 2009.

[28] A. Sheth, C. Henson, and S. Sahoo, "Semantic sensor web," IEEE Internet Computing,

vol. 12, no. 4, pp. 78-83, 2008.

[29] R. Spalazzese, P. Inverardi, and V. Issarny, "A formalization of mediating connectors:

Towards on the fly interoperability," Technical Report, TRCS 004/2009, University of

L'Aquila, 2009.

[30] T. Stathopoulos, J. Heidemann, and D. Estrin, "A remote code update mechanism for

wireless sensor networks," Technical Report, CENS-TR-30, University of California,

2003.

[31] M. Stollberg, "SHAPE: Service and Software Architectures, Infrastructures and

Engineering," White Paper, 2010.

[32] R. Sugihara and R. K. Gupta, "Programming models for sensor networks: A survey,"

ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 2, pp. 1-29, 2008.

[33] K. Taylor and P. Penkala, "Using Explicit Semantic Representations for User

Programming of Sensor Devices," Proc. Australasian Ontology Workshop, 2009.

[34] K.-N. D. Tran, "Semantic sensor composition," BSc Thesis, Australian National

University, http://cs.anu.edu.au/people/Nguyen.Tran/SemanticSensorComposition/Thesis

/thesis_honours.pdf, 2009.

[35] M. Uschold, P. Clark, F. Dickey, C. Fung, S. Smith, S. Uczekaj, M. Wilke, S. Bechhofer,

and I. Horrocks, "A semantic infosphere," Proc. International Semantic Web Conference

(ISWC'03), pp. 882-896, 2003.

[36] T. Usländer, "Reference Model for the ORCHESTRA Architecture (RM-OA)," Open

Geospatial Consortium https://portal. opengeospatial. org/files, 2005.

[37] J. Wang, B. Jin, and J. Li, "An ontology-based publish/subscribe system," Proc.

Middleware'04, pp. 232-253, 2004.

[38] B. Williams and P. Nayak, "A model-based approach to reactive self-configuring

systems," Proc. AAAI'96, pp. 971-978, 1996.

[39] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer

networks, vol. 52, no. 12, pp. 2292-2330, 2008.

[40] L. Zeng and H. Lei, "A semantic publish/subscribe system," Proc. IEEE International

Conference on E-Commerce Technology for Dynamic E-Business (CEC-East'04), pp. 32-

39, IEEE CS Press, Los Alamitos, CA, USA, 2004.

[41] W. Zhang and K. Hansen, "Semantic web based self-management for a pervasive service

middleware," Proc. Second IEEE International Conference on Self-Adaptive and Self-

Organizing Systems, pp. 245-254, IEEE CS Press, Los Alamitos, CA, USA, 2008.

