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Raúl Garćıa-Castro
Univ. Politecnica de Madrid, Spain

Aditya Kalyanpur
IBM Watson Research Center, USA

Oscar Corcho
University of Manchester, UK

Marko Luther
DoCoMo Eurolabs Munich, Germany

Andy Seaborne
Hewlett-Packard, UK

Volker Haarslev
Condordia University, Canada

Mariano Rodriguez
Free University of Bolzano, Italy

Mike Dean
BBN Technologies, USA

Additional Reviewers

Kejia Wu
Condordia University, Canada

Jinan El Hachem
Condordia University, Canada

Ming Zuo
Condordia University, Canada

Yingjie Li
Lehigh University, USA

Dezhao Song
Lehigh University, USA



Table of Contents

Configuring a Self-Organized Semantic Storage Service . . . . . . . . . . . . . . . . 1
Hannes Mühleisen, Tilman Walther, Anne Augustin, Marko Harasic
and Robert Tolksdorf

Scalable In-memory RDFS Closure on Billions of Triples . . . . . . . . . . . . . . 17
Eric Goodman and David Mizell

SPARQL to SQL Translation Based on an Intermediate Query Language 32
Sami Kiminki, Jussi Knuuttila and Vesa Hirvisalo

Towards a better insight of RDF triples Ontology-guided Storage
system abilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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Abstract. Scalability requirements for semantic stores lead to distributed hardware-
independent solutions to handle and analyze massive amounts of semantic data.
We use a different approach by imitating the behaviour of swarm individuals
to achieve this scalability. We have implemented our concept of a Self-organized
Semantic Storage Service (S4) and present preliminary evaluation results in order
to investigate to what extent the performance of a distributed and swarm-based
storage system is dependent on its configuration.

1 Introduction and Motivation

Most Semantic Web applications require a semantic store, a specialized database
for semantic data storage and analysis. Data for such applications is becoming
more and more available, which leads to increased performance and scalability
requirements for semantic stores. While considerable amounts of semantic data
have been successfully processed on a single computer, distributed hardware-
independent solutions are necessary to handle and analyze the massive amount
of semantic data expected to become available in the near future.

Distributed storage poses two main questions: Where should an arbitrary
data item be stored, and how should a specific stored item be located and re-
trieved efficiently. Many systems use a central catalog server, others maintain
overlay network structures to answer these questions. We propose a different ap-
proach, where no node in the storage network has any distinct functionality, and
where the tasks of data distribution and retrieval are performed by autonomous
processes imitating the behaviour of swarm individuals, which have been shown
to accomplish astonishing tasks using strictly local knowledge, limited memory,
a limited set of rules, and a simple yet scalable way of passing information to
other individuals.

This concept has been researched and simulated before as we will show in
the following section, in this paper we focus on the presentation of central con-
figuration parameters controlling the behaviour of our swarm-based system. We
present preliminary evaluation results in order to answer our research question:
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2 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

To what extent is the performance of a swarm-based system dependent on single
configuration parameters?

To answer the research question in a setting as realistic as possible, we
have implemented central parts from our concept of a Self-organized Semantic
Storage Service (S4) and deployed this implementation on our lab network con-
sisting of 150 virtual machines. For every relevant configuration parameter iden-
tified, a number of test runs was performed using different settings for this pa-
rameter. Test runs were comprised of storing a fixed dataset the system, and then
testing whether the stored data could be retrieved efficiently from an arbitrary
node.

The remainder of this paper is structured as follows: First, in Section 2, we
introduce our relevant previous work and then continue with describing var-
ious approaches in distributed semantic storage and analysis. Section 3 then
describes the basic concepts for retrieval and storage of data within our swarm-
based S4 system with special focus on the relevant configuration parameters.
Using our implementation, Section 4 presents our preliminary evaluation re-
sults both for storage and retrieval of a LUBM test data set. Finally, Section 5
concludes this paper by discussing evaluation results and describing our next
steps.

2 Previous and Related Work

The need for distributed storage solutions emerges from the inherent limitations
present on every stand-alone computer system. For those distributed solutions,
two general approaches can be followed: Centralized network structures rely on
systems orchestrating storage operations between storage nodes, while decen-
tralized structures make no conceptual distinction between nodes, thus eliminat-
ing the single point of failure.

For the distributed decentralized storage of semantic information, various
concepts such as Edutella [13], RDFPeers [2], GridVine [3] or YARS [9] have
been proposed. They make use of Peer-to-Peer (P2P) technology to create an
overlay network to store and retrieve semantic information in a distributed way.

Apart from mere storage, reasoning is also a crucial requirement for a se-
mantic storage system. However, the support for reasoning is limited at best in
the proposed concepts. So far, distributed reasoning has been attempted using
different distribution techniques: Urbani et al. employ MapReduce to achieve
reasoning over a very large amount of semantic data [18], Oren et al. use dis-
tributed hash tables (DHTs) in their MaRVIN reasoning system [15], and Dentler
et al. rely on swarm intelligence for scalable reasoning [4].
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Swarm intelligence has been identified to be a powerful family of meth-
ods by Bonabeau et al. [1]. Different applications of this family were described
by Mamei et al. [10]. Menezes and Tolksdorf applied swarm intelligence to a
distributed tuple space built to implement the Linda coordination model [6].
They introduced basic concepts of ant colony algorithms that are suitable for
tuple storage and retrieval [11]. Tolksdorf and Augustin then applied this idea
to distributed RDF storage and used a syntax-based similarity metric to clus-
ter syntactically similar resources on neighboring storage nodes. Their concept
was evaluated using simulation runs [16]. A similarity metric based on seman-
tic similarity measures and aimed at achieving the clustering of related concepts
was introduced in [17]. Harasic et al. proposed a different similarity metric us-
ing a hash function and also contributed an implementation architecture and
evaluation results from a first prototype [8].

3 Self-Organized Semantic Storage Service - Concepts

In this section, we introduce basic concepts and operations of our Self-Orga-
nized Semantic Storage System (S4). The S4 system is a distributed semantic
storage system. Triples are stored on a number of nodes that have been added
to a storage network by configuration. This network does not contain a single
central component, all a node has to know in order to join the network is the
address of an arbitrary member. Each node maintains a list of neighbor nodes
it is connected to. This list is built by a simple bootstrap algorithm. The algo-
rithm simply asks all known nodes for other nodes, and tries to connect to them.
The connection is successful, if the involved nodes have not yet reached their
configurable neighbor limit. The process is repeated until a node has reached a
minimum amount of neighbors, which is typically set to half the neighbor limit.
It is expected that a higher neighbor limit leads to a better system performance,
as a higher connectivity in the network reduces the average hop count to find a
single node, and thus improves overall response time.

S4 offers two basic storage and retrieval operations, which are exported over
an API available on every node. For both operations, custom adaptions of ant
colony algorithms are employed. These algorithms have been described in [12],
but we will outline the basic ideas and introduce the relevant configuration pa-
rameters as well as their expected effects below:

3.1 Retrieval

The system is able to locate information by a single key using a method of
foraging found in the behaviour of several species of ants. Searching is per-
formed by following virtual pheromone trails left behind by previous operations.

3
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These trails are located to each connection to another node, thus by checking all
present pheromones on a single node, an operation is able to determine which
node to visit next, where it can access the triples stored there. This process is
repeated until either a match was found or the configured maximum hop count
has been reached. If a match was found, the path taken is tracked back in order
to spread pheromones for the current key to be used by subsequent operations.

Pheromones are volatile due to the dynamics of the stored triples. For ex-
ample, if a triple is deleted the pheromones leading to it should also disappear.
Since manual removal would require broadcast messages through the entire net-
work, their intensity decays by a configurable percentage per time unit. The fol-
lowing behaviour is expected for different decay rate settings: A smaller decay
rate allows pheromones outlive the duration of few operations, and also leads to
more triples being found.

For every retrieval operation, only a subset of the potential matches is to
be returned. This is due to the intended use of our system by applications and
also the expected size of the storage network. If the amount of data stored is
exceeding a certain amount, it may be not feasible to return all matching results.
Instead the user is asked to specify time an result set limit for the operation.
Retrieval operations are terminated if one of these limits is reached.

3.2 Clustered Storage

A basic concept is the clustering of the stored triples by their similarity, which is
intended to lead to triples with similar keys being stored on the same or neigh-
boring storage nodes. This is achieved by a similarity metric and the “Brood
Sorting” ant-based clustering algorithm. Storage operations are designed to store
new triples on a node or in a neighborhood where similar triples are stored, ac-
cording to the similarity metric. The new triples are taken on a path through the
storage network similar to the retrieval operations and every node is checked for
similar triples. If a sufficient amount of similar triples are found, the new triples
are stored on the current node. Additional effort is invested to move misplaced
triples to a node or a neighborhood where similar triples are stored, a special
move operation performs this task by picking up triples not fitting on a node
and moving them to another location. For information on the concrete similarity
measures, we refer to the related work introduced in section 2.

3.3 Reasoning Support

The system performs forward-chaining assertional reasoning based on the knowl-
edge that is held in the store and writes the inferred triples back into it. This
section provides an overview of the basic concepts for reasoning used in the
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semantic store. However, we do not not focus on this aspect yet, as the un-
derlying storage layer has to reach a stable state first. A detailed discussion of
the theoretical underpinnings has been given in [14]. The introduced basic stor-
age operations cannot always guarantee correct results, reasoning on top of our
system also trades away completeness for the degree of scalability we aim to
achieve. Inferred statements are retrieved using the described read operations,
there is no systemic differentiation between explicit and inferred triples.

In S4, terminological and assertional triples are stored together, i.e. TBox
and ABox of the description logic are separated only conceptionally, not phys-
ically. For every terminological axiom that is inserted in the TBox a reasoning
process is started. This process applies the axiom to matching assertions within
the ABox, following the virtual pheromone trails through the network for the
localization of the fitting triple clusters. Once a match is found, the resulting as-
sertion is derived and then written back in the store in order to make it available
for retrieval operations.

As an example we consider an example axiom from [14]:

ta := professor � researcher � seniorresearcher

a part of the TBox. This means that every resource that is an instance of professor
and researcher is also an instance of seniorresearcher.

In order to generate the inferred axioms, a retrieval operation for the triples
matching the different predicates of the expression is executed. In this case the
first step is to look for instances of the type professor. In a second step the
corresponding axiom, that defines the matching instance to be also of the type
researcher is looked for, again following the pheromone trails in the store. If the
process identifies a matching instance, the resulting axiom to define the instance
to be also of the type seniorresearcher is inferred and written back using the
standard storage process as described.

Since all axioms for the reasoning process are retrieved from the store, the
reasoning process is subject to the probabilistic influences of the swarm algo-
rithms. Because of the constantly expanding data base in the store and its de-
centralized nature the reasoning itself is a continuous process. Thus, the inferral
of new axioms can take some time as well as there is no guarantee for a certain
inferred axiom to be retrievable at a certain time.

RDFS Inferencing To give an example of our approach on reasoning, we will
present our implementations for a selection of RDF Schema (RDFS) inferencing
rules in the following. For each rule, we present the task given to the reasoning
operations, which then move through the storage network to fulfill their respec-
tive tasks. A similar approach has also been followed in [4], where swarm in-
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dividuals are used to locate seldom-visited parts of an RDF graph. In our case,
however, the storage network possesses the ability to find the path to nodes
where triples matching the inferencing rules are stored, thus making a far larger
amount of nodes possible.

For any property, a domain and a range can be defined. If a property has a
concept as its domain, every resource annotated with this property is an instance
of this concept. Range is very similar: If a property has a concept as its range,
every resource referred to by this property is an instance of this concept. The
formal definition for rdfs:domain and rdfs:range is given as follows:
(?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type ?c)
(?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)
For our reasoning operation, domain definitions are evaluated using several
steps. The following list shows the required steps to evaluate this rule within
our swarm-based system.

1. Read a rdfs:domain statement on the local node in the form (?p
rdfs:domain ?c), bind p and c to values from the matching statement.

2. Using p as lookup key for routing, move to the next node
3. Locate all statements in the form (?r1 p ?r2), bind r1 to values from

the matching statement.
4. Create new statements of the form (?r1 rdf:type c) for all matches.
5. Write new statements to the storage network.
6. Continue with step 2 until no more matches have been found for a config-

urable number of steps.

Range definitions are evaluated using the same method, but with (?r2
rdf:type c) as new statement in step 4.

3.4 Optimizations and System Behaviour

In order to efficiently compare the new triples with a potentially large amount of
locally stored triples, the statements are again organized into local clusters [12].
The same local clustering algorithm which is based on the agglomerative hier-
archical clustering method is used to limit the amount of pheromones present
on each neighbor connection. Our clustering algorithm is configured by a limit
for the maximum number of local clusters. A higher number of local clusters is
expected to increase the accuracy of the global clustering, and hence the perfor-
mance of the retrieval and storage processes.

Read operations are restarted, until a user-defined timeout or maximum re-
sult count is reached. If a read operation has been successful in locating triples
matching its pattern on a particular node, results are sent back to the host the
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query originated from. Since the notion of our similarity measures and global
clustering supports the assumption of fitting triples being available on nearby
nodes, the read operation is continued on the neighboring nodes.

The decisions on which node to go to next or whether new triples should
be stored on the current node are influenced by various random factors in ac-
cordance to the basic principles of swarm-based algorithms. This leads to non-
deterministic behaviour of the entire system. Thus, this approach can only be
verified by simulations or test runs. In the conceptual phase, one can only make
educated guesses about the influence single configuration parameters would
have on the behaviour of the entire system.

3.5 Advantages of the Swarm-Based Approach

In contrast to other distributed storage systems, S4 does not require a central
catalog server nor an overlay network structure that is costly to maintain in
the event of network topology changes. Network organization is decentralized
and robust to changes, as node failures only affect the data stored on that very
node and perhaps the nodes the failed one was connected to. The remainder
of the potentially huge storage network is completely unaffected. Every node
has sufficient local information to take all decisions required from them by the
straightforward swarm algorithms, hence eliminating error-prone synchroniza-
tion. The main advantage over deterministic solutions is the ability of the swarm
algorithms to adapt to an ever-changing environment very well, whether a sin-
gle node may be overloaded with data or requests, or the mentioned node failure
issue: Swarm algorithms have the potential to handle these issues without sig-
nificant overhead, while still being able to efficiently respond to the various
requests. For example, triples with the RDF:type property describing the type
of an resource occurs in approx. 20% of the triples in our test data set. If data
distribution is determined by an hash function, all those triples will be stored
on and retrieved from the same node, which will then be soon overloaded, if a
lot of queries contain this property (which is the case). In our system, a node
will slowly start to reject triples if it detects its load approaching a certain limit.
This will lead to these triples being stored on other nodes, all using only local
knowledge and status and no observer whatsoever.

4 Performance Evaluation

In this section, preliminary evaluation results of our current S4 development
version are presented. We have implemented the S4 system as a distributed Java
application [12] and deployed it onto a cluster of 150 virtual Linux nodes run-
ning on a server equipped with eight 2.6 GHz processors and a total of 64 GB

7
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memory. For each test run, a predefined data set generated by the LUBM data
generator [7] containing 1.3 million triples was written to the storage system.
After a short cool-down period, a single query was sent to all cluster nodes. The
amount of results returned as well as the time required to return those results
was measured. In order to determine the influence of the relevant configura-
tion parameters, a set of configuration files covering various settings for each
of the relevant parameters was created and a full test run was performed with
all configuration files. In particular, the influence of the following parameters
conceptually influencing the swarm algorithms was evaluated:

– CLUSTER LIMIT - The maximum number of local clusters allowed for
triple storage and pheromone management

– MAX STEPS - The maximum amount of hops between nodes a single oper-
ation is allowed to perform

– NEIGHBOR LIMIT - The amount of neighbor nodes to connect to
– DECAY RATE - The decay rate of the virtual pheromone trails per time unit

Due to the probabilistic behaviour of the algorithms employed in the S4
system, no two test runs yield entirely equivalent results. The results presented
below were taken from one single test cycle with identical software versions
containing 30 test runs, each with a different configuration. However, these re-
sults are regarded to be exemplary, as other test cycles showed comparable re-
sults, and the test runs presented here have been selected to show the influence
of the single parameters as clearly as possible. For this preliminary evaluation,
the parameters were considered to be independent, in an attempt to reduce the
search space.

4.1 Storage Performance

The LUBM-10 dataset we used to evaluate the system performance is written
into 189 files by the data generator, each containing around 7000 triples. We
used the HTTP API on an arbitrary node to store each file sequentially into the
S4 system. Obviously, not all triples were stored on the node the requests were
issued to. Fig. 1 shows the distribution of the amount of triples stored per storage
node using a value of 25 for the MAX STEPS parameter.

The time required to write a single file of the test data set into the S4 system
was measured. Box plots describing the statistical trends of the write time for
all files in the different configuration tested are given in Fig. 2:

As expected, a higher CLUSTER LIMIT leads to a larger amount of com-
parably expensive cluster maintenance operations, therefore the write times for

8
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Fig. 1. Storage load distribution
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Fig. 2. Storage performance for LUBM-10 dataset files

configuration cs400 with a cluster limit of 400 greatly exceed those of config-
uration cs040 with a limit of 40.

The influence of the amount of steps to be taken, as configured by the
MAX STEPS parameter was tested in configuration sets ms05 and ms25 with
5 and 25 for maximum step number, respectively. As the transition of an oper-
ation from one storage node to another one is an expensive operation as well, a
smaller value also leads to an improved write performance.

9
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System performance was also expected to be influenced by the amount of
neighbor nodes a single node connects itself to (NEIGHBOR LIMIT). In con-
trast to our first expectation of a larger amount of neighbor nodes also distribut-
ing the load over more shoulders, configuration sets nl06 and nl20 with 6
and 20 as neighbor limits show a smaller neighborhood having a beneficial im-
pact on the write performance. This may be due to the larger amount of possible
paths that can be marked by the pheromones and thus missing pheromone data
on some of the nodes.

A central configuration parameter for all systems based on ant foraging is
the pheromone decay rate [5, p. 212 ff], thus the influence of this value over the
parameter DECAY RATEwas also tested: Configuration ph90 used a decay rate
of 90, in which pheromone intensities are reduced by 10% every second, ph99
employed only a 1% decay rate. Again, the results did not meet our expectations:
Normally, longer pheromone endurance would result in better paths through
the storage network, and thus reduced step counts, but the test result showed
the opposite to be true for write operations. An possible explanation for this
phenomenon might be the following: As pheromones on more frequently used
paths are also updated more often, sub-optimal paths are then discarded sooner.

4.2 Retrieval Performance

To measure the performance for operations retrieving data from the S4 system,
a SPARQL query was evaluated several times on each of the 150 storage nodes
sequentially. The query contained a single triple pattern matching approx. 20%
of the stored triples. Each node started the corresponding read operations within
the S4 system, and collected the results from inside the storage network. The
time limit for each query was set to five seconds, and the requested result set size
was 1000 results. For each node, the amount of results returned as well as the
time required to deliver the results was measured by the test driver. After three
warm-up runs, five query executions were performed, and the average results
determined the final result for a node in a configuration set. The result plots are
structured as follows: The x axis contains all 150 storage nodes by their ID, the
left y axis denotes the required time for each query (+ marker), and the right
y axis describes the amount of triples returned (× marker). In general, a very
low response time with a high amount of results returned are desirable for every
storage node.

Fig. 3 shows the read results for different local cluster sizes, both for triple
storage and pheromone clustering. The upper configuration used a CLUSTER-
LIMIT value of 40, while the lower configuration used a value of 400. A higher

amount of pheromone clusters leads to a more precise path selection and thus

10
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node location, which reduces read times and increases result counts due to the
smaller amount of hops required for a successful read operation.

Fig. 3. Read results for CLUSTER LIMIT parameter variations

The read operations are also greatly influenced by the amount of hops a
single operation is allowed to take. Fig. 4 shows a test run with a MAX STEPS
setting of 5 on the top and 25 on the bottom. The upper configuration clearly
shows a quick response time for the majority of nodes, but only the minimum
amount of triples returned. This expected behaviour is confirmed by the bot-
tom configuration: Not only are results delivered at a comparable speed, but the
average amount of triples returned is also increased.

11
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Contrary to in-memory executions of a swarm algorithm, the amount of
steps allowed for a swarm individual has a huge impact on overall performance
in a distributed system. This is due to the high costs of the transition operation
between the storage nodes. Therefore, for any system built on swarm intelli-
gence, this parameter has to be adjusted carefully.

Fig. 4. Read results for MAX STEPS parameter variations

Network setup from our bootstrapping algorithm is restricted to a limited
amount of neighbor nodes. This behaviour is controlled by the NEIGHBOR-
LIMIT parameter. In Fig. 5 two test runs with a neighbor limit of six on the

top and a neighbor limit of 20 on the bottom are displayed. The configuration
with the smaller limit performs better, the amount of triples returned is in gen-

12
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eral higher, and the response times are consistently below one second with very
few exceptions. This coincides with the observation of the read performance in
the preceding section, where a smaller value for the neighbor limit also brought
improvements in system performance. This may be due to a random error fac-
tor considered for the decision which neighbor to visit next. If there are more
neighbor nodes, this error factor could have an increasingly disadvantageous
influence, which will be evaluated in our further work.

Fig. 5. Read results for NEIGHBOR LIMIT parameter variations

The amount of decay in the intensity of the virtual pheromone also plays
a role during read operations. Fig. 6 displays two test runs with a decay rate
of 10% on the top and 1% on the bottom. As in the storage evaluation, the re-

13
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sults again did not meet our expectations for the influence of this parameter.
The test run with the increased decay shows very quick responses on nearly all
nodes with a large amount of results, while the test run with the lower value
shows considerably increased response times. This suggests that the introduc-
tion a mechanism to adjust this particular parameter is necessary for a distributed
system based on swarm algorithms.

Fig. 6. Read results for DECAY RATE parameter variations

5 Conclusion and Future Work

This paper started with outlining previous work in the application of swarm-
based algorithms on distributed storage as well as distributed semantic storage

14
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systems in general and current distributed reasoning approaches. We then con-
tinued introducing the relevant concepts of our Self-Organized Semantic Stor-
age Service (S4), which uses self-organizing algorithms found in the behaviour
of several ant species. A number of relevant configuration parameters for this
system was identified and their expected impact on the system performance was
described. Our preliminary evaluation of our implementation of the S4 system
then showed the actual impact of the identified parameters in exemplary test
runs using different values for those parameters in their configuration.

Our evaluation of basic storage and retrieval capabilities was set in an envi-
ronment as close as possible to a real-world setting, as the desired performance
of a swarm-based self-organizing system cannot be shown using formal proofs,
but only by collecting statistical data. Therefore, simulations were not deemed
to be satisfactory for our purpose. Successful test runs for a part of the config-
uration sets continue to show the general feasibility of building a larger-scale
distributed system using swarm algorithms to facilitate self-organization. Tun-
ing the various parameters was identified to be one of the main issues of swarm-
based self-organizing systems, and tweaking the parameters to values where the
storage network exhibits the desired results can be a tedious process, compara-
ble to the work of a specialized database administrator. In some cases, heuristics
could be used to adjust a particular parameter. However, special care has to be
taken for these heuristics not to require global knowledge. This would contradict
one of the basic concepts for swarm-based algorithms.

In our future work we would like to use our lab network to further advance
our S4 implementation, and continue with evaluations using a variety of data
sets, queries, network structures and configuration sets. We will implement the
swarm-based distributed reasoning approach, and evaluate it as well. Further
advancements of the S4 concepts are expected to be the design of additional
auxiliary algorithms to support the basic algorithms, with the hope of achieving
a system supporting its users by adjusting as many parameters as possible by
itself.
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5. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge, Mas-
sachusetts (2004)

6. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming
Languages and Systems 7, 80–112 (1985)

7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Sem 3(2-3), 158–182 (2005), http://dx.doi.org/10.1016/j.websem.2005.
06.005

8. Harasic, M., Augustin, A., Tolksdorf, R., Obermeier, P.: Cluster mechanisms in a self-
organizing distributed semantic store. In: Proceedings of Web Information System and Tech-
nologies, WEBIST 2010 (2010)

9. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository for query-
ing graph structured data from the web. In: The Semantic Web, ISWC 2007, Busan, Ko-
rea, November 11-15, 2007. Lecture Notes in Computer Science, vol. 4825, pp. 211–224.
Springer (2007), http://dx.doi.org/10.1007/978-3-540-76298-0_16

10. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-organization in
computer science. J. Syst. Archit. 52(8), 443–460 (2006)

11. Menezes, R., Tolksdorf, R.: A new approach to scalable linda-systems based on swarms. In:
Proceedings of ACM SAC 2003. pp. 375–379 (2003)

12. Mühleisen, H., Harasic, M., Tolksdorf, R., Teymourian, K., Augustin, A.: A self-organized
semantic storage service (2010), submitted to the 12th International Conference on Informa-
tion Integration and Web-based Applications & Services (iiWAS2010), preprint available at
http://digipolis.ag-nbi.de/preprint/iiwas2010-s4-preprint.pdf

13. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M.,
Palmr, M., Risch, T.: EDUTELLA: A P2P networking infrastructure based on RDF.
Proceedings of the eleventh international World Wide Web Conference (Jan 01
2002), http://wwwconf.ecs.soton.ac.uk/archive/00000306/;http://
wwwconf.ecs.soton.ac.uk/archive/00000306/01/index.htm

14. Obermeier, P., Augustin, A., Tolksdorf, R.: Towards swarm-based federated web knowledge-
bases (2009), submitted to Nature inspired Reasoning for the Semantic Web (NatuReS09),
preprint available at http://digipolis.ag-nbi.de/preprint/natures2009-sr-preprint.pdf

15. Oren, E., Kotoulas, S., Anadiotis, G.: MaRVIN: A platform for large-scale analysis of se-
mantic web data. In: Proceeding of the WebSci’09: Society On-Line (March 2009)

16. Tolksdorf, R., Augustin, A.: Selforganisation in a storage for semantic information. Journal
of Software 4 (2009)

17. Tolksdorf, R., Augustin, A., Koske, S.: Selforganization in distributed semantic repositories.
Future Internet Symposium 2009 (FIS2009) (2009)

18. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning using
MapReduce. In: The Semantic Web - ISWC 2009, Chantilly, VA, USA, October 25-29, 2009.
Lecture Notes in Computer Science, vol. 5823, pp. 634–649. Springer (2009), http://
dx.doi.org/10.1007/978-3-642-04930-9

16

http://doi.ieeecomputersociety.org/10.1109/MIC.2007.108
http://doi.ieeecomputersociety.org/10.1109/MIC.2007.108
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1007/978-3-540-76298-0_16
http://dx.doi.org/10.1007/978-3-642-04930-9
http://dx.doi.org/10.1007/978-3-642-04930-9


Scalable In-memory RDFS Closure on Billions of
Triples

Eric L. Goodman1 and David Mizell2

1 Sandia National Laboratories, Albuquerque, NM, USA
elgoodm@sandia.gov

2 Cray, Inc., Seattle, WA, USA
dmizell@cray.com

Abstract. We present an RDFS closure algorithm, specifically designed
and implemented on the Cray XMT supercomputer, that obtains infer-
ence rates of 13 million inferences per second on the largest system con-
figuration we used. The Cray XMT, with its large global memory (4TB
for our experiments), permits the construction of a conceptually straight-
forward algorithm, fundamentally a series of operations on a shared hash
table. Each thread is given a partition of triple data to process, a dedi-
cated copy of the ontology to apply to the data, and a reference to the
hash table into which it inserts inferred triples. The global nature of
the hash table allows the algorithm to avoid a common obstacle for dis-
tributed memory machines: the creation of duplicate triples. On LUBM
data sets ranging between 1.3 billion and 5.3 billion triples, we obtain
nearly linear speedup except for two portions: file I/O, which can be
ameliorated with the additional service nodes, and data structure ini-
tialization, which requires nearly constant time for runs involving 32
processors or more.

Keywords: Semantic Web, RDFS Closure, Cray XMT, Hashing

1 Introduction

Semantic web data in its most common format, the Resource Description Frame-
work (RDF), has two primary means for defining ontologies: RDF Schema (RDFS)
and the Web Ontology Language (OWL). Ontologies are useful mechanisms for
organizing domain knowledge, allowing explicit, formal descriptions of data to be
defined and shared. Also, ontologies allow reasoning about the domain, exposing
new facts through application of the ontology to existing data.

In this paper we examine the simpler of the ontology languages, RDFS, and
perform RDFS reasoning on billions of triples completely in-memory on a highly
multithreaded shared-memory supercomputer, the Cray XMT. To our knowl-
edge, no one has performed such large RDFS reasoning in a single global shared
address space, nor has anyone previously achieved the inferencing rates we report
in this paper.

The rest of the paper is organized as follows. Section 2 describes the Cray
XMT, its unique characteristics, and why it may be well suited to RDFS closure
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2 Scalable In-memory RDFS Closure on Billions of Triples

and many semantic web applications in general. Section 3 describes the algorithm
we employ to perform closure. Sections 4 and 5 describe the experimental setup
and the results. We then conclude in sections 6 and 7 with a comparison to other
approaches and our path forward.

2 Cray XMT

The Cray XMT is a unique shared-memory machine with multithreaded pro-
cessors especially designed to support fine-grained parallelism and perform well
despite memory and network latency. Each of the custom-designed compute
processors (called Threadstorm processors) comes equipped with 128 hardware
threads, called streams in XMT parlance, and the processor instead of the operat-
ing system has responsibility for scheduling the streams. To allow for single-cycle
context switching, each stream has a program counter, a status word, eight tar-
get registers, and thirty-two general purpose registers. At each instruction cycle,
an instruction issued by one stream is moved into the execution pipeline. The
large number of streams allows each processor to avoid stalls due to memory
requests to a much larger extent than commodity microprocessors. For exam-
ple, after a processor has processed an instruction for one stream, it can cycle
through the other streams before returning to the original one, by which time
some requests to memory may have completed. Each Threadstorm processor can
currently support 8 GB of memory per processor, all of which is globally acces-
sible. The system we use in this study has 512 processors and 4 TB of shared
memory. We also employed 16 Opteron nodes of the service partition, which
directly perform file and network I/O on behalf of the compute processors.

Programming on the XMT consists of writing C/C++ code augmented with
non-standard language features including generics, intrinsics, futures, and performance-
tuning compiler directives such as pragmas.

Generics are a set of functions the Cray XMT compiler supports that operate
atomically on scalar values, performing either read, write, purge, touch, and
int_fetch_add operations. Each 8-byte word of memory is associated with a
full/empty bit and the read and write operations interact with these bits to
provide light-weight synchronization between threads. Here are some examples
of the generics provided:

– readxx: Returns the value of a variable without checking the full-empty bit.
– readfe: Returns the value of a variable when the variable is in a full state,

and simultaneously sets the bit to be empty.
– writeef : Writes a value to a variable if the variable is in the empty state,

and simultaneously sets the bit to be full.
– int fetch add: Atomically adds an integer value to a variable.

Besides generics, there are also intrinsic functions that expose many low-level
machine operations to the C/C++ programmer.

Parallelism is achieved explicitly through the use of futures, or implicitly,
when the complier attempts to automatically parallelize for loops. Futures al-
low programmers to explicitly launch threads to perform some function. Besides
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Fig. 1. Cray XMT Threadstorm memory subsystem: Threadstorm processors access
a virtual memory address space that is mapped through hardware shuffling to actual
physical locations to mitigate memory access hotspots.

explicit parallelism through futures, the compiler attempts to automatically par-
allelize for loops, enabling implicit parallelism. The programmer can also provide
pragmas that provide hints to the compiler on how to schedule iterations of the
for loop to various threads, whether it be by blocks, interleaved, or dynamically,
or supply hints on how many streams to use per processor, etc. We extensively
use the #pragma mta for all streams i of n construct that allows program-
mers to be cognizant of the total number of streams that the runtime has assigned
to the loop, as well as providing an iteration index that can be treated as the id
of the stream assigned to each iteration.

2.1 Applicability of the XMT to the Semantic Web

The XMT and its predecessors have a significant history of performing quite
well on graph algorithms and on applications that can be posed as graph prob-
lems. Bader and Madduri [2] report impressive execution times and speedup for
fundamental graph theory problems, breadth-first search and st-connectivity.
Later, Madduri et al. [8] use the ∆-stepping algorithm, performing single source
shortest path on a scale-free, billion-edge graph in less than ten seconds on 40
processors. More recently, Chin et al. [3] examine triad census algorithms for
social network analysis on graphs with edges in the hundreds of millions. Also,
Jin et al. [6] perform power grid contingency analysis on the XMT by posing the
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4 Scalable In-memory RDFS Closure on Billions of Triples

problem as finding important links using betweeness centrality of the edges as a
metric.

To see how this relates to the semantic web, consider that the semantic web
amounts to a large, sparse graph. The predicate of an RDF triple can be thought
of as a directed edge between two nodes, the subject and the object. Several have
proposed thinking of the semantic web as a graph, and have suggested extensions
to SPARQL to enable advanced graph queries otherwise not available in standard
SPARQL, including SPARQ2L [1], nSPARQL [10], and SPARQLeR [7]. Also,
Stocker et al. [12] present an optimization scheme for SPARQL queries based on
the graph nature of RDF data. They state one limitation of the approach is due
to its implementation in main memory. However, this is not as much of an issue
for the XMT with its scalable global shared memory. Indeed, for the machine
we use in this study, its 4 TB of shared memory is sufficient for the data of
many semantic web applications to reside completely in memory. The XMT is
well suited for applications with (a) abundant parallelism, and (b) little or no
locality of reference. Many graph problems fit this description, and we expect
that some semantic web applications will as well, especially those that involve
more complex queries and inferencing.

3 Algorithm

The algorithm we present here performs incomplete RDFS reasoning, and calcu-
lates only the subset of rules that require two antecedents, namely rdfs rules 2,
3, 5, 7, 9, and 11 (for reference, see Table 1). This is fairly common in practice,
as the other rules are easily implemented and parallelized and generally produce
results that are not often used or can be inferred later at run time for individual
queries. The flow of the algorithm (see Figure 2) is similar to the one outlined
by Urbani et al. [13] in that only a single pass over the rule set is required
(excluding rare cases where the ontology operates on RDFS properties) for full
and correct inferencing. However, we move processing of the transitivity rules,
5 and 11, to the beginning. These rules accept no inputs except for existing
ontological triples, and thus can be executed safely at the beginning. Also, we
do not remove duplicates because our algorithm produces no duplicates. We use
a global hash table described by Goodman et al. [4] to store the original and
inferred triples. Thus, duplicate removal is accomplished in-situ, i.e. insertion of
any triples produced during inferencing that already exists in the table results
in a no-op.

As a preprocessing step, we run the set of triples through a dictionary en-
coding that translates the resource and predicate strings into 64 bit integers. We
again use the hash table described earlier to store the mapping and perform the
translation. As the triples are now sets of three integers, we can make use of the
following hash function during the RDFS closure algorithm:

hash(t) = ((t.s + t.p · B + t.o · B2) · C) mod Stable (1)

where t is a triple, C = 31, 280, 644, 937, 747 is a large prime constant (taken
from [4]), Stable is the size of the hash table, and B is a base to prevent the sub-
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Rule Condition 1 Condition 2 (optional) Triple to Add
lg s p o (o is a literal) s p :n
gl s p :n s p o
rdf1 s p o p type Property
rdf2 s p o (o is a literal of type t) :n type t
rdfs1 s p o (o is a literal) :n type Literal
rdfs2 p domain x s p o s type x

rdfs3 p range x s p o o type x

rdfs4a s p o s type Resource
rdfs4b s p o o type Resource
rdfs5 p subPropertyOf q q subPropertyOf r p subPropertyOf r

rdfs6 p type Property p subPropertyOf p
rdfs7 s p o p subPropertyOf q s q o

rdfs8 s type Class s subClassOf
Resource

rdfs9 s type x x subClassOf y s type y

rdfs10 s type Class s subClassOf s
rdfs11 x subClassOf y y subClassOf z x subClassOf z

rdfs12 p type Container- p subPropertyOf
MembershipProperty member

rdfs13 o type Datatype o subClassOf Literal

Table 1. This table lists all the rules that are part of RDFS entailment [11]. The rules
in bold are the ones we implemented for our closure algorithm.

Algorithm: RDFS Closure

1: Read data from service nodes
2: Create and populate ontology data structures
3: Create and populate multimaps
4: Apply transitivity rules, rdfs5 and rdfs11

5: Replicate multimap data structures.
6: Insert original triples into hash table
7: Add matching triples to queues
8: rdfs7 - Subproperty Inheritance
9: Add matching triples to domain and range queues

10: rdfs2 - Domain
11: Add matching triples to subclass queue
12: rdfs3 - Range
13: Add matching triples to subclass queue
14: rdfs9 - Subclass Inheritance

Fig. 2. Overview of RDFS Closure algorithm on the XMT.
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6 Scalable In-memory RDFS Closure on Billions of Triples

ject, predicate, and object ids from colliding. The current dictionary encoding
algorithm assigns ids to resources and properties by keeping a running counter,
and a triple element’s id is the value of the counter at the time the element was
seen during processing. Thus, the set of integers assigned to the subject, pred-
icate, and objects overlap. The base helps the hash function to avoid collisions
due to this overlap. For our experiments, we used B = 5e9, near the maximum
value assigned to any triple element. This hash function was decided upon after
some experimentation, but probably deserves further attention.

The first step (line 1 of Figure 2) of the RDFS closure process on the XMT is
to transfer the RDF triple data from the service nodes to the compute nodes. We
use the Cray XMT snapshot library that allows programs to move data back and
forth from the Lustre file system. On the service nodes a Linux process called a
file service worker (fsworker) coordinates the movement of data from disk to the
compute nodes. Multiple file service workers can run on multiple service nodes,
providing greater aggregate bandwidth.

The next step (lines 2-5 of Figure 2) is to load the ontological data into
multimap data structures. All of the rules under consideration involve a join
between a

– data triple or an ontological triple with an
– ontological triple,

and in all cases, the subject of the latter ontological triple is matched with a
subject, predicate, or object of the former. To speed processing of the rules and
the associated join operations, we create four multimaps of the form f : Z → Z∗,
one for each of the predicates rdfs:subPropertyOf, rdfs:domain, rdfs:range,
and rdfs:subClassOf, that maps subject ids to potentially multiple object ids.
For example, the rdfs:subClassOf multimap is indexed according to class re-
sources and maps to all stated super classes of those resources. After initially
populating the multimap with known mappings as asserted in the original triple
set (see Figure 3(a)), we then update each of the rdfs:subPropertyOf and
rdfs:subClassOf multimaps with a complete listing of all super properties and
super classes as dictated by inference rules 5 and 11 (see Figure 3(b)).

After populating the multimaps and applying the transitivity rules, we then
replicate the entirety of this data and the accompanying data structures for
each and every stream (see Figure 3(c)). The reason for this is to avoid read-
hotspotting. The ontology is relatively small compared with the data to be pro-
cessed, so many streams end up vying for access if only one copy of the ontology
is available to all streams. Replicating the data circumvents these memory con-
tention issues.

The next two steps (lines 6-7 of Figure 2) involve iterating over all of the
original triples and adding them to the hash table, and also populating four
queues, also implemented as hash tables, that store triples matching rules 2, 3,
7, and 9. Ideally, this could be solved with one pass through the original triple set,
but the XMT favors tight, succinct loops. Processing all steps at once results in
poor scalability, probably because the compiler is better able to optimize smaller,
simpler loops. Thus, each of these individual steps receives its own for loop.
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(a) Original Multimap (b) Transitivity Applied

(c) Replicated

Fig. 3. Subfigure (a) shows a set of triples containing rdfs:subclassOf information. The
integers represent URIs. The displayed mulitmap represents the state after Step 3 of
the RDFS Closure algorithm. Subfigure (b) shows the state after Step 4, where each
class has a complete listing of all superclasses. Subfigure (c) illustrates that after Step
5, all of the multimaps are replicated for dedicated stream usage.

The last four steps (lines 8-14 of Figure 2) complete the calculation of RDFS
closure. In general, each of these steps follow the ComputeRule procedure out-
lined in Figure 4. There are three parameters: an array of triples that match the
given rule, a multimap that stores subject/object mappings for a given predi-
cate, and a buffer to store new triples. We use the for all streams construct,
allowing us to know the total number of streams, num streams, and a stream
identifier, stream id to use within the outer for loop. Line 5 partitions the match-
ing triples into nearly equal-sized chunks for each stream. The for loop from lines
7 to 10 determines the number new triples that will be created. This first pass
at the data allows us to call int_fetch_add once for each stream instead of l
times, where l is the length of the matching triple array. In essence, when we call
int_fetch_add in line 11 we claim a block of indices in the buffer array that can
be iterated over locally instead of requiring global cooperation by all streams.
This helps to avoid hot-spots on the total variable. Lines 12 through 17 iterate
over the stream’s set of triples and then iterate over the set of matching rules in
the multimap to create new inferred triples. After application of ComputeRule,
inferred triples in the buffer are added both to the main hash table and to ap-
propriate rule queues. Again, these two steps are done separately to maintain
scalability.

Overall, the scalability and success of this algorithm largely rests on three
main factors:
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8 Scalable In-memory RDFS Closure on Billions of Triples

1: procedure ComputeRule(matching triples, multimap, buffer)
2: total← 0
3: for all streams stream id of num streams do

4: l← length(matching triples)
5: beg, end← determine beg end(l, num streams, stream id)
6: local total← 0
7: for i← beg, end do

8: num← num values(matching triples[i], multimap)
9: local total← local total + num

10: end for

11: start = int fetch add(total, local total)
12: for i← beg, end do

13: for j ← 1, num values(matching triples[i]) do

14: buffer [start]← new triple(matching triples[i], multimap, j)
15: start← start + 1
16: end for

17: end for

18: end for

19: end procedure

Fig. 4. This figure outlines the general process for computing RDFS rules 2, 3, 7, and
9.

– Extensive use of hash tables: Hash tables proved effective for the implemen-
tation of RDFS closure by allowing the algorithm to be conceptually simple
and to maintain scalability over large numbers of processors. The global
nature of the hash table also removed the time-consuming deduplication
phase, a necessary step for many algorithms targeting distributed memory
platforms.

– Multiple tight loops: We favored small succinct loops, even if that meant
iterating over the same data twice, as it allowed scalable performance.

– Replicating the ontology: A single instance of the ontology created a hotspot
as many streams were accessing the same data simultaneously. Replicating
the ontology removed memory contention issues. This is likely generalizable
to other situations when many streams must use small, read-only data struc-
tures.

4 Data Sets

We used the Lehigh University Benchmark (LUBM) [5]. Specifically, we gener-
ated the LUBM10k and LUBM40k data sets, approximately 1.33 and 5.34 billion
triples, respectively. Both increase in size after closure by about 25%, resulting
in 341 million and 1.36 billion inferences.
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To validate our approach, we applied a fixed-point algorithm written in
python3 to smaller LUBM instances, commenting out rules we did not implement
in our algorithm.

The code we wrote for RDFS closure on the XMT is open source and pub-
lically available. Most of the code is published as part of the MapReduceXMT
code base4. Our initial implementation first looked at porting the MapReduce
implementation of Urbani, et al. [13] to the XMT, but to obtain better per-
formance we adopted an implementation that was more closely tailored for the
XMT. The main class is rdfs_closure_native.cpp located in the test direc-
tory. We also made use of functionality provided by the MultiThreaded Graph
Library5, primarily mtgl/xmt_hash_table.hpp.

5 Experiments

Figure 5 shows the times for computing RDFS closure on LUBM10k and LUBM40k.
For all runs we use 16 service nodes each running one fsworker. We conducted
runs using between 32 and 512 processors. We did not go smaller than 32 because
the snapshot libraries require at least 2f processors, where f is the number of
fsworkers.

The file I/O times reported below include only the time to read in the file.
As the XMT’s most common use case will likely be a memory-resident semantic
database, we include only the load time as any writes will likely be asynchronous.

Also, the initialization times reported below only include the time for the
construction of the main hash table, the four smaller queues, and two large
triple buffers. Other data structure initialization calls were made, but they were
significantly smaller and included in times of the other phases.

The algorithm shows good scalability for everything but file I/O and initial-
ization, which are nearly constant for a given problem size and irrespective of
the number of processors. Comparing the times of the 32 and 512 processor runs
on LUBM40k, we achieve about 13 times speedup for the non-I/O/init portion,
where linear speedup in this processor range is 16. On LUBM10k, the speedup
is lower, about 10, indicating that the problem size of LUBM10k is not sufficient
to utilize the full 512 processor system as well as LUBM40k.

Figure 6 shows the inference rate in inferences/second each method obtained
for each of the data sets. Initially, better rates are achieved on LUBM10k for
smaller numbers of processors. However, for large processor counts, the algo-
rithm’s better scalability on LUBM40k wins out, obtaining a rate of 13.2 million
inferences per second with 512 processors.

3 http://www.ivan-herman.net/Misc/PythonStuff/RDFSClosure/Doc/RDFSClosure-
module.html

4 https://software.sandia.gov/trac/MapReduceXMT
5 https://software.sandia.gov/trac/mtgl
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Fig. 5. Times recorded for LUBM10k and LUBM40k.

0 100 200 300 400 500 600
2

4

6

8

10

12

14 x 106

Processors

In
fe

re
nc

es
 / 

se
co

nd

LUBM40k
LUBM10k

13.2 million

10.9 million

Fig. 6. Inference rates obtained on LUBM10k and LUBM40k.

5.1 Modifying the number of service nodes

We also examined how the number of fsworkers affects aggregate I/O throughput
to the compute nodes. We kept the number of processors constant at 128 and
varied the number of fsworkers between 1 and 16, each fsworker running on
a single node of the service partition. We tested the read time on LUBM40k.
Figure 7 shows the rates obtained and the ideal rates expected if performance
increased linearly with the number of fsworkers. Overall, we experienced about
a 12.4 increase in I/O performance for 16 fsworkers over 1 fsworkers, indicating
that if I/O is a bottleneck for particular applications, it can be ameliorated with
additional service nodes and fsworkers.

6 Comparison to other Approaches

There are two main candidates for comparison with our approach. The first is an
MPI-based implementation of RDFS closure developed by Weaver and Hendler
[16], which we will refer to simply as MPI. The second is WebPIE, a MapRe-
duce style computation developed by Urbani et al. The authors first focused on
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Fig. 7. I/O rates achieved for various number of fsworkers.

RDFS closure [13] and then expanded their efforts to include a fragment of OWL
semantics [14].

Weaver and Hendler developed an embarrassingly parallel algorithm for RDFS
closure by replicating the ontology for each process and partitioning up the data.
They utilized a 32 node machine with two dual-core 2.6 GHz Opteron processors
per node. They achieved linear scalability but with the side effect of producing
duplicates. The individual processes do not communicate and do not share data.
Thus, it is impossible to know if duplicates are being produced.

Besides the fundamental algorithmic difference between our implementation
and theirs concerning duplicate creation (they create duplicates when we do
not), there are several other factors which make a direct comparison difficult.
For one, they operate on raw triple data rather than integers. Also, they perform
all of the rules listed in Table 1 while we compute a subset. Finally, they include
both reading the data in from disk and writing the result out, where we only
report the read time.

The work of Urbani et al. offers a much more direct comparison to our work,
as they first perform a dictionary encoding algorithm [15] as a preprocessing
step and also perform a similar subset of RDFS rules as we do in this work.
They employ a series of a MapReduce functions to perform RDFS closure. Like
the Weaver and Hendler approach, their algorithm produces duplicates during
processing; however, they account for that and have a specific stage dedicated for
removal of duplicates. Their experiments were conducted on a 64 node machine
with two dual-core 2.4GHz Opteron processors per node. It should be noted that
they’ve shown results computing closure on 100 billion triples. Our approach,
since we limit ourselves to in-memory computations, cannot reach that scale,
at least given a similar number of processors. With a specialized version of the
hash table code with memory optimizations not available in the more general
implementation, we estimate the largest data set we could handle within 4 TB
of memory to be about 20 billion triples. However, the next generation XMT
system, due around the end of 2010, is expected to have as much as eight times
as much memory per processor.
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12 Scalable In-memory RDFS Closure on Billions of Triples

Inferences/second
MPI (32 nodes) 574e3
WebPIE (64 nodes) ∼ 700e3
XMT (512 proc.) 13.2e6
XMT (256 proc.) 11.9e6
XMT (128 proc.) 9.43e6
XMT (64 proc.) 6.50e6
XMT (32 proc.) 4.04e6

Table 2. Listed above are the best rates achieved on LUBM data sets for various
platforms, sizes, and approaches. MPI is the Weaver and Hendler approach [16]. The
WebPIE number is an estimate for the RDFS closure portion of a larger OWL Horst
calculation [14].

Threadstorm processors
to nodes

MPI 7.05
WebPIE 9.28

Table 3. This table reports the speedup achieved by the RDFS closure algorithm on
the XMT versus the two top competing approaches.

Table 2 shows the rate of inferences/second each method achieves for varying
platforms sizes. Table 3 shows the speedup in inferences/second we obtained over
these other methods, again with the caveat that this comparison is inexact due to
differences described above. We compare the number of Threadstorm processors
to an equal number of Opteron cores (i.e. a socket-to-socket comparison). For
both cases we compare against results on LUBM, though the generated sizes
vary from 345 million to 100 billion. The numbers on LUBM for Urbani we
take from their OWL paper [14], using the fact that the first computation in
OWL inferencing for their algorithm is an RDFS closure. Since RDFS closure
on LUBM data sets, regardless of size, generally produce X

4 inferences, where X
is the original number of triples (at least for the set of rules in bold in Table 1),
and using times reported in conversations with the authors for the initial RDFS
closure stage, we calculate the estimated inference rate for this stage of their
algorithm to be about 700 thousand inferences a second.

7 Conclusions and Future Work

We have presented an RDFS closure algorithm for the Cray XMT that achieves
inference rates far beyond that of the current state of the art, about 7-9 times
faster when comparing Threadstorm processors to commodity processor cores.
Part of our approach’s success is due to the unique architecture of the Cray XMT,
allowing us to store large triple stores entirely in memory, avoiding duplication
of triples and also costly trips to disk.
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There are several obvious avenues for future work. In this paper we exam-
ined only artificially generated data sets with a relatively simple ontology. We
would like to examine real-world data, and especially explore the effect that more
complex ontologies have on our algorithm and make adjustments as necessary.

We also want to expand this work to encompass OWL semantics, probably
focusing first on the Horst fragment [9], as it is among the most computationally
feasible subsets of OWL. We believe the XMT will again be well suited to this
problem, maybe even more so than RDFS. For instance, some rules in OWL
Horst require two instance triples to be joined with one schema triple. This
poses a challenge for distributed memory machines in that you can no longer
easily partition the data as with RDFS, which had at most one instance triple as
an antecedent. The XMT can store all of the instance triples in its large global
memory, and create indices as needed to quickly find matching triples.

Also, there are some tricks to try that might help eliminate some of the
constant overhead we see with file I/O (for a fixed number of service nodes)
and data structure initialization. File I/O and initialization both require low
numbers of threads, so it may be possible to overlay them, using a future to
explicitly launch initialization just before loading the data.

One limitation of the approach presented in this paper is the use of fixed
table sizes, forcing the user to have accurate estimates of the number inferences
that may be generated. Using Hashing with Chaining and Region-based Memory
Allocation (HACHAR), also presented in [4], may alleviate this requirement. It
allows for low-cost dynamic growth of the hash table and permits load factors
far in excess of the initial size; however, the current implementation exhibits
poorer scalability than the open addressing scheme we used for this paper.

Finally, we wish to explore a fairer comparison between our work on a shared
memory platform to a similar in-memory approach on distributed memory ma-
chines. The work presented by Weaver and Hendler [16] is the closest we can
find to in-memory RDFS closure on a cluster, but the algorithmic differences
make it difficult to draw definite conclusions. The MapReduce-MPI Library 6,
a MapReduce inspired framework built on top of MPI, permits the develop-
ment of entirely in-memory algorithms using standard MapReduce constructs.
As such, it is an ideal candidate for producing a more comparable RDFS closure
implementation for distributed memory platforms.
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SPARQL to SQL Translation Based on an
Intermediate Query Language
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Abstract. We present a structured approach to SPARQL to SQL trans-
lation using AQL—a purpose-built intermediate query language. The
approach produces a single SQL query for a single SPARQL query. Us-
ing AQL, we revisit the semantic mismatch between SPARQL and SQL
and present query transformations on AQL presentation which enable
the correct translation of some difficult corner cases. By using explicit
expression type features in AQL, we also present type inference for ex-
pressions. We demonstrate the benefit of type inference as a basis for
semantically correct optimizations in translation.

1 Introduction

We present a flexible approach to translating SPARQL queries into SQL queries,
and discuss the properties of the approach based on our experimental implemen-
tation.

SPARQL is a query language for RDF graphs [14]. RDF data consists of
triples expressing relationships between nodes. RDF is semi-structured, in that
it does not imply a schema for storage. On one hand, this makes RDF a very
flexible mechanism and suitable for representing, e.g., web-related meta-data or
other arbitrarily structured information. On the other hand, making efficient
queries to access such data is not easy.

Even if native RDF stores are arguably more promising in the long run,
there exists a massive amount of data stored in SQL databases with associated
technology, infrastructure and know-how. This cannot be ignored in discussions
on large scale adoption. During the transition, it is attractive to consider storing
the RDF data in SQL databases parallel with non-RDF data in existing systems.
The existing data can then be provided as virtual RDF graphs to applications
[4], providing unified access to all data.

We address query translation from SPARQL into SQL that enables the use
of SQL databases with flexible storage schemas. Storing RDF data in an SQL
database is not trivial. For example, there is no single SQL layout for RDF data
that is the best in all cases [1, 13]. Because of this, a flexible approach where the
SQL layout can be tuned on per-application basis is preferable. Similarly, query
translation is not easy, as SQL and SPARQL differ significantly, and for some
corner cases, even getting semantically correct translation is hard [6]. Further,
producing SQL queries that can be executed efficiently by the SQL database is
difficult.
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Our approach to the translation is to produce a single SQL query for a
single SPARQL query without the need for result post processing, except the
presentation. Also, an important design goal has been to produce SQL with the
support for using native SQL data types where possible and avoiding subselects.
This approach minimizes the amount of communication round-trips and leaves
more optimization opportunities for the SQL back-end [11].

To obtain these goals, we devised a translation design based on an interme-
diate language that we call AQL (Abstract Query Language). As is typical for
intermediate languages, it has straightforward basic semantics and has the abil-
ity to attach information to support translation. Such properties make it easy to
find a translation from the source language into AQL and enable finding efficient
translations from AQL to the target language.

AQL targets only the query semantics for translation. It does not address
other issues, such as the representation of results like many concrete query lan-
guages do (including SPARQL and SQL). AQL has been designed especially in
the context of SPARQL to SQL translation. It is used to address the translation
of queries into semi-structured data into relational database queries in general.

AQL has language features that enable the use of type information to support
translations. Similar type-based static analysis and translation mechanisms have
been used for programming languages. We demonstrate how such a methodology
can be applied to support the translation of SPARQL queries into SQL queries.

We have created an experimental implementation of our translation approach
to test its properties. Our implementation, Type-ARQuE (Type-inferring AQL-
based Resource Query Engine) [15], is an optimizing SPARQL to SQL query
translator. It supports the most important SPARQL language features in order to
validate the design. Type-ARQuE is written in C++ and supports PostgreSQL
and MySQL back-ends with different database layout options.

Based on the implementation, we show how some demanding cases of RDF
queries can be translated into efficient SQL queries. Our demonstration cases
underline the challenges raised by alternate variable bindings, variable scoping
and determining the required value joins. Especially, we demonstrate how deter-
mining the required value joins can benefit from type inference.

We review some of the related background in Sec. 2. The translation design
is covered in Sec. 3, containing an overview of the AQL language and the steps
of the translation of SPARQL into SQL by using AQL as an intermediate. We
give special attention to the use of AQL type information, as type inference is
essential for our translation. In Sec. 4 we illustrate the translation with concrete
examples. We continue by discussing the properties of our translation (Sec. 5)
and end with brief conclusions (Sec. 6).

2 Background

SPARQL[14] is a query language for RDF graphs. It is an official W3C recom-
mendation. SPARQL has syntactic similarity to SQL but with some important
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differences. Whereas in SQL the query data set is specified by joining tables
(FROM and JOIN clauses), graph match patterns are used in SPARQL.

Relational databases are an important back-end option for storing RDF
graphs due to the wide user base of relational databases. A variety of SQL
layouts for storing RDF graphs have been suggested, but it seems that no single
layout is good for all purposes [1, 13].

Harris was one of the first to systematically consider SPARQL to SQL trans-
lation discussing various ways of organizing RDF triple stores and considers es-
pecially using SQL back-ends [8]. The opportunity for a number of optimizations
is acknowledged and the problem underlined as nontrivial.

To our knowledge, one of the most fundamental works on the problem domain
is presented in [6]. The technical report explains the SPARQL algebra with
discussion on how to map the SPARQL algebra to the traditional relational
algebra. In the report, difficult corner cases of translation are also analyzed.

A rather flexible translation approach is presented in [11]. They consider
SPARQL query translation into SQL queries by using a facet-based scheme that
is designed to handle filter expressions. They underline that it is desirable that
a single SPARQL query is translated into a single SQL statement, and that
comparison between results of different data types is useful. They also consider
optimization strategies to reduce complexity of translated queries.

Hartig and Heese considered optimization by query translation at SPARQL
algebraic level [9]. Their approach was based on translating the query in Jena
ARQ into a custom representation (SQGM) for optimization, and then translat-
ing back into ARQ.

Lately, Chebotko et al. presented a method for translating a SPARQL query
to a single SQL query with preservation of semantics [5]. Their method operates
on SPARQL algebraic level, and relies on SQL subqueries on data set declaration.

Left-to-right variable binding semantics are an alternative to bottom-up se-
mantics. This changes variable scoping, enabling queries containing filters in
nested graph groups that depend on variables bound by their parents. For a
discussion, see [6]. SPARQL utilizes currently the bottom-up semantics.

3 The Translator Design

The query translator in Type-ARQuE translates SPARQL queries into SQL.
The translator was designed with three main goals in mind. First, the translator
should produce a single SQL query for a single SPARQL query. Second, the type
support of the SQL back-end should be utilized. Finally, the translator should
not be fixed to some specific SQL schema and SQL dialect.

The translator is based on a multi-stage translation architecture [2], consist-
ing of front-end, intermediate, and back-end translation stages. The front-end
parses and translates SPARQL queries into intermediate queries (Sec. 3.2). The
intermediate query language, AQL (Sec. 3.1), is specifically designed to stand be-
tween SPARQL and SQL. The intermediate translation stage (Sec. 3.3) consists
of general query transformation and optimization passes (general preparation)
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as well as back-end specific transformation passes (specialization), and utilizes
type inference (Sec. 3.5). Finally, the translator back-end translates the AQL
query into SQL using a specific target dialect (Sec. 3.4).

A main design goal for AQL, the Abstract Query Language, was to be com-
pact with straightforward but high-level semantics. It is relational in nature. The
join expressions in AQL are extended from the traditional relational algebra to
cover both SPARQL and SQL join semantics.

3.1 The Abstract Query Language

AQL is an intermediate query language, representing the query semantics. In
other words, it does not cover representation of the query results, such as SE-
LECT vs. CONSTRUCT forms in SPARQL. Its intended use is machine-only.
We begin by introducing the language and then defining the query evaluation
constructs and semantics, and finally, we consider expressions in AQL.

An AQL query is represented by a query object, which contains the data
set declaration, sort orders, result slicing, and select expressions. The data set
declaration consists of a join tree, where each node contains a set of join names,
possible child nodes, and join criteria. The data set declaration specifies the data
that is used in the query process. The data is a list of query solutions, represented
by a 2-dimensional array, columns as solution components and rows as different
solutions. Order expressions specify the ordering of the data set. Result slicing
(LIMIT and OFFSET) selects a specific range of rows. Select expressions are
projections of a solution row to singular values, comparable with SQL select
expressions.

A node in a join tree represents joining one or more columns to the data set
using the attached join criteria. Child nodes represent nested joins. Each node
may be of type INNER or LEFT OUTER join. The columns are named by the
join names.

Joins manipulate the rows in the data set. Conceptually, this begins with
creating a temporary data set by taking all the triples in the store, and raising
the set to the Cartesian power of the number of triple names in the join node. The
temporary data set is then joined to the result data set by Cartesian product.
Then, the child nodes, if any, are joined. Finally, each join criterion is evaluated
per row. The row is eliminated unless it meets all criteria. It is possible that a row
that was originally in the result data set is eliminated if all new combinations fail
to meet the criteria. In that case, if the join is LEFT OUTER join, the original
row is retained and nulls are inserted to new columns.

There are differences in the join processes between the relational algebra and
AQL, namely, in the order of operations. In the relational algebra, the data set
is created by processing the nested joins first. Joining a table (or a set of tables)
and evaluating the join condition is an atomic operation [7]. In AQL, a top-down
approach is used instead. The child joins are joined to the parent recursively,
and only after that the join criteria are processed. The AQL approach enables
referencing more columns in the join criteria than what is possible in the SQL
approach. In SQL, the child joins and parent may be referenced in the join
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criteria. In AQL, the parent (recursive) and every earlier node using in-order
join tree traversal may be used, in addition. This extension covers both the
SPARQL and SQL semantics.

We now define the AQL and its evaluation semantics, borrowing notation
used in SPARQL evaluation definition [14] where applicable.

The query object is defined as follows:

(aql-query join-name-group

join*

(criterion <expr>)

sort-expr*

(result-max-rows <integer>)?

(result-row-offset <integer>)?

select-expr*

distinct?)

The parts are:

join-name-group — The join names for the root join node.
join* — Any number of join expressions.
criterion — The filter expression for the data set.
sort-expr — Any number of sort expressions defining the sequence for data set

enumeration.
result-max-rows, result-row-offset — Slice specifiers.
select-expr* — The select expressions.
distinct? — Optional result modifier.

A join expression represents joining the set of all triples in the store one or more
times into the data set. The join expression is defined as:

(join join-type join-name-group expr join*)

And the parts:

join-type — The join type, either INNER for inner join or LEFT for left outer
join.

join-name-group — The set of join names.
expr — The join condition expression.
join* — Any number of nested joins.

The aql-query object, join expressions and AQL query criteria form a join tree
which specifies the data set. The data set is a 2-dimensional array, consisting
of solutions as rows and triples as named columns. For the query result data
set definition, let T be the set of all triples in the store and I the identity for
Cartesian product (I is an empty array of 1 rows, 0 columns).

The data set for a join subtree is produced by function JoinNode(D0, n)
where the current data set is denoted as D0 and the root node of the subtree as
n. Return value denotes the data set after joining n to D0. The following steps
define the evaluation of JoinNode(D0, n):
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1. Join the Cartesian product specified by join name group of the node:
Dr ← D0 D1, where D1 = Tjn1 × · · ·× TjnN

2. Join children of n in left to right order into the data set D as:
Dr ←JoinNode(· · · (

JoinNode(JoinNode(D0 D1, n.child1), n.child2), · · · n.childN)
3. Apply filter:

Dr ← filter(Dr, n.expr)
4. If the join type of n is LEFT, add row d,ω into Dr for each row d removed

from D0 by the filter expression, where ω contains nulls to fill the join
columns.

5. Return Dr

The result data set D for the query is produced by JoinNode(I, aql-query).
Fig. 1 illustrates the result data set with query result.

After the result data set is formed, order expressions are used to sort the
data set. The first order expression is evaluated for each row and then the rows
are ordered so that the rows with smaller order value are enumerated first in
ascending order or vice versa in descending order. If two or more rows have the
same order value, the second order expression is used to determine the ordering
between these rows, and so on. The sort expressions are of form:

(sort ascending|descending <expression>)

Finally, select expressions are applied for each row in the sorted data set.
The set of select expressions for a row produces a result row. When the select
expressions are applied for each row in the data sequence, the result sequence is
produced. In AQL, select expressions are of form:

(select <column-label> <expression>)

After the result sequence is produced, if the distinct modifier is set, all dupli-
cate rows are eliminated.

The expressions in AQL are of three categories: typed literals, triple property
expressions, and function expressions. Function and property expressions are
assigned a set of possible types. The expression templates are below:

(literal <type> <value>)

(property <type-set> <join-name> subject|predicate|object)

(function <function-name> <type-set> <param-expr>*)

literal specifies a typed literal, such as 5 (int) or ’abc’ (string). property
specifies access to the subject, the predicate, or the object of a named triple in a
solution. type-set in property makes an assumption of the property type: the
type must belong to the assumed type set. function represents evaluation of a
function returning a value of a type belonging to the type set.
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t1 t2 t3 · · · tn
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row 1

· · ·

row 2

· · ·

row m

select1 select2 · · · selectl

row 1
row 2

· · ·

row m

Fig. 1. Illustration of a solution set (left-hand table) and the query result (right-hand
table) of an AQL query as a 2-dimensional arrays. Triple columns are added by in-order
traversal of join groups, one column and three sub-columns (subject, predicate, object)
per triple name. The rows are inserted and filtered by running the data set production
algorithm described in Sec. 3.1. Each row represents a single solution to the query.
Afterwards, the rows are ordered and sliced, and finally, the select expressions are
evaluated per solution row to produce the query result array.

3.2 SPARQL to Abstract Query Language

The translation into AQL is mostly straightforward. First, the SPARQL query
is parsed into an abstract syntax tree. After that, variable accesses are checked
to conform to bottom-up binding unless left-to-right semantics are enabled. In
bottom-up binding, variable may be used in FILTER expression if it is bound by
a triple match pattern in the same or a nested graph group. Then, the abstract
syntax tree is normalized by merging non-optional SPARQL graph groups with
their parents.

For each graph group an AQL join node is created and unique join names are
assigned to the triple match patterns in the graph group. Then the join names
are inserted into the respective AQL join groups. The graph group hierarchy is
naturally preserved in the AQL join group hierarchy.

Variable binding step addresses the mapping of SPARQL variable bindings
to AQL property and function expressions. The SPARQL semantics require that
variables are bound by the first matching triple match pattern. As non-optional
match patterns always bind a variable, that variable can be mapped to the
property of the triple join corresponding to the first non-optional match pat-
tern. However, optional match patterns introducing variables require a bit more
consideration.

Before a variable is encountered in a non-optional match pattern, the variable
may be bound by optional graph groups containing a match pattern mentioning
the variable. In this case, coalesce-expressions are used to select the first value-
binding triple match visible at point of access.

After the variables are bound to property expressions, join conditions are
constructed by triple match patterns. Literals in match patterns impose con-
straints to triple join properties. If a match pattern introduces a new variable,
no condition is rendered. If a variable is already introduced, it is required that
the property of the respective triple join is equal to the variable, if the variable
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was bound. When it is not certain that the variable is bound, additional not-null
conditions are added for non-optional match patterns. After translating match
pattern conditions, filter expressions are translated as additional join conditions.
Thus, match patterns and filters are unified.

Finally, selects and order expressions are translated. This completes the
SPARQL to AQL translation.

3.3 Translation Passes on Abstract Query Language

The translation passes prepare an AQL query for SQL translation. The process
is called lowering. Lowering consists of general preparation and specialization
parts. General preparation is a sequence of generic transformation passes which
simplify the AQL, and makes it easier to translate. Specialization part perform
back-end-specific transformations such as replacing AQL property expressions
with SQL access expressions for a specific layout. We list the passes in both
parts briefly below.

General preparation:

– Inner join merge — joins inner joins with parents to simplify the query.
– Logical expression normalization — moves not-expressions inwards using De

Morgan’s laws and fuses not-expressions with comparisons, e.g., ¬(a > b∧c =
d) → a ≤ b ∨ c �= d

– Operators to functions — transforms comparison, typecast, and logical op-
erators to equivalent function expressions.

– Type inference — infers possible types for expressions. Described in more
detail in Sec. 3.5.

– Empty type sets to nulls — replaces possible empty type sets with null
expressions. An expression with conflicting type requirements may only pro-
duce a null.

– Nested join flattening — transforms deep nested joins with many-levels-up
accesses to a less deep form. Exemplified in Fig. 4.

– Comparison optimization — transforms equality and non-equality value com-
parisons to reference comparisons.

– Function variant selection — chooses the most appropriate variants of poly-
morphic functions in expressions.

Specialization:

– Property value requirer — adds not-null conditions whenever property ex-
pression could produce null. Null can be produced if value table(s) must be
left-joined or typecast must be used to access value of a triple property.

– Property access resolver — rewrites property access expressions with lower-
level back-end-specific equivalents. In the back-end-specific accesses table
names, value and index columns are resolved and the required typecasts and
COALESCEs are added whenever needed.

– Expression optimization — simplifies various expressions and performs com-
mon subexpression elimination. Having an explicit clean-up pass simplifies
some of the previous passes.
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– Function variant selection — this pass is run again to ensure that all variants
of functions have been chosen after transformations.

– Typecast injection — inserts typecasts wherever needed in the expressions.
– Property access collection — collects all low-level property accesses. This is

used to determine which value-joins are required in the final SQL.

3.4 Translation to SQL

After an AQL query is lowered, the translation into SQL is straightforward. The
arrangement resembles code generation in compilers [3]. The AQL expressions
in selects, orders, join conditions, and the query criteria are translated into SQL
by traversing the expression trees.

The AQL join tree is then transformed into an SQL join tree with value joins
and join expressions attached. For multiple triple joins in AQL join group, cross
join is used in SQL. The SQL join tree is then serialized into string form.

Finally, all the translation results are inserted into an SQL query template.
This completes the SPARQL to SQL translation process.

3.5 Type Inference

In our approach, type inference for all expressions is performed in AQL after the
join tree and its expressions are normalized. The inferred information is used,
e.g., to optimize value accesses in complex SQL schemas.

We utilize equations on two levels to resolve the possible types for property
and function expressions. The lower-level equations infer the possible types in the
join conditions. The higher-level equations transfer the inferred type constraints
between join conditions in the join tree.

Throughout this section, p denotes the property, i.e., the triple component
(subject, predicate, or object), S is the finite set of all known types and Cn,p ⊂ S
is the set of the possible types of a property p and expression node n. For
example, Cn,t5.object = {string, int} specifies that the object of the named triple
t5 may only be of type string or int. n is the expression node (i.e., function,
literal or property expression) that scopes this constraint.

Type Inference on Join Condition Expressions. The normalized expres-
sion tree may contain function, property and literal expression nodes. Property
and literal expression nodes are always leaf nodes. The children of function nodes
represent function parameters.

For every expression node n, a set of possible expression types Rn ⊂ S and
a set of property type constraints Cn,p are assigned. Then, based on expression
node types, conditions to Rn and Cn,p between adjacent nodes are set, as:

– if n is a literal of type t: Rn = {t}, Cn,p = Cparent(n),p

– if n is a property expression p: Rn = Cn,p, Cn,p = Cparent(n),p
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STEP 1 STEP 2

AND

�������������

�������������

= (?,?):boolean

�������

������� > (?,?):boolean

�������

�������

t1.o 5:int t1.o t2.o

AND
{t1.o:int}

�������������

�������������

= (int,int):boolean
{t1.o:int}

�������

��
��

��
��

> (?,?):boolean

��������

��������

t1.o:int
{t1.o:int} 5:int t1.o t2.o

STEP 3 STEP 4
AND

{t1.o:int}

�������������

�������������

= (int,int):boolean
{t1.o:int}

�������

�������

> (int,num):boolean
{t1.o:int}

�������

�������

t1.o:int
{t1.o:int}

5:int
{t1.o:int}

t1.o:int
{t1.o:int}

t2.o:num
{t1.o:int}

AND
{t1.o:int, t2.o:num}

�������������

�������������

= (int,int):boolean
{t1.o:int,
t2.o:num}

�������

�������

> (int,num):boolean
{t1.o:int,
t2.o:num}

�������

�������

t1.o:int
{t1.o:int,
t2.o:num}

5:int
{t1.o:int,
t2.o:num}

t1.o:int
{t1.o:int,
t2.o:num}

t2.o:num
{t1.o:int,
t2.o:num}

Fig. 2. Illustration of type inference for a simple expression. Using the inference pro-
cedure described in Sec. 3.5, the set of possible types (in braces {· · · }, ‘?’ represents
all possible types) are reduced by analyzing expression types and function signatures,
and propagating the sets using transfer functions. Property t1.o has been inferred as
integral type and t2.o as general numeric type.

– if n is an expression node for the function f and mi are the parameter nodes.
Then, Rn = Ff (Rm1 , Rm2 , . . .) where Ff maps the set of possible parame-
ter types to a set of possible return types. The constraint set propagation
depends on the type of the function f as follows. If f is
• or: Cn,p = Cparent(n),p ∩ (

�
i Cmi,p)

• not: Cn,p = Cparent(n),p

• any other function: Cn,p = Cparent(n),p ∩ (
�

i Cmi,p)

Expression type inference is illustrated in Fig. 2.

Constraint Propagation between Joins. The constraints are transferred
between the roots of join condition expressions, as the effective Boolean value
of the expression root determines whether the join contributes to the query
solution. In the join tree, the constraint transfer between any two nodes must
follow the following two simple rules:

1. Every inferred type constraint of node n applies to every child
node mi of n, i.e., Cmi,p ⊂ Cn,p. This is because the nested joins cannot
contribute to the solution if n is null, and therefore, we can assume that
inferred type restriction applies also to the nested joins without problems.
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2. Every inferred type constraint made in n for a property of a triple
defined by n or some of its children applies everywhere. This is
because the property value can be non-null only if n is not null.

Note that by rule 1, all constraints inferred for the root join apply everywhere.

Solving the Equations. We take a conservative approach by assuming initially
that objects of triples may be of any type. Subjects and predicates may only be
IRIs in RDF graphs. Then we exclude non-viable type alternatives, i.e., those
that cannot appear. The exclusion is performed by iterating the two steps below
until a fixed point is found. The steps correspond to the higher and lower level
type inference equations. As the sets of viable type alternative constraints are
initially finite and may only shrink, the fixed point is guaranteed to be reached.
The descriptions of exclusion steps:

1) Condition expression step. First, all function expressions are analyzed in pre-
order, separately for all join condition expressions. Based on parameter types
and constraints on the return type the union of the viable function variants
are computed. This may imply new constraints on function parameters, e.g.,
function a=abs(b) requires that b is numeric. If function parameters are prop-
erty expressions, the type set Cn,p of the property is shrunk to reflect function
parameter requirements.

After the constraint sets of properties are shrunk, they are propagated in
post-order to adjacent expression nodes using the transfer rules described in
Type Inference on Join Condition Expression above. Finally, every constraint
set is intersected by constraints in expression root node.

2) Constraint propagation step. After the possible type sets in join condition
expressions are shrunk, the sets are propagated between join conditions. This is
straightforward using the two rules in Constraint Propagation between Joins.

4 Translation Examples

In this section, we demonstrate some of the techniques utilized by our query com-
piler. Alternate binders demonstrates a translation where a variable may bound
by two alternate optional match patterns. Two levels up access demonstrates
query flattening in AQL. This is required when there is a reference to a variable
which is bound by a graph pattern residing two or more levels up in the join tree.
Expression type inference demonstrates how type inference is used to eliminate
superfluous joins to value tables in faceted storage layouts. The examples are
translated using Type-ARQuE using the PostgreSQL target. Alternate binders
and two levels up access are motivated by the corner cases discussed in [6].

In examples alternate binders and two levels up access, the triple graph is
stored in a single table, InlinedTriples, consisting of three columns for sub-
jects, predicates and objects. In expression type inference we use a central triple
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table, VI_Triples, which consists of three index columns. The columns refer
to value tables containing the actual property values, such as VI_Strings and
VI_BigStrings for string-typed values.

Alternate binders query (Fig. 3) has two optional graph patterns, both which
may bind variable d. We call this the alternate binders case. The variable deref-
erence expression depends on where d is accessed. In the first optional match,
we may assume that d is bound there. In the second match there are two alter-
natives: 1) the first match binds and the triple object must equal to this, or 2)
the first pattern did not match and equality comparison should be omitted. In
SELECT part, COALESCE-expression is used to select the binding expression.

Two levels up access example (Fig. 4) demonstrates working around the
“two-levels-up” variable access by transforming the join tree. The nested join
is translated as a sibling join with additional condition requiring that the former
parent must match. In the figure, the join tree of the AQL is displayed before
and after flattening. In this example, the extended left-to-right variable binding
semantics are assumed. The query is not proper for bottom-up semantics, as in
this case, the variable c is inaccessible in the filter.

In Expression type inference (Fig. 5) we demonstrate the use of type inference
to determine the required value joins when using a facet-based storage layout.
Without type inference, when dereferencing a variable, all value tables must be
joined which can be costly. Using type inference, the number of joins and the
complexity of respective coalesce expressions can often be reduced significantly.

5 Discussion

Our translation approach is somewhat different to the approach in popular
SPARQL-enabled RDF stores, such as Jena/SDB[10] and Sesame[12], in that
we use a purpose-built intermediate language in the translation. The use of an
intermediate language enables an approach for translation using relatively small
and straightforward passes.

AQL provides a new look into the problem of mismatching semantics between
SPARQL and SQL, especially when left-to-right variable binding semantics are
used. This is because AQL is more explicit than SPARQL algebra regarding
query evaluation, and AQL is less complex than SPARQL algebra in what comes
to the language features.

Contrary to SPARQL, AQL does not have query variables. In our approach,
variables are translated into triple property access expressions, which refer to
parts of the query solutions. Resolving variables to property access expressions
is fairly straightforward and eliminates tedious translation problems related to
variables altogether. Variables are especially difficult to translate directly into
SQL expressions, as they may be bound by different parts of SPARQL query.
We demonstrated this in the alternate binders case in Sec. 4.

When using the extended left-to-right variable binding, the “FILTER scope”
problem poses a difficult corner case for translation [6]. The naïve SPARQL to
SQL translation always fails, because in SQL, the variable bound by a graph
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SELECT ?a ?d
WHERE {

?a ?b ?c
OPTIONAL { ?a <http://test/surname> ?d }
OPTIONAL { ?a <http://test/lastname> ?d }

}

SELECT tri_1_1.subj_value AS c0,
COALESCE(tri_2_1.obj_value,tri_3_1.obj_value) AS c1

FROM InlinedTriples AS tri_1_1
LEFT JOIN InlinedTriples AS tri_2_1 ON

tri_2_1.subj_value=tri_1_1.subj_value AND
tri_2_1.pred_value=’http://test/surname’

LEFT JOIN InlinedTriples AS tri_3_1 ON
tri_3_1.subj_value=tri_1_1.subj_value AND
tri_3_1.pred_value=’http://test/lastname’ AND
(tri_2_1.obj_value IS NULL OR
tri_3_1.obj_value=tri_2_1.obj_value)

Fig. 3. Variable d is bound by the first matching optional graph pattern. Variable
dereference is translated as coalesce of alternate binders. In the latter optional graph
pattern, the case where the first graph pattern binds d is taken into account by inserting
additional null or equals condition.

pattern is not available in an optional join at a nesting distance of two or more
levels. In our approach, in these cases the join tree is flattened by a semantically
equivalent transformation, reducing the set of untranslatable queries. As a side
product of variable elimination and “FILTER scope” workaround, the “Nested
OPTIONALs” problem in [6] is also remedied.

Using the left-to-right semantics, there are queries that are structurally un-
translatable by our method. This class consists of queries where a parent graph
group refers to a variable in nested graph group with a two-levels-up access. We
present an archetype of this class, which we call the 2-up-1-down-access query:

SELECT ∗
WHERE { ?a ?b ?c

OPTIONAL { ?d ?e ?f
FILTER(?i=’abc’)
OPTIONAL { ?g ?h ?i

FILTER(?c=’def’) } } }

Within this class of queries, join tree flattening produces access expressions with
forward references in the join conditions. In SQL, this is illegal. However, we
believe that most of the practical queries do not belong to this class.

The data set construction semantics in AQL can be considered as a process
of self-joining the set of all triples in the store with join conditions instead of
applying triple match patterns. This unifies the handling of triple match patterns
and filters. This also enables a clean isolation of triple store layout from the rest
of the translation, as we can consider all the triples to reside in one virtual table,
and translate the accesses to the virtual triple table to concrete layout-specific
tables and columns.
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SELECT ?a ?d ?e ?g
WHERE { ?a ?b ?c
OPTIONAL { ?a ?d ?e

OPTIONAL { ?e ?f ?g FILTER (?c=45.1) } } }

(aql−query ("tri_1_1") ... # before flattening
(join left ("tri_2_1")

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_2_1" subject)
(property (IRI) "tri_1_1" subject))

(join left ("tri_3_1")
(function "builtin:and" (boolean)

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_3_1" subject)
(property (IRI) "tri_2_1" object))

(function "builtin:comp−eq" (boolean)
(property (double) "tri_1_1" object)
(literal double 45.1))) ...)

(aql−query ("tri_1_1") ... # after flattening
(join left ("tri_2_1")

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_2_1" subject)
(property (IRI) "tri_1_1" subject)))

(join left ("tri_3_1")
(and (function "builtin:and" (boolean)

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_3_1" subject)
(property (IRI) "tri_2_1" object))

(function "builtin:comp−eq" (boolean)
(property (double) "tri_1_1" object)
(literal double 45.1)))

(function "builtin:is−not−null" ANY
(property (reference) "tri_2_1" subject))))

...)

SELECT tri_1_1.subj_value AS c0, tri_2_1.pred_value AS c1,
tri_2_1.obj_value AS c2, tri_3_1.obj_value AS c3

FROM InlinedTriples AS tri_1_1
LEFT JOIN InlinedTriples AS tri_2_1 ON

tri_2_1.subj_value=tri_1_1.subj_value
LEFT JOIN InlinedTriples AS tri_3_1 ON

tri_3_1.subj_value=tri_2_1.obj_value AND
aqltosql_any_to_double(tri_1_1.obj_value)=45.1 AND
tri_2_1.subj_value IS NOT NULL

Fig. 4. The “two-levels-up” variable access in filter condition is flattened by one level
by a join tree transformation. The join tri_3_1 is moved down to the same level
with tri_2_1 with additional condition that tri_2_1 needs to be non-null. The orig-
inal semantics are retained but the query becomes translatable into valid SQL. Non-
interesting parts of the AQL queries are pruned away for brevity. This query requires
the extended left-to-right variable binding semantics.
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SELECT ?a ?c
WHERE { ?a ?b ?c. FILTER (?c=55 || ?c=’David’) }
ORDER BY (?c)

SELECT tri_1_1_subj_VC_IRIs.iri_value AS c0,
COALESCE(tri_1_1_obj_VC_Strings.str_value,

tri_1_1_obj_VC_BigStrings.text_value,
CAST(tri_1_1_obj_VC_Integers.int_value AS TEXT)) AS c1

FROM VC_Triples AS tri_1_1
LEFT JOIN VC_Strings AS tri_1_1_obj_VC_Strings ON

tri_1_1_obj_VC_Strings.id=tri_1_1.obj
LEFT JOIN VC_BigStrings AS tri_1_1_obj_VC_BigStrings ON

tri_1_1_obj_VC_BigStrings.id=tri_1_1.obj
LEFT JOIN VC_Integers AS tri_1_1_obj_VC_Integers ON

tri_1_1_obj_VC_Integers.id=tri_1_1.obj
INNER JOIN VC_IRIs AS tri_1_1_subj_VC_IRIs ON

tri_1_1_subj_VC_IRIs.id=tri_1_1.subj
WHERE

(tri_1_1_obj_VC_Integers.int_value=55 OR
COALESCE(tri_1_1_obj_VC_Strings.str_value,

tri_1_1_obj_VC_BigStrings.text_value)=’David’) AND
(tri_1_1_obj_VC_Strings.str_value IS NOT NULL OR
tri_1_1_obj_VC_BigStrings.text_value IS NOT NULL OR
tri_1_1_obj_VC_Integers.int_value IS NOT NULL)

ORDER BY COALESCE(tri_1_1_obj_VC_Strings.str_value,
tri_1_1_obj_VC_BigStrings.text_value,
CAST(tri_1_1_obj_VC_Integers.int_value AS TEXT)) ASC

Fig. 5. Type inference is especially useful with faceted storage layouts. This becomes
obvious when observing translation of variable c. It is inferred that c must be either
integer or string for any solution to the query. Therefore, only string and integer value
tables are required to be joined to obtain value for c. As variable a is used in subject,
it is inferred as IRI.

6 Conclusion

We have presented an approach for SPARQL to SQL translation. The translation
produces a single SQL query for a single SPARQL query, and does not rely on
SQL result post-processing, except in data presentation. This approach reduces
the amount of communication round-trips to the SQL server and allows the SQL
server do more optimizations.

The translation is structured into three stages (front-end, intermediate, back-
end) and the stages themselves are subdivided into self-contained passes. The
intermediate stage operates on a purpose-built intermediate language, AQL. Us-
ing AQL, we have presented a way to target the queries for different SQL layouts
for RDF data, and a strategy for query optimization.

As a basis for optimizations, we introduced type inference and provided an
algorithmic view on its implementation. The implementation relies only on the
constraints derived from the SPARQL query. Type inference is used to optimize
expressions and SQL accesses. Ontology-awareness would likely enhance type in-
ference in many practical scenarios, as, e.g., known predicate of a triple often con-
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strains type possibilities of the object. For triple with predicate foaf:homepage,
we would expect IRI as the object type, for instance.

Using the extended join semantics of AQL, we provided intermediate-level
query transformations for reducing the mismatch between SPARQL and SQL
join semantics. The transformations enable translation of the corner cases pre-
sented in [6]. However, there is still a class of SPARQL queries that remain
untranslatable by our approach, when the extended left-to-right variable bind-
ing semantics are used. Of this class, we presented a representative archetype.

To validate our design, we implemented Type-ARQuE, an experimental trans-
lator based on the presented design. The translator covers a representative subset
SPARQL and demonstrates the translation in detail.
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Abstract. The vision of the Semantic Web is becoming a reality with
billions of RDF triples being distributed over multiple queryable end-
points (e.g. Linked Data). Although there has been a body of work on
RDF triples persistent storage, it seems that, considering reasoning de-
pendent queries, the problem of providing an efficient, in terms of per-
formance, scalability and data redundancy, partitioning of the data is
still open. In regards to recent data partitioning studies, it seems reason-
able to think that data partitioning should be guided considering several
directions (e.g. ontology, data, application queries). This paper proposes
several contributions: describe an overview of what a roadmap for data
partitioning for RDF data efficient and persistent storage should contain,
present some preliminary results and analysis on the particular case of
ontology-guided (property hierarchy) partitioning and finally introduce
a set of semantic query rewriting rules to support querying RDF data
needing OWL inferences.

1 Introduction

The generally encountered use of ontologies consists in performing data infer-
ences and validation using a Semantic Web compliant reasoner. The correspond-
ing reasoning mechanism can be used to generate a set of queries executed over
the appropriate data sets. For example, this approach was designed in a medical
application [8] where inferences on chemical molecules were needed to highlight
contra indications, side effects of pharmaceutical products. As mentioned in [8],
results of queries with both inference on property (i.e. rdf:property) and con-
cept (i.e. rdf:class) hierarchies are required by the application as well as by
data quality or data exchange external tools.

In regards to large ontologies (e.g. OpenGalen or SNOMED in the medical do-
main) and data sets (e.g. Linked Data), providing efficient performances to rea-
soning dependent queries is an important issue. We believe that to enable effi-
cient response time to such queries, one has to give a special attention to the
storage system associated to the triples. In fact, RDF is basically a data model
and its recommendation does not guide to a preferred storage solution. The re-
lated work about RDF data management systems can be subdivided into two
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categories: the ones involving a mapping to a Relational DataBase Management
System (RDBMS) and the ones that do not. In this paper, we do not focus on
the latter one.

A set of techniques have been proposed for storing RDF data in relational
databases. Several research groups think that this is likely the best perform-
ing approach for their persistent data store, since a great amount of work has
been done on making relational systems efficient, extremely scalable and robust.
Efficient storage of RDF data has already been discussed in the literature with
different physical organization techniques based on partitioning (cf. Figure 1).

Persistent RDF data storage

No partitioning

Triple table

Partitioning

Guided by Ontology

Concept hierarchy* Property hierarchy

Vertically partitioned table roStore

Hybrid*

Guided by Data

Data itself

Property(-class) table

Queries*

Fig. 1. Physical organization of RDF data based on partitioning. (*) no known study
yet.

On one hand, there exists tools such as Sesame [5], Jena [18], Oracle [6] and
3store [10] which rely on a straightforward mapping of RDF into an RDBMS –
called triple table approach. Each RDF statement of the form (subject, predicate,
object) is stored as an entry of one large table with a three-columns schema (i.e.
a column for each the subject, predicate and object). Indexes are then added for
each of the columns in order to make joins less expensive. However, since the
collection of triples are stored in one single table, the queries may be very slow to
execute. Indeed when the number of triples scales, the table may exceed memory
size (inducing costly disk-RAM transfers). Nevertheless, simple statement-based
queries can be satisfactorily processed by such systems, although they do not
represent the most important way of querying RDF data. Still, this storage system
scales poorly since complex queries with multiple triple patterns require many
self-joins over this single large table as pointed out in [18, 16, 12].

Whereas this specific approach does not use partitioning at all, on the other
hand, some recent research highlighted two efficient main trends depending on
the information one uses to guide the partitioning: guided by (1) the underlying
ontology or (2) the data itself. Intuitively, one would expect that a well suited
data partitioning will induce a better response time to queries (at least select
ones). Indeed, data partitioning will allow queries to be made on smaller sets
of entries which, given an adapted RDF data clustering, should be faster. The
counterpart of this storage system will be some possible worst performance for
data updates.
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Considering partitioning guided by the underlying ontology, most of the re-
cent works focus only on the property hierarchy. Among others, the vertical
partitioning approach suggested by Abadi et al. in [2] is to be mentioned. In
this approach, using a fully decomposed storage model (DSM) [7], the RDF data
is divided into n two columns (subject,object) tables where n is the number of
unique predicates in the data. Each of these resulting tables represents a par-
ticular predicate, with an entry for each statement of the data containing the
corresponding predicate. Sorting the tables according to the subject allows fast
merge joins for reconstructing information about multiple predicates for subsets
of subjects. The vertically partitioned approach offers a support for multi-valued
attributes. Indeed, if a subject has more than one object for a given predicate,
each distinct value is listed in a successive row in the corresponding table. For a
given query, only the predicates involved in that query need to be read. Finally,
the building of the two-columns tables can be done easily – without a cluster-
ing algorithm – by only browsing and relying on the property hierarchy of the
data. As previously mentioned, as a counterpart, data updates/insertions may
be slower in vertically partitioned tables rather than triple ones since multiple
tables need to be accessed for statement about the same subject.

In [2], the authors described how a column-oriented DBMS [15] (i.e., a DBMS
designed especially for the vertically partitioned case, as opposed to a row-
oriented DBMS, gaining benefits of compressibility [3] and performance [1]) can
be extended to implement the vertically partitioned approach. Roughly, this is
done by storing tables as collections of columns rather than collections of rows.
The goal is to avoid transferring entire rows into memory from disk, like in row-
oriented databases, if only a few attributes are accessed per query. Consequently,
in column oriented databases only those columns relevant to a query will be read.
Note that, in an independent evaluation [14] of the techniques presented in [2],
the authors pointed out potential scalability problems for the vertically parti-
tioned approach when the number of predicates in an RDF data set is high. With
a larger number of predicates, the triple table solution manages to outperform
the vertically partitioned one.

Depending on the type of reasoning dependent queries, it may be more effi-
cient to consider an intermediate model between triple tables and vertical parti-
tioning approaches. A first contribution of this work will be to provide an analysis
of the effectiveness of an intermediate approach – also based on property hierar-
chy – where a table is created only for top predicates. Another interesting track
(for future investigation), would be to consider partitioning the data regarding
the concept hierarchy rather than the property one and/or considering both. To
the best of our knowledge, such study has not yet been conducted. Considering
data guided partitioning, one may distinguish two types of guides. First, one
may consider that the RDF data itself may induce an efficient partitioning. The
main achievement for this type of guide is the property table technique which
was introduced later on [17] for improving RDF data organization by allowing
multiple triple patterns referencing the same subject to be retrieved without an
expensive join. In this model, RDF tables are physically stored in a representation
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closer to traditional relational schemas in order to speed up the queries over the
triple stores [17, 6]. Indeed, each named table includes a subject and several fixed
predicates. The main idea is to discover clusters of subjects often appearing with
the same set of predicates.

A variant of the property table named property-class table uses the rdf:type
of subjects to cluster similar sets of subjects together in the same table. The
immediate consequence is that self-joins on the subject column can be avoided.
However, the property table technique has the drawback of generating many
NULL values since, for a given cluster, not all predicates will be defined for all
subjects. A second disadvantage of property table is that multi-valued attributes,
that are furthermore frequent in RDF data, are hard to express. In a data model
without a fixed schema like RDF, it is common to seek for all defined predicates
of a given subject, which, in the property table approach, requires scanning all
tables.

Note that, in this approach, adding predicates requires also to add new tables;
which is clearly a limitation for applications dealing with arbitrary RDF content.
Thus the flexibility in schema is lost and this approach limits the benefits of using
RDF. Moreover, queries with triples patterns that involve multiple property tables
are still expensive because they may require many union clauses and joins to
combine data from several tables and consequently complicate query translation
and plan generation. In summary, property tables are poorly used because of
their complexity and inability to handle multi-valued attributes. Another type
of guide which may worth being studied is queries. Indeed, one may consider an
evolutive storage schema in regards to recent queries made on the data. To the
best of our knowledge, this track of research has also not been considered yet.

In this article, we will concentrate on giving some preliminary results (on
medium-sized datasets) on an intermediate property hierarchy based approach
(that will need to be pursued) – namely RDF Ontology-guided Storage system
(roStore). After presenting the general approach (Section 2), we will, in Section
3, evaluate the efficiency difference with vertically partitioning on the LUBM
benchmark over both row and column oriented databases and on some extra
specific queries highlighting limits of vertically partitioning.

2 The roStore approach

As a first step to an efficient RDF storage road map, we propose an intermediate
ontology-guided approach – namely roStore – which lies between the two ex-
tremes: triple and vertically partitioned tables. The aim of this approach is to
try to analyse the efficiency of a compromise approach where less partitions are
used. Intuitively, such physical organization will take benefits of requiring less
joins in practical queries and with less risk of unmappable table in memory.

As already mentioned, we believe that there should not be a unique generic
solution to RDF storage and that depending on the data itself, the underlying
ontology, application queries, better performance may be obtained by considering
alternative and several dedicated approaches. The major aim of roStore is to
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provide some clue of this belief. We will demonstrate that roStore is one of
them and may, in specific cases, induce better efficiency. In this context, we
consider roStore as one among other interesting physical organizations based
on property hierarchy that should be present in the RDF storage road map.

Our storage approach derives from the vertically partitioned one and extends
this last by putting back together into a single table data related to a top-
property of a property hierarchy. Given a hierarchy, we say that a predicate is
a top-property if it is only an rdf:subPropertyOf of itself. For each such top-
property PT , a three-columns table is created by (1) merging all the two-columns
tables corresponding to predicates being rdf:subPropertyOfPT and (2) adding
a third column indicating from which predicate the entry (subject, object) was
retrieved (cf. Figure 2).

Let us first notice that, providing with this definition, any predicate that
is not an rdf:subPropertyOf of a top-property will still be stored in a two-
columns table. This induces an insignificant expense of the space complexity of
this novel approach. Moreover, in case of a cyclic property hierarchy, all predicates
are necessarily all semantically equivalent. Hence selecting a single canonical
predicate and rewriting triples accordingly is sufficient. Despite the fact that
considering top-property seems to be the most natural, one may, depending
on the topology of the hierarchy, define other physical organizations inducing
better performance too for specific cases. Our preliminiary results demonstrate
that an evolutive physical organizations guided by the queries may be efficient.
The main impact of merging some tables is obtaining better performance of
queries requiring joins over predicates belonging to the same “sub-hierarchy“ of
the property hierarchy. This is typically the case when one wants to retrieve
all the information concerning a family of predicates of the property hierarchy;
since they will be quite related. In the following, we will denote by vpStore
(resp. roStore) the vertically partitioned (resp. our) approach.

Example 1: Let us consider a small data set (Figure 2b) defined over a given
property hierarchy (Figure 2a). With vpStore, the triples would be distributed
over six different tables as displayed in Figure 2c. Comparatively, in roStore,
one obtains only two different tables (Figure 2d): a single relation named after
the top-property pa and a relation named after the property pf.

Thus, if we consider an ontology consisting of n (e.g. 2 in our example)
property hierarchies with an average of k (e.g. 3 in our example) properties
in each hierarchy, the roStore approach will store k times less tables than a
vpStore approach. Moreover, with this approach it is very unlikely to generate
tables with no tuples (e.g. pd with vpStore in Example 1). Moreover, the set of
tuples stored is the same as in vpStore and only their distribution over database
tables is modified (i.e. physical organization).

We now consider the following query: one wants to retrieve all objects involved
in a triple with a predicate of the pa hierarchy. Considering vpStore’s physical
design, the following SQL query is needed:
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(a) property hierarchy:
pf pa

pb pc

pd pe

(b) RDF triples

sub. prop. obj.
a pa b
c pc d
e pb f
a pf d
g pe h

(c) vpStore

sub. obj.
a b

sub. obj.
e f

sub. obj.
c d

pa relation pb relation pc relation
sub. obj. sub. obj.

g h
sub. obj.
a d

pd relation pe relation pf relation

(d) roStore

sub. obj. prop.
a b pa
c d pc
e f pb
g h pe

sub. obj.
a d

pa relation pf relation

Fig. 2. Storage comparison of vpStore and roStore

SELECT object FROM pa UNION (SELECT object FROM pb UNION (SELECT
object FROM pc UNION (SELECT object FROM pd UNION (SELECT object FROM
pe))));

while the same query is answered far more efficiently considering roStore’s
physical design with:

SELECT object FROM pa;

Such example highlights the kind of (1) reasoning dependent queries and (2)
corresponding improvement one can obtain by using an intermediate physical or-
ganization such as roStore over vpStore when property hierarchies are present
in the ontology.

In order to analyse more deeply the corresponding efficiency of roStore ap-
proach, we will first compare it to the vpStore approach on the LUBM bench-
mark and on some specific queries that highlight limits of vertically partitioning.
In this work, as a first contribution, we focus only on select queries. We are
currently investigating the possibly negative impact of partitioning on update

queries. As far as we went on this track, it seems that this impact is reasonable.
First, we will discuss how to take benefits of the ontology based structure of the
data without the needs of heavy inference mechanisms.

Indeed, compared to classical table schema, the ontology is far more mean-
ingfull and can thus be used to enhance the performance even without needing
knowledge inference. We propose an efficient use of Semantic Query Rewriting
(SQR) adaptable to and usable by most of the data storage approaches. Our
semantic query rewriting aims are, first, to guarantee the exhaustiveness of re-
sults returned when requiring data that should include rdf:subClassOf and
rdf:subPropertyOf; and, a query validation mechanism simply based on the
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domain and range information related to predicates, i.e. resp. rdfs:domain and
rdfs:range. One has to note that the mechanisms we propose are not really
needing heavy reasoning nor data inference mechanisms. Indeed, they can be
considered as an efficient use of the right-away available information of the on-
tology.

The semantic aspect of this rewriting is provided by a thorough usage of
the OWL entailment mechanism, on one hand, to detect if the answer set of a
query will be empty or not, on the other hand, to optimize query in order to
guarantee exhaustiveness of the solution returned. The rules can be decomposed
into two sets: (i) a set of rules, denoted subsume, dealing with concept and
property subsumptions; (ii) a set of rules, denoted propertyCheck, dealing with
the rdfs:range and rdfs:domain of a given predicate. The rules processed by
the subsume procedure are using the OWL inferences to compute all the sub-
concepts (resp. sub-properties) of a given concept (resp. property). In fact, the
query studied in Example 1 was already using the subsume procedure.

Example 2: Consider that the rdfs:range of the predicate pb of Exam-
ple 1 is of rdf:type ClassA which is the top-concept in the following concept
hierarchy:

ClassC ! ClassA, ClassB ! ClassA and ClassC ! ¬ClassB

That is ClassA has two sub-concepts which are disjoint. Consider a query
asking for all subjects and objects of triples where pb is the predicate and all sub-
jects belong to the ClassA hierarchy. Using subsume, the query can be translated
in the following SQL query:

SELECT subject, object FROM pa, type WHERE type.subject =
pa.subject AND pa.property = ’pb’ AND type.object IN
(’ClassA’,’ClassB’, ’ClassC’);

Thus this approach enables to generate a singe SQL query whatever the size
of the concept hierarchy is. Note that it also applies to the property hierarchy.

The rules of propertyCheck are being processed as follows: first the SPARQL
query is parsed and for each predicate explicitly mentioned in the query with a
typed (rdf:type) subject or object, we store a structure containing the predicate
name and the rdf:type of the subject and/or object. Then for each subject (resp.
object) in the structure, we search if there is a direct or indirect (via subsump-
tions) correspondence with the type of the rdfs:domain (resp. rdfs:range)
defined in the ontology for this property.

Example 3: Let us consider the property hierarchy of Figure 3, dealing with
contra indications and the corresponding roStore organization.

Moreover, consider the following ontology axioms: (1) rdf:range of disease
ContraIndication is an instance of the Disease concept, (2) Disease ! Top,
(3) Molecule ! Top and (4) Disease ! ¬ Molecule. Intuitively, axioms (2) to
(4) state that the Disease and Molecule concepts are a sub-concept ot the Top
concept and are disjoint. Consider the following SPARQL query:
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contraIndication

diseaseContraIndication moleculeContraIndication stateContraIndication

subject object property

Ibuprofen Ticlopidin moleculeContraIndication
Ibuprofen Clopidrogel moleculeContraIndication
Ibuprofen Breast feeding stateContraIndication
Ibuprofen Pregnant stateContraIndication
Ibuprofen Hypertensive heart diseaseContraIndication

Fig. 3. Sample of the contraIndication relation

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.
?o rdf:type :Molecule.}

which asks for subjects and objects involved in triples where the predicate is
diseaseContraIndication and the object has a rdf:type Molecule. Clearly
the answer set to this query is empty since the rdf:domain of the predicate can
not be a Molecule in this ontology.

Example 4: Consider the following query in the context of Example 3:

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.
?o rdf:type :Disease.}

The query is satisfiable since there is a model where its answer set is not
empty. Anyhow, the query can be optimized. In fact, it is not necessary to check
the rdf:type of the object because it corresponds exactly to the one defined as
rdf:range in the ontology. Thus this query is rewritten in:

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.}

which once translated into SQL does not require any join and will thus perform
far more efficiently than the orginal query. Note that this simplification does not
work for property with multiple-range/domain. Those examples demonstrate
that it is worth to efficiently use the basic knowledge available directly in the
concept and property hierarchies.

3 Evaluation

3.1 Experimental settings

All our experiments have been conducted on four synthetic databases. They all
have been generated from the Lehigh University Benchmark (LUBM) [9] which
has been developed to facilitate the evaluation of Semantic Web repositories in
a standard and systematic way. The RDF data sets generated with LUBM all
commit to a single realistic ontology dealing with the university domain. This
ontology is composed of 43 concepts, 25 object properties (i.e. relating objects
to objects) and 7 data type properties (relating objects to literals).
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This ontology serves as the schema underlying the four data sets we have
created. This is an important requisite for our evaluation since our set of queries
will be executed on all data sets in order to provide information on scalability
issues. Table 1 summarizes the main characteristics of these data sets in terms
of overall number of triples, number of concept and property instances.

Table 1. Synthetic data sets

DB name # Universities # Concept instances # Property instances # Triples
lubm1 1 15195 60859 100868
lubm2 2 62848 189553 236336
lubm5 5 114535 456137 643435
lubm10 10 263427 1052895 1296940

The RDF data sets are later translated into the different physical organiza-
tion models we would like to evaluate. They are decomposed into the two main
approaches vpStore and roStore. In order to emphasize the efficiency of our
solution on queries needing reasoning, we had to test these settings in a context
similar to [2]. More precisely, we evaluated each approach on a row store and a
column store RDBMS. This yields the four following approaches: vpStore resp.
on a row (vpRStore) and column (vpCStore) store and roStore resp. on a row
(roRStore) and column (roCStore) store. Hence a total of sixteen databases
are generated (each data set is implemented on each physical approach).

We have selected postgreSQL and MonetDB as the RDBMS resp. for the
row-oriented and the column-oriented databases. We retained MonetDB instead
of C-store (the column store used for evaluation in [2]) essentially due to (1) the
lack of maintenance of the latter one, (2) the open-source licence of MonetDB
and (3) the fact that MonetDB is considered state of the art in column-oriented
databases. The tests were run on MonetDB server version 5 and postgreSQL
version 8.3.1. The benchmarking system is an Intel Pentium 4 (2.8 GHz) operated
by a Linux Ubuntu 9.10, with 512 Mbytes of memory, 1MB L2 cache and one
disk of 60 Gbyte spinning at 7200rpm. The disk can read cold data at a rate of
approximatively 55MB/sec.

For the vpRStore, there is a clustered B+ tree index on the subject and an
unclustered B+ tree on the object. Similarly, for the roRStore, a clustered B+
tree index is created on the property column and unclustered B+ trees on the
subject and object. As noted in [14], MonetDB does not include user defined
indices. Hence, we relied on the ordering of the data on property, subject and
object values. More precisely, any two columns table of roCStore and vpCStore
is ordered on subject and object ; while any three columns table (of roCStore) is
ordered on property, subject and object.

Our evaluation contains fifteen queries out of which eleven are coming from
the LUBM benchmark and four tackling the LUBM ontology to evaluate some
particular aspects of roStore. An interesting aspect using LUBM Benchmark
queries is that do not aim to emphasize on the performances of a given storage
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model. Moreover, these queries tackle a wide range of possibilities on volume of
input (number of tuples retrieved) and selectivity rate (i.e. number of conditions
in the WHERE clause of a query). Among the eleven evaluated queries, three do
not require any form of reasoning (#1, #2 and #14) and the eight remaining
queries can be divided in two groups whether they are involving reasoning on the
concept hierarchy (#3,#4,#6,#7,#9,#10) or both concept/property hierarchies
(#5,#8). We now present the purpose of each of these queries:

Q1: retrieves instances of the GraduateStudent class who have taken the
course http://www.Department0.University0.edu/GraduateCourse0.

Q2: retrieves three instances of respectively the GraduateStudent,University
and Department concepts for those students that are member of a department,
this department is a sub-organization of a University and this student has an
undergraduate degree from this university.

Q3: selects all kinds of publications which have been authored by a given
assistant professor.

Q4: retrieves all kinds of professors, their name, email address and telephone
number for those professors working for a given department.

Q5: the result contains instances of the Person concept hierarchy for those
persons that are related to a given department by either the memberOf, workingFor
or headOf properties.

Q6: displays URIs of instances of the Student concept hierarchy.

Q7: retrieves instances of all kind of students and all kinds of courses for
courses that are related by the takesCourse property for those courses that are
taught by a given professor.

Q8: displays instances of all kinds of students with their email addresses and
department instances of a given university these students are member of.

Q9: the retrieved dataset contains instances of the Student, Faculty and
Course concept hierarchies for those students that are advised by faculties, have
taken some courses taught by those faculties.

Q10: selects instances of all the Student class hierarchy who have taken a
given course.

Q14: selects all undergraduate students.

We have introduced Q15 to emphasize roStore performances when values
are needed for a property hierarchy. In fact, it retrieves all subjects involved in
triples where the predicate is one of the properties of the memberOf property
hierarchy, i.e. memberOf, headOf and worksFor. This query is similar to Q5 but
does not refer to any concepts.

Finally, the following three queries aim to highlight the efficiency of our SQR
approach. Q16: selects the subject and object in triples where the predicate is
teacherOf and subject is of rdf:type AdministrativeStaff. This query returns
an empty answer set since the rdfs:domain of teacherOf is the Faculty concept
which is disjoint with AdministrativeStaff. In the next section, we confront
the performances of this query to the simple detection of unsatisfiability of our
SQR solution.
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Q17: selects the subject and the object in triples where the predicate is
teacherOf and subject is of rdf:type Faculty. This query requires a join.

Q18: has the same purpose as Q17 but exploits one of our rewriting rules to
improve its performances. In fact, the join in Q17 is not necessary if one knows
that the rdfs:domain of teacherOf is the concept Faculty.

In the experiments, we will store the LUBM ontology in main-memory and
perform reasoning using the Jena framework.We provide more details concerning
the experimental settings and results on the following web site:
http://sites.google.com/site/wwwrostore.

3.2 Experimental results

The results presented in this section correspond to the average of 5 hot runs (i.e.
repeated runs of the same query without stopping the DBMS) of real time (i.e.
execution time of a query defined as the wall clock passed between the server
receiving the query and before returning the results to the client) executions.
All performance times, except for query Q16 and Q17, include the time needed
to perform the inferences. Finally, in order to highlight the differences in terms
of performances between the various approaches, we either present the results
in bar or line diagrams.
Analysis of Q1. Not surprisingly, column stores outperform row stores. Indeed,
the results will only contain a unique column which will clearly benefit column
store advantage. Moreover, since the query does not involve sub-properties, the
performances of vpStore and roStore are quite similar.
Analysis of Q2. This time, the row stores are more efficient than the column
ones. The results require, in this case, to retrieve two columns of three tables,
hence in a row store both columns will be transfered from the hard drive to main
memory in a single step while two transfers will be needed for column stores.
Moreover, two out of these three tables corresponds to predicates being part of
a group of related predicates in the property hierarchies, namely memberOf and
undergraduateDegreeFrom. Since we voluntarily decided to perform no infer-
ences on these two predicates3 (i.e. not including sub-properties in the query),
it is not surprising that vpStore outperforms roStore since each predicate cor-
responds in the vpStore to a table.
Analysis of Q3. Despite the fact that this query has a similar structure as
Q1 (i.e. only two triples are present in the WHERE clause), it requires to retrieve
all concepts of a wide hierarchy. Due to the ordered organization of tuples,
column stores outperform row ones which rely on indices and on a less effective
I/O transfers. In a similar manner to Q1, the difference between vpStore and
roStore is not significant.
Analysis of Q4. Once again, in this query, we do not use inference on the
worksFor predicate to include results on sub-properties of this last. This is mo-
tivated by the will to emphasize on the weaknesses of the roStore approach.
As expected, vpStore is, in this context, outperforming roStore. In fact, even

3 since it will be specifically considered in query Q15.
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Fig. 4. Performance results for Q1 Fig. 5. Performance results for Q2

Fig. 6. Performance results for Q3 Fig. 7. Performance results for Q4

vpRStore is outperforming roCStore; which can be induced by the high selec-
tivity nature of the query (four attributes in result set).

Analysis of Q5. Due to the exploitation of the sub-properties of the predicate
memberOf in this query, it is not surprising that roStore outperforms vpStore.
Indeed in vpStore, the results of the query comes from the union of three distinct
queries (one for each predicates involved) while roStore only requires a single
query.

Analysis of Q6. This query retrieves the subjects from a two columns table (i.e.
type). Because the column stores primarily order these relations on the subject,
they are more efficient than their row store counterparts. This is due to better
I/O efficiency. Similarly to Q3, the roStore approach outperforms vpStore.

Analysis of Q7. Again query processes in roStore (resp. column store) is more
efficient than vpStore (resp. row store). The reasons are similar to the ones for
Q3.

Analysis of Q8. The analysis of the results for this query confirm the ones of
Q5.
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Fig. 8. Performance results for Q5 Fig. 9. Performance results for Q6

Fig. 10. Performance results for Q7 Fig. 11. Performance results of Q8

Analysis of Q9. This query does not require inferences on property hierarchies
but some on several concept ones. As seen previously, in this situation column
stores is more efficient than row stores. On column stores, vpStore and roStore
have close performance results, with roStore slighty better than vpStore.
Analysis of Q10. The results are similar to Q9.
Analysis of Q14. This query has large input and low selectivity with no in-
ferences. As expected, roCStore is faster than vpCstore which is more efficient
than roRStore; the less effective being vpRStore. Note that this is due to dis-
tinguished variable being placed at the subject position of the only triple of the
WHERE clause. A similar query pattern with the distinguished variable mapped
to the object position of a triple would emphasize the superiority of the vpStore
approach.
Analysis of Q15. This query clearly demonstrates the efficiency of roStore
over vpStore. Even the row oriented roStore outperforms the column oriented
vpStore. This is due to the presence of UNION SQL operators in the queries
executed on the vpStore while roStore only requires a complete scan of the
tuples of one table.
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Fig. 12. Performance results for Q9 Fig. 13. Performance results of Q10

Fig. 14. Performance results for Q14 Fig. 15. Performance results of Q15

Analysis of Q16, Q17 and Q18. Finally, queries Q16, Q17 and Q18 emphasize
the importance of reasoning over the ontology before executing queries over any
of the store solutions. Figure 16 displays the duration times for all databases,
ranging from approximately 42ms (column store with 1 university) to 1450ms
(row store with 10 universities). This can be considered rather long to propose
an empty answer set since, according to the ontology, the query is incoherent.
Comparatively, the propertyCheck method we have implemented needs an av-
erage time of 1ms to reply that the query is coherent or not. Hence, a system
implemented on top of an OWL compliant reasoner is able to determine almost
instantly if the answer set is empty.

Moreover, it could also provide some explanations concerning the inconsis-
tency of the query. We believe that such optimization are quite useful especially
when end-users are not confident with all the details of a given ontology. The
performance results of Q17 and Q18 are provided together in Figure 17 in order
to highlight their comparisons. The purpose of Q17 and Q18 is to emphasize the
importance of analyzing predicate rdfs:domain and rdfs:range in a property
table approach. The execution of Q17 does not perform any optimization while
Q18 checks that the concept Faculty is the rdfs:domain of the teacherOf
predicate and hence a join to the rdf:type relation is not necessary.
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Fig. 16. Performance results for Q16 Fig. 17. Q17 and Q18 performance results

Summary: Several conclusions can be drawn from our evaluation. Consid-
ering the adoption of a database solution, we confirm the evaluations of [2] and
[14] stating that column stores outperform row stores for RDF triple storage. The
only exception in our experiments consists in Q2 which is rather due to the
partitioning approach.

Concerning the partitioning approach, all our intuitions were confirmed by
this evaluation. That is roStore outperforms vpStore whenever queries retrieve
information from triples where properties belong a given property hierarchy (e.g.
Q5 and Q15). On the contrary, vpStore is more efficient than roStore where
only a subset of the properties of a property hierarchy are necessary to reply
to a query (e.g. Q2). This result was expected since the roStore approach then
requires to add additional conditions on the properties one wants to retrieve
from a ’top property’ relation.

Finally, the SQR approach seems to be quite useful since it does not slow
down the processing of satisfiable queries and enables to detect unsatisfiable
queries efficiently (e.g. Q17 and Q18). Anyhow, we consider that more evalua-
tions need to be conducted on larger ontologies to confirm these results.

4 Conclusion

The first contribution of this paper is to show that depending on the type of
applications and queries asked to the RDF triple stores, different partitioning
approaches can be considered. Between the two extremes of triple and vertical
partitioning, we introduced the roStore approach which is particularly advanta-
geous for a certain class of queries, i.e. those relying on deep property hierarchies
(e.g. the OpenGalen ontology contains a property hierarchy of depth 6). More-
over, this novel approach is a simple extension to the existing RDF column store
work and can thus be easily adopted by other RDF stores. A second contribu-
tion of this work is to propose a semantic query rewritting solution that can be
adopted by most of the RDF triples we have presented in this paper (triples ta-
bles, vertical partitioning, roStore, property-class tables). This approach seems
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promising since it can be quite useful to detect unsatisfiable queries and opti-
mizing other queries by analyzing property domains and ranges.

Our list of future works is large since we consider that several investigations
need to be performed to complete the road map on efficient and persistent RDF
triple storage. The first directions we would like to follow are ontology schema
evolution in roStore (e.g. a new property hierarchy emerges or is removed from
the ontology) and the consideration of concept hierarchies at the storage and
querying levels.
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Abstract. Traditionally Semantic Web applications either included a
web crawler or relied on external services to gain access to the Web of
Data. Recent efforts have enabled applications to query the entire Se-
mantic Web for up-to-date results. Such approaches are based on either
centralized indexing of semantically annotated metadata or link traver-
sal and URI dereferencing as in the case of Linked Open Data. By mak-
ing limiting assumptions about the information space, they violate the
openness principle of the Web – a key factor for its ongoing success.
In this article we propose a technique called Avalanche, designed to
allow a data surfer to query the Semantic Web transparently without
making any prior assumptions about the distribution of the data – thus
adhering to the openness criteria. Specifically, Avalanche can perform
“live” (SPARQL) queries over the Web of Data. First, it gets on-line
statistical information about the data distribution, as well as bandwidth
availability. Then, it plans and executes the query in a distributed man-
ner trying to quickly provide first answers. The main contribution of this
paper is the presentation of this open and distributed SPARQL querying
approach. Furthermore, we propose to extend the query planning algo-
rithm with qualitative statistical information. We empirically evaluate
Avalanche using a realistic dataset, show its strengths but also point
out the challenges that still exist.

1 Introduction

With the introduction of the World Wide Web, the way we share knowledge and
conduct day to day activities has changed fundamentally. With the advent of
the Semantic Web, a Web of Data is emerging interlinking ever more machine
readable data fragments represented as RDF documents or queryable seman-
tic endpoints. It is in this ecosystem that unexplored avenues for application
development are emerging.

While some application designs include a Semantic Web (SW) data crawler,
others rely on services that facilitate access to the Web of Data (WoD) either
through the SPARQL protocol or various APIs (i.e. Sindice or Swoogle). As the
mass of data continues to grow – currently Linked Open Data (LOD) [1] ac-
counts for 4.7 billion triples – the scalability factor combined with the Web’s
uncontrollable nature and its heterogeneity will give raise to a new set of chal-
lenges.
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A question marginally addressed today is: How to query the Web of Data on-
demand, without hindering the flexible openness principle of the Web – seen as
the ability to query independent un-cooperative semantic databases, not control-
ling their distribution, their availability or having to adhere to fixed publishing
guidelines (i.e. LOD). The underlying assumptions of WoD, as with the WWW,
are that (a) there exists no distribution pattern of information onto servers,
(b) there is no guarantee of a working network, (c) there is no centralized re-
source discovery system, (d) there exists a standard (HTTP) for the retrieval of
information, and (e) the size of RDF data no longer allows us to consider single-
machine systems feasible. With the serendipitous nature of Semantic Web [12],
querying the global information space gives rise to new possibilities unthought
of before.

Several approaches that tackle the problem of querying the entire Web of
Data have emerged lately. One solution provides a centralized queryable end-
point for the Semantic Web that caches all data. This approach allows searching
for and joining potentially distributed data sources. It does, however, incur the
significant problem of ensuring an up-to-date cache and might face crucial scal-
ability hurdles in the future, as the Semantic Web continues to grow.

Other approaches use the guidelines of LOD publishing to traverse the linked
data cloud in search of the answer. Obviously, such a method produces up-to-date
results and can detect data locations only from the URIs of bounded entities in
the query. Relying on URI structure, however, may cause significant scalability
issues when retrieving distributed data sets, since (1) the servers dereferenced in
the URI may become overloaded, and (2) it limits the possibilities of rearranging
(or moving) the data around by binding the id (i.e. URI) to storage location.

Finally, traditional database federation techniques have been applied to query
WoD. They rely on statistical information from queryable endpoints that are
used by a mediator to build efficient query execution plans. Their main drawback
is that some query execution engine is aware of the data distribution ex-ante (i.e.,
before the query execution). Moreover, in most cases, data sources even need
to register themselves at the query execution engine with detailed information
about the data they contain.

In this paper, we propose Avalanche, a novel approach for querying the
Web of Data that (1) makes no assumptions about data distribution, avail-
ability, or partitioning, (2) provides up-to-date results, and (3) is flexible as it
makes no assumption about the structure of participating triple stores. Conse-
quently, it addresses the shortcomings of previous approaches. To query WoD
Avalanche provides a novel technique via means of a two-phase protocol: a dis-
covery step, i.e. gathering statistical information about data distribution from
involved hosts, and a planning optimization step over the distributed SPARQL
endpoints. Hence, the main contributions of our approach are:

– on-demand transparent querying over the Web of Data, without any prior
knowledge about its distribution

– a formal description of our approach, together with possible optimizations
for each step
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– a novel planning strategy and cost model for dealing with towards Web scale
graph data

– a reference implementation of the Avalanche technique

In the remainder we first review the relevant related work of the current state-
of-the-art. Section 3 provides a detailed description of Avalanche. In Section
4 we evaluate several planning strategies and estimate the performance of our
system. In Section 5 we present several future directions and optimizations, and
conclude in Section 6.

2 Related work

Several solutions for querying the Web of Data over distributed SPARQL end-
points have been proposed before. They can be grouped into two streams: (a)
distributed query processing and (b) statistical information gathering over RDF
sources.

Research on distributed query processing has a long history in the database
field [18, 9]. Its traditional concepts are adapted in current approaches to pro-
vide integrated access to RDF sources distributed over the Web. For instance,
Yars2 [6] is an end-to-end semantic search engine that uses a graph model to
interactively answer queries over structured and interlinked data, collected from
disparate Web sources. Another example is the DARQ engine [15], which divides
a SPARQL query into several subqueries, forwards them to multiple, distributed
query services and, finally, integrates the results of the subqueries. Finally, Rdf-
peers [3] is a distributed RDF repository that stores three copies of each triple in
a peer-to-peer network, by applying global hash functions to its subject, predi-
cate and object. Virtuoso [4], a data integration software developed by OpenLink
Software, is also focused on distributed query processing. The drawback of these
solutions is, however, that they assume total control over the data distributions—
an unrealistic assumption in the open Web. Similarly, SemWIQ [11] provides a
mediator that distributes the execution of SPARQL queries transparently. Its
main focus is to provide an integration and sharing system for scientific data.
Whilst it does assume control over the instance distribution they assume perfect
knowledge about it. Addressing this drawback some [20, 17] propose to extend
SPARQL with explicit instructions where to execute certain sub-queries. Unfor-
tunately, this assumes an ex-ante knowledge of the data distribution on part of
the query writer. Finally, Hartig et al. [7] describe an approach for executing
SPARQL queries over spaces structured according to the Web of Linked Data
rules [1]. Whilst they make no assumptions about the openness of the data space
the LOD rules requires them to place the data on the URI-referenced servers—a
limiting assumption for example when caching/copying data.

Research on query optimization for SPARQL includes query rewriting [8],
triple pattern optimization based on selectivity estimations [13, 19, 14], and on
other statistical information gathering over RDF sources [10, 5]. RDFStats [10]
is an extensible RDF statistics generator that records how often RDF properties
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are used and feeds automatically generated histograms to SemWIQ. Histograms
on the combined values of SPO triples have proved to be especially useful to
provide selectivity estimations for filters [19]. For joins, however, histograms can
grow very large and are rarely used in practice. Another approach is to compute
ahead frequent paths (i.e., frequently occurring sequences of S, P or O) in the
RDF data graph and keep statistics about the most beneficial ones [13]. It is
unclear how this would work in a highly distributed scenario. Finally, Neumann
et. al [14] claim that selectivity estimation is a worthwhile solution for tens of
millions of RDF triples, but unsuitable for billions of triples, because the size of
the data and the increasing diversity in property names lead to poor estimations,
thus misguiding the query optimizer.

3 Avalanche — System Design and Implementation

In this section, we describe the overall design of Avalanche and the underlying
philosophy of the distributed query execution across large datasets spread over
multiple, uncooperative servers.
The major design difference between Avalanche and previous systems is that
it assumes that the distribution of triples to machines participating in the query
evaluation is unknown prior to query execution. Hence, our approach follows
neither a federated nor a peer-to-peer model, instead the statistical discovery
phase that traditionally is reserved for the (parallel) mediator component in
clustered approaches, has become an individual step during each query execution
phase. In the remaining part of this section, we will first illustrate our approach
using a motivating example. This will lead the way towards thoroughly describing
the Avalanche components and its novelty.

The system consists of six major components working together in a paral-
lelized pipeline: the Avalanche endpoints Web Directory or Search Engine, the
Statistics Requester, the Plan Generator, Plan Executor instances, Plan Mate-
rializer instances and the Query Stopper component as seen in Figure 1.

Avalanche comprises of two phases: the Query Preprocessing phase and
the parallel Query Execution phase. During Query Preprocessing, participat-
ing hosts are identified via means of a Search Engine such as Sindice1 or Web
Directory. A lightweight endpoint-schema inverted index can also be used. On-
tological prefix (the shorthand notation of the schema – i.e. foaf) and schema
invariants (i.e. predicates, classes, labels, etc) are appropriate candidate entries
to index. After query parsing, this information is immediately available and
used to quickly trim down the number of potential endpoints. Then, all selected
Avalanche endpoints are queried for the cardinality (number of instances) of
each unbounded variable — statistical information that triple-stores generally
posses.

In the Query Execution phase, first the query is broken down into the super-
set of all molecules, where a molecule is a subgraph of the overall query graph.

1 http://sindice.com/
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Fig. 1. The Avalanche execution pipeline

A combination of minimally overlapping molecules covering the directed query
graph is referred to as a solution. Binding all molecules in a given solution
to physical hosts (Avalanche endpoints) that may resolve them, transforms a
solution into a plan. Given the size of the Web and the unknown distribution
of the RDF data, Avalanche will try to optimize the execution of the query to
quickly find the first K results. The proposed planning system and algorithm,
though complete, will normally not be allowed to exhaust the entire search space
since the cost of doing so is prohibitively expensive. Instead, the planner com-
ponent strives to execute the most “promising” query plans first, while being
monitored by the Query Stopper for termination conditions. To further reduce
the size of the search space, a windowed version of the search algorithm can
be employed – i.e. with each exploratory step only the first M molecules are
considered, thus sacrificing completeness.

As shown in Figure 1 the Plan Generator relies on statistics about the data
contained on the different hosts from the Statistics Requester. Any gener-
ated plan gets put in the Plans Queue regardless if the planner finished its
overall tasks of exploring the plan space or not. Plans in the Plans Queue are
fetched by Plan Executors that execute them generating partial results in par-
allel and put them in the Finished Plans Queue. There, they get fetched by one
of the parallel executing Plan Materializers, who will merge and materialize
the partial results.

To putAvalanche into perspective consider the followingmotivating query
that executes over Linked Open Datasets describing movies and actors:

SELECT ?title ?photoCollection ?name WHERE {

?film dc:title ?title; movie:actor ?actor; owl:sameAs ?sameFilm.

?actor a foaf:Person; movie:actor_name ?name .

?sameFilm dbpedia:hasPhotoCollection ?photoCollection.

?sameFilm dbpedia:studio ‘‘Producers Circle’’; }

68



The goal of Avalanche is to return the list of all movie titles, their photo collec-
tions and the names of starring actors, that have been produced at “Producers
Circle” studios – considering that the required information is spread with an
unknown distribution over several LOD endpoints.

At a given moment during the execution of a plan, a Plan Executor instance
may find itself in the state depicted in Figure 2 (in depth description in Section
3.2). The plan is comprised of three molecules: M1, M2, M3 and three hosts are
involved: host A, host B and host C. Molecule M1 was reported to be highly
selective on host A (holding Linked Movie2 data), while the remainder of the
plan: molecule M2 and M3, is distributed between hosts B and C (both holding
DBPEDIA3 data). Given that we operate in an environment where bandwidth
cost is non-trivial we should not “just” transport all partial results to one central
server to be joined. Instead we start with executing the highly selective (or in
this case: with the lowest cardinality) molecule M1 on host A and then limit the
execution space on host B by sending over the results from host A. The process
repeats itself given the number of molecules in the plan and is finalized with a
merge/update operation in reverse join order.

host A host B

1) Join (M1, M2)

2) R1 = Execute (M1)

3) Send(R1)

4) FR2 = ExecuteFilter (R1)

5) Update (M2, M1)

11) Send(R2)

12) R1 = Filter (R1, R2)

?sameFilm

?sameFilm 
dbpedia:hasPhotoCollection 
?photoCollection. 
?sameFilm dbpedia:studio 
ʻʻProducers Circleʼʼ.

Molecule 1 - M1
?film dc:title ?title.
?film movie:actor ?actor. 
?film owl:sameAs ?sameFilm. 

Molecule 2 - M2

?actor a foaf:Person. 
?actor movie:actor_name ?name. 

Molecule 3 - M3

host C

5) Join (M2, M3)

6) Send(FR2)

7) FR3 = ExecuteFilter (R3)

9) Send(FR3)

8) Update (M3, M2)

10) R2 = Filter (FR2)

?actor

DBPEDIA endpointsLinked Movie Database endpoint

Fig. 2. Distributed Join and Update operations for a Simple Plan

It is important to note that to execute plans, hosts will need to share a
common id space – a given in Semantic Web via URIs. Naturally, using RDF
strings can be prohibitively expensive. To limit bandwidth requirements, we
chose to employ a single global id space in the form of the SHA family of hash
functions on the URIs.

The remainder of this section will detail the functionality of the most impor-
tant elements: the Plan Generator, Plan Executor and Plan Materializer

as well as explain how the overall pipeline stops.

2 http://www.linkedmdb.org/
3 http://dbpedia.org/About
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3.1 Generating Query Plans

The planner’s main focus is to generate query plans that are likely to produce
results fast with a minimum of cost. As shown in Algorithm 1 the planner will
try to optimize the construction of plans using a multi-path informed (best-first)
search strategy by maximizing the Objective function of a plan. Therefore, all
plans are generated in descending order of their objective function.

Algorithm 1 The plan generator algorithm

Plan-Generator(Molecules,Hosts, Cardinalities)

1 fringe = []
2 for each molecule M ∈ Molecules, host H ∈ Hosts
3 partialP lan = {M,H,NULL,Cardinalities}
4 append(fringe, partialP lan)
5 sort(fringe)
6 while !fringe.empty() // Loop through fringe
7 best = GetFirstElementWithPositiveObjective(fringe)
8 if PlanIsComplete(best) // all molecules assigned to host
9 sort(fringe)

10 yield GetPlan(best) // returns results but continues planning
11 else // plan is incomplete
12 remMol = GetRemainingConnectedMolecules(Molecules, best)
13 planFringe = []
14 for each molecule M ∈ remMol, host H ∈ Hosts
15 partialP lan = {M,H, best, Cardinalities}
16 append(planFringe, partialP lan)
17 sort(planFringe)
18 concatenate(fringe, planFringe)

In defining the Objective function we use the statistical information gath-
ered beforehand (result set cardinality). To ensure the generation of most pro-
ductive plans, our function models the chance of finding a solution, utility U ,
divided by the cost of executing the query, C. Hence:

Objective =
U

C
(1)

An emergent challenge from preserving the openness of the query process
and the flexibility of semantic data publishing, is denoted by the exponential
complexity class of the plan composition space. Thus the space complexity of
the problem is O(N3), considering that the problem size increases by M ∗ H
with each step towards a complete plan, where H represents the total number of
hosts involved and M is a measure of the query complexity (i.e. the number of
unique molecules that can be extracted from the given query graph). A simple
calculation for the scenario where 1000 hosts are involved and a rather large
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query (≈ 15 unbounded variables) might generate 500 molecules with the average
depth of a plan of 10 (molecules), results in 5 million possible combinations to
form plans. Not all combinations produce viable plans, so pruning low or no
utility plans early is desired as seen in line 7 of the planning algorithm.

We follow the assumption that selective molecules – with low cardinalities –
will help the plan to converge faster. In the bootstrap phase the utility of the first
plan node is equal to the inverse of its cardinality: CNTN1 (where N1 is node
1 and CNT is the cardinality) factored by the size of the plan (Edges(N1)).
Further on, we consider a join where the best-case cardinality is the minimum
of the involved result set cardinalities (see Equation 2). We define the cost, C
for executing queries in Equation 3. The cost of the first node is assumed to be
constant. For all other nodes we combine:

– the network latency L (between two nodes)
– a measure of the time required to send the results from node N1 to node

N2 given the bandwidth B
– the cost of executing on N1 and N2 as approximated by their cardinalities

Finally, we scale this result with a measure of the current molecule size (molecule
assigned to N2) relative to the size of the whole solution, in order to encourage
the choice of nodes that aid convergence.

UN1,N2 =

�
Edges(N1)
CNTN1

, first node

min(CNTN1, CNTN2), otherwise
(2)

CN1,N2 =

�
1, first node

(L+ CNTN1
B + CNTN1 +

CNTN2
CNTN1

)Edges(Solution)
Edges(N2) , otherwise

(3)

Extended Utility Function The main drawback of this utility function is
that it assumes the lower cardinality of the two nodes is representative—an as-
sumption that is quite wrong when searching for “rare” results given a large
number of “promising” hosts. Therefore it disregards the actual join probabili-
ties. Consider the previous example query that goes out to two almost disjoint
RDF servers: one with DBPEDIA data and another with public social network
data. Assuming we found an actor through some other host, the utility function
will not be able to favor DBPEDIA over the other host, as it cannot evaluate
the actual number of joins. Hence, if the public social network host happens to
be using a better network connection, the planer will be lead astray. To over-
come this effect we need a measure of join-quality. Following [16] we employ
bloom-filters, which are space-efficient set representation bit vectors composed
of multiple hash functions. As stated by [2] bloom-filters allow for a statistically
solid estimation of the cardinality of the join between two sets:

JOINBF1,BF2 ≈ −1

k

ln(mZ1+Z2−Z12
Z1Z2

)

ln(1− 1
m )

(4)
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where BF is a bloom filter, m is the number of bits in the bloom filter, k
represents the number of hash functions, Zi represents the number of zero bits
in BFi, and Z12 represents the number of zero bits in the magnitude of their
inner product.

Since computing bloom filters for large sets is a costly operation, we pro-
pose the use of bloom filters as an extension to the previously proposed utility
function only for highly selectivity molecules — where the cardinality is below a
manually set threshold. Given implementation specific, execution considerations
we empirically set the threshold to 1000 partial results (ids) for the given set.
Consequently the extended utility EU is now defined as follows:

EUN1,N2 =

�
w1 · JOINBF (N1),BF (N2) + w2 · UN1,N2, N1, N2 selective

w2 · UN1,N2, otherwise
(5)

where w1 and w2 are weights that define the importance of the employed esti-
mation methods. We chose w1 = 0.8 and w2 = 0.2 for our experiments, which
means that for selective molecules we favor a more expensive, but more realistic
estimation.

Algorithm 2 The plan execution algorithm

Execute-Plan(Plan)

1 nodes = SortedList() // initialize
2 update = Queue()
3 for each node N ∈ Plan
4 push(nodes,N) // Note: sorting according to selectivity gets preserved
5 while !nodes.empty() // While joins to perform, do so
6 best = pop(nodes)
7 if nodes.empty()
8 break
9 for N ∈ nodes, where getMolecule(best) ∩ getMolecule(N) �= ∅

10 joinV ariables = getMolecule(best) ∩ getMolecule(N)
11 selectivity = doJoin(join[0], best,N)
12 append(update, [join[0], N, best])
13 if selectivity == 0
14 exit and stop
15 else
16 N.selectivity = selectivity
17 update(nodes, [N.selectivity , N ])
18 reverse(update) // Now inform all hosts of elements without join partners
19 for every [join,N1, N2] ∈ update
20 update(join,N1, N2)
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Algorithm 3 Materialing a resolved plan

Merge-Materialize(Plan, Solution,Query)

1 graph = getGraph(Solution) // the molecule graph
2 resultV ariables = getProjections(Query) // the result variables
3 resolved = [] // the bound result variables
4 results = [][] // the final table of results
5 while !resultV ariables.empty()
6 v1 = pop(resultV ariables) // get next unbound result variable
7 if resolved.empty() // no currently bound result variables
8 v2 = getNearestResultVariable(v1, resultV ariables, graph)
9 remove(projections, v2); push(resolved, v2)

10 else // there are currently bound result variable
11 v2 = getNearestResultVariable(v1, resolved, graph)
12 push(resolved, v2)
13 resultsTable = getMergeTable(v1, v2, graph) // merge partial results (id’s only)
14 if results.empty()
15 results = resultsTable
16 else
17 results = extend(results, resultsTable)
18 removeDuplicates(results)
19 materialize(results) // turn id’s into actual strings
20 return results

3.2 Executing Plans

Specifically, following Algorithm 2 we start by executing the most selective
molecule in the plan (steps 1 and 2 in Figure 2). To perform the join (lines
10-12 in Algorithm 2) we send the results to host B and execute the join there
(steps 3 and 4 in Figure 2). Similarly we join the remainder of the molecules.
After all join operations have ended, we need to let hosts A and B know of all
the elements that did not have a join-partner by updating its structure (lines
18-20 in Algorithm 2; steps 8 to 12 in Figure 2).

To increase execution performance, since many plans contain overlapping
subqueries, we employ a memoization strategy by keeping partial results on
the respective hosts for the duration of the query execution, while at the same
time database caching strategies are in effect. As a further improvement, site-
level memory caches can be employed, bypassing the database altogether for
“popular” result sets.

3.3 Materializing Plans

Once a plan has finished its execution, the Plan Executor monitoring the pro-
cess will signal the Avalanche mediator by pushing the executed plan onto the
Finished Plans queue. Note that the executed plans do not contain the results
yet, since the matches are kept as partial tables on their respective hosts. Hence,
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plans in the Finished Plans Queue will be handled by a Plan Materializer

that materializes the partial results as described in Algorithm 3. First, we get
an unbound result variable v1 (line 6). We then try to find the next possible
result variable that will produce the lowest number of merge operations (proce-
dure getNearestResultVariable in lines 8 or 11). Having chosen the next
result variable we create a partial result table (line 13) and merge it with the
global result table (lines 14-17). We finish by removing duplicates and replacing
all ids with the actual strings (lines 18 and 19). To further reduce the overhead
of sending the results between hosts, we use RLE compression.

3.4 Stopping the query execution

Since we have no control over distribution and availability of RDF data and
SPARQL endpoints, providing a complete answer to the query is an unreasonable
assumption. Instead, the Query Stopper monitors for the following stopping
conditions:

– a global timeout set for the whole query execution
– returning the first K unique results to the caller
– to avoid waiting for the timeout when the number of results is � K we

measure relative result-saturation. Specifically, we employ a sliding window
to keep track of the last n received result sets. If the standard deviation
(σ) of these sets falls below a given threshold then we stop execution. Using
Chebyshev’s inequality we stopped when 1− 1

σ2 > 0.9.

4 Preliminary Evaluation

In this section we describe the experimental evaluation of the Avalanche sys-
tem. We first succinctly introduce the setup and then discuss the two evaluated
properties: the query execution and plan convergence.

4.1 Experimental setup

We tested Avalanche using a five-node cluster. Each machine had 2GB RAM
and an Intel Core 2 Duo E8500 @ 3.16GHz. We chose this small number of nodes
to better illustrate Avalanche’s query handling strategies, but did not measure
its ability to scale.

The data was gathered directly from the LOD cloud. Specifically, we em-
ployed the IEEE (66K triples), DBLP (22 millions) and ACM (13 millions)
publication data. The datasets were distributed over a five-node cluster, split by
their origin and chronological order (i.e. ACM articles till 2003 on host A) as
shown in Table 4.1. Recall that as stated above Avalanche makes no assump-
tions about the data distribution over the nodes.

For the purpose of evaluating Avalanche we selected 3 SPARQL queries as
listed in Appendix A. The queries were chosen in increasing order of complexity
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Host # Triples # S / O # DBLP P # ACM P # IEEE P

Host A 7058949 1699554 0 18 0
Host B 6549326 1554767 0 18 14
Host C 6547513 2153509 20 0 17
Host D 8319504 2773740 19 0 0
Host E 7399881 2680160 19 0 0

Table 1. Number of triples, unique subject S, object O, and predicate P distributions
on the hosts. Predicates are shown by dataset.

(in terms of number of unbound variables and triple patterns). We conducted
all query executions with the following parameters: 1) timeout set to 20 seconds,
2) a stop sliding window of size 5, 3) a saturation threshold of 0.9, and 4) a
selectivity threshold for bloom filter construction of 1000 while searching for a
maximum of 200 results.
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Fig. 3. Number of retrieved results and query execution times

Query execution Figure 3 graphs the number of query results (left) and the
execution time (right) for both the default utility U and the extended utility EU
introduced in Section 3. Note that the query execution time for the extended
utility is somewhat higher (lower than the timeout), but it does find more an-
swers to the queries. The time used for the extended utility is higher since gives
the better plans a higher priority and executes them earlier. The execution of
“useful” plans does take longer, since a non-useful plan is stopped as soon as an
empty join is discovered. Hence, the saturation condition will stop the default
utility earlier after having executed fewer useful plans. Given a large number of
hosts we expect that the overhead of cancelling non-useful plans will overcome
the cost of executing useful plans. Hence, the extended utility planer should
converge faster.

As we see in this experiment, Avalanche is able to successfully execute
query plans and retrieves many up-to-date results without having any prior
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knowledge of the data distribution. We, furthermore, see that different objective
functions have a significant influence on the outcome and should play a critical
role when deployed on the Semantic Web.

Planner convergence A second issue we planned to investigate is the use-
fulness of the convergence criteria introduced in Section 3.4. Figure 4 graphs
the total number of results against the number of new results where the data
points represent newly arriving—possibly empty—answer sets whilst disabling
the stopping condition.

As an example consider query Q1. At first, the number of new results grows
to a certain level. But, after having gathered ≈ 140 results, no more new results
are received. A similar behavior can be seen for each of the three queries. Hence,
given the experimental results the choice of a stopping condition is pertinent.
The current stopping conditions would stop both queries Q1 and Q3 at the
right point when the correct plateau is reached. When considering the number
of results found (see also Figure 3), query Q2, however, is stopped somewhat
early in one of the local plateaus.
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Fig. 4. Query planner convergence

5 Limitations, Optimizations and Future Work

The Avalanche system has shown how a completely heterogeneous distributed
query engine that makes no assumptions about data distribution could be imple-
mented. The current approach does have a number of limitations. In particular,
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we need to better understand the employed objective functions for the planner,
investigate if the requirements put on participating triple-stores are reasonable,
explore if Avalanche can be changed to a stateless model, and empirically
evaluate if the approach truly scales to large number of hosts. Here we discuss
each of these issues in turn.

The core optimization of the Avalanche system lies in its cost and utility
function. The basic utility function only considers possible joins with no infor-
mation regarding the probability of the respective join. The proposed utility
extension UE estimates the join probability of two highly selective molecules.
Although this improves the accuracy of the objective function, its limitation to
highly selective molecules is often impractical, as many queries (such as our ex-
ample query) combine highly selective molecules with non-selective ones. Hence,
we need to find a probabilistic distributed join cardinality estimation for low
selectivity molecules. One approach might be the usage of bloom-filter caches to
store precomputed, “popular” estimates. Another might be investigating sam-
pling techniques for distributed join estimation.

In order to support Avalanche existing triple-stores should be able to:

– report statistics: cardinalities, bloom filters, other future extensions

– support the execution of distributed joins (common in distributed databases),
which could be delegated to an intermediary but would be inefficient

– share the same same key space (can be URIs but would result in bandwidth-
intensive joins and merges)

Whilst these requirements seem simple we need to investigate how complex these
extensions of triple-stores are in practice. Even better would be an extension
of the SPARQL standard with the above-mentioned operations, which we will
attempt to propose.

The current Avalanche process assumes that hosts keep partial results
throughout plan execution to reduce the cost of local database operations and
that result-views are kept for the duration of a query. This limits the number
of queries a host can handle. We intend to investigate if a stateless approach is
feasible. Note that the simple approach—the use of REST-ful services—may not
be applicable as the size of the state (i.e., the partial results) may be huge and
overburden the available bandwidth.

We designed Avalanche with the need for high scalability in mind. The
core idea follows the principle of decentralization. It also supports asynchrony
using asynchronous HTTP requests to avoid blocking, autonomy by delegating
the coordination and execution of the distributed join/update/merge operations
to the hosts, concurrency through the pipeline shown in Figure 1, symmetry by
allowing each endpoint to act as the initiating Avalanche node for a query
caller, and fault tolerance through a number of time-outs and stopping condi-
tions. Nonetheless, an empirical evaluation of Avalanche with a large number
of hosts is still missing—a non-trivial shortcoming (due to the lack of suitable,
partitioned datasets and the significant experimental complexity) we intend to
address in the near future.
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6 Conclusion

In this paper we presented Avalanche , a novel approach for querying the Web
of Data that (1) makes no assumptions about data distribution, availability,
or partitioning, (2) provides up-to-date results, and (3) is flexible since it as-
sumes nothing about the structure of participating triple stores. Specifically, we
showed that Avalanche is able to execute non-trivial queries over distributed
data-sources with an ex-ante unknown data-distribution. We showed two pos-
sible utility functions to guide the planning and execution over the distributed
data-sources—the basic simple model and an extended model exploiting join-
estimation. We found that whilst the simple model found some results faster
it did find less results than the extended model using the same stopping crite-
ria. We believe that if we were to query huge information spaces the overhead
of badly selected plans will be subdued by the better but slower plans of the
extended utility function.

To our knowledge, Avalanche is the first Semantic Web query system that
makes no assumptions about the data distribution whatsoever. Whilst it is only
a first implementation with a number of drawbacks it represents a first important
towards bringing the spirit of the web back to triple-stores—a major condition
to fulfill the vision of a truly global and open Semantic Web.
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A Appendix

Query 1: SELECT ?title ?author ?date WHERE {

?paperDBLP <http://www.aktors.org/ontology/portal#has-title> ?title .

?paperDBLP <http://www.aktors.org/ontology/portal#has-author> ?author .

?paperDBLP <http://www.aktors.org/ontology/portal#has-date> ?date .

?author <http://www.aktors.org/ontology/portal#full-name> "Abraham Bernstein" .

}

Query 2: SELECT ?name ?title WHERE {

?paper <http://www.aktors.org/ontology/portal#has-author> ?author .

?author <http://www.aktors.org/ontology/portal#full-name> ?name .

?paper <http://www.aktors.org/ontology/portal#has-author> ?avi .

?paper <http://www.aktors.org/ontology/portal#has-title> ?title .

?avi <http://www.aktors.org/ontology/portal#full-name> "Abraham Bernstein" .

}

Query 3: SELECT ?title ?date WHERE {

?author <http://www.aktors.org/ontology/portal#full-name> "Abraham Bernstein" .

?paper <http://www.aktors.org/ontology/portal#has-author> ?author .

?paper <http://www.aktors.org/ontology/portal#has-title> ?title .

?paper <http://www.aktors.org/ontology/portal#has-date> ?date .

?paper <http://www.aktors.org/ontology/portal#article-of-journal> ?journal .

?journal <http://www.aktors.org/ontology/portal#has-title> "ISWC/ASWC".

}
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Abstract. The Semantic Web aims to create a universal medium for
the exchange of semantically tagged data. The idea of representing and
querying this information by means of directed labelled graphs, i.e., RDF
and SPARQL, has been widely accepted by the scientific community.
However, even when most current implementations of RDF/SPARQL
are based on ad-hoc storage systems, processing complex queries on
large data sets incurs a high number of joins, which may slow down
performance. In this article we propose materialized SPARQL queries as
indexes on RDF data sets to reduce the number of necessary joins and
thus query processing time. We provide a formal definition of material-
ized SPARQL queries, a cost model to evaluate their impact on query
performance, a storage scheme for the materialization, and an algorithm
to find the optimal set of indexes given a query. We also present and
evaluate different approaches to integrate materialized queries into an
existing SPARQL query engine. An evaluation shows that our approach
can drastically decrease the query processing time compared to a direct
evaluation.

Key words: SPARQL, Indexing, RDF, Materialized Queries, Semantic
Web, Query Processing

1 Introduction

The Semantic Web as an evolution of the World Wide Web aims to create
a universal medium for the exchange of data where data can be shared and
processed by automated tools as well as by people. The basis for this proposal is
a logical data model called Resource Description Framework (RDF) [1]. An RDF
data set is a collection of statements called triples, of the form (s,p,o) where s
is a subject, p is a predicate and o is an object. Each triple states the relation
between subject and object. A set of triples can be represented as a directed
graph where subjects and objects represent nodes and predicates represent edges
connecting these nodes. The SPARQL query language is the official standard for
searching over RDF repositories [2].

The increasing amount of RDF data has motivated the development of ap-
proaches for efficient RDF data management. Therein, SPARQL implementa-
tions have been built either over relational database technology or using an ad-
hoc storage system (e.g. Jena [3], 3Store [4, 5], Sesame [6]). Furthermore, very
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large scale systems have been proposed using the common paradigm of a triple
table normalized using two or more tables (4Store [7], YARS [8]). Consequently,
in these systems, joins are still used extensively to answer queries. Optimizing
these joins is one of the critical issues to obtain scalable SPARQL systems.

In relational databases, query processing using materialized views is a well
established method to achieve scalability [9]. Here, we propose the use of ma-
terialized SPARQL queries to speed-up queries. We target large data sets and
SPARQL queries consisting of many basic graph patterns producing a set of
results. Examples of huge data sets are for instance, UniProt containing more
than 600 million triples [10] or the W3C SWEO Linking Open Data Community
with more than 4 billion triples [11]. With such datasets, executing a query with
many graph patterns becomes a problem.

Listing 1. Example SPARQL query to gather information about Hexokinase
enzyme [12]

SELECT * WHERE {

?s1 ?p1 ?o1 .

?o1 ?p2 "hexokinase" .

?s1 rdf:type ?type1 .

?s1 rdfs:comment ?comment1 .

?s1 rdfs:label ?label1 .

?s1 rdfs:comment ?comment2 .

?s1 rdfs:label ?label2 .

}

Consider the query in Listing1. Executing this query on a conventional SPAR-
QL processor over a large triple table results in the computation of six self-joins.
However, one can safely assume that the types, labels, and comments of an object
are used together very often. Therefore, similar to [3], which create tables to
group properties that tend to be defined together we suggest to cluster frequently
used triple patterns by materializing and storing the results inside the system.
If this information were available, the query could be computed with only three
joins, as the materialized query would help to retrieve the information for s1.

Our indexing method aims to fully exploit the RDF graph-structure. We
do not index single attributes or triples, but fractions of queries that occur
frequently in an expected workload. Therefore, our approach is a native RD-
F/SPARQL indexing method whose concepts are viable for all possible imple-
mentations of RDF stores. Our method can be seen as an orthogonal indexing
solution, which may be used in conjunction with other indexing methods.

Such an approach requires to solve several problems. First, selected queries
must be materialized and the results stored such that efficient retrieval is pos-
sible. Second, a given query at runtime must be analyzed to identify the mate-
rialized query or the combination of materialized queries that offers the highest
speed-up for this query. This requires a query rewriting algorithm and a cost
model. Third, the query processing itself must be modified to be able to retrieve
materialized results and to combine them with those parts of the original query
that are not covered by the indexes.
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Here, we present solutions to these problems. We first discuss related work
in Section 2. Section 3 presents the fundamental principles of RDFMatViews.
We describe different ways to introduce materialized queries into an existing
SPARQL processor in 4. Section 5 gives an evaluation of our method. We con-
clude in Section 6.

2 Related work

In the following, we discuss those works that are most related to our main
contribution, i.e., using indexes to speed up SPARQL queries.

Some approaches have proved to be very efficient to query SPARQL queries
based either on relational database technology or following a native data scheme.
For instance, in [13] Abadi et al. propose a vertical partition approach for Se-
mantic Web data management. An enhancement of this approach is proposed by
Weiss et al. in [14]. Therein, RDF data is indexed in six possible ways, i.e., an
index for each possible ordering of the three RDF elements. Each instance of an
RDF element is associated with two vectors; each such vector gathers elements
of one of the other types, along with lists of the third-type resources attached to
each vector element. This scheme is capable of speeding up single joins tremen-
dously, but storage requirements are very high, which becomes a serious issue
when using huge data sets.

Neumann and Weikum developed RDF-3X, a SPARQL engine pursuing a
RISC-style architecture – a streamlined architecture – with specific-designed
data structures and operations [15]. The authors overcome the “giant-triples-
table” [13] bottleneck by creating a set of indexes and a fast way for processing
merge joins. Similar to [14], RDF-3X maintains six possible permutations of
subject, predicate and object in six separate indexes. The authors also present
a compression algorithm to decrease the space consumption.

All these approaches have in common that they focus on indexing the re-
lational representation of the RDF data. When faced with queries consisting
of multiple basic graph patterns, they still have to compute multiple joins (al-
though every single join is faster). In contrast, our work specifically targets the
speed-up of complex queries consisting of many basic graph patterns by indexing
complete query patterns which occur in other queries.

There is some other work along this line. In [16] the authors present GRIN,
a lightweight indexing mechanism for RDF data. The idea is to draw circles
around selected center vertices in the graph where the circle would comprise
those vertices in the graph that are within a given distance of the “center”
vertex. Basically, GRIN is a binary tree where the set of leaf nodes form a
partition of the set of triples in the RDF graph. An interior node represents
the set of all vertices in the RDF graph that are within a specific distance. To
evaluate a query, GRIN derives a set of inequality constraints from the query.
These constraints are evaluated against the nodes of the GRIN index.

A similar indexing approach is presented in [17]. This work proposes a set
of indexes of precomputed joins created from all possible join combinations be-
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tween triple patterns. As [16], this approach creates a general purpose set of
indexes based on joined triple patterns, but the number of indexes to manage is
impractical when the number of joined triples is >= 3.

The two systems just described index larger portions of the RDF data set
and not just single triples. However, they propose to apply their techniques to all
RDF triples, while we only build user-chosen indexes. Our work fundamentally
is based on the assumption that some patterns are combined more frequently
than others, and that only indexing those combinations promises to provide large
speed-ups at manageable space and maintenance cost.

The differences between our ideas and that of other RDF indexing schemes
can be described by drawing a parallel to B*-indexes in relational databases
[18]. Nobody would suggest to speed up queries by indexing every attribute;
instead, systems assume that developers have a rough idea about the types of
queries that need to be answered and therefore index only the relevant attributes.
Furthermore, optimal speed-up can only be achieved when also combinations of
attributes can be indexed, and not only single attributes. In this sense, the
former approaches index every single attribute, the latter indexes every possible
combination of attributes, and we suggest to index only selected combinations
of attributes.

Note that we do not claim that our current implementation of RDFMatView
offers a particular fast SPARQL-processor, compared to systems such as [13–15].
Instead, we present a new technique to speed up query execution with SPARQL
that is applicable to any SPARQL query processor. We showcase its potential and
compare different ways to integrate it into query processing using one particular
system (namely ARQ [19]), which was been chosen because of its widespread
use. An extended version of this paper can be found in [20].

3 The RDFMatView Approach

3.1 Indexes and Covers

A SPARQL query Q is represented by a simple graph pattern P and is de-
noted by P (Q). A mapping is a function that maps the symbols of one pattern
into the symbols of another pattern. Our notion of mappings is based on the
SPARQL-Standard [2] and its definition of pattern solutions. However, while in
the SPARQL standard such solutions are only searched in the data graph, we
also permit that variables are mapped to other variables. This generalization
allows us to search occurrences of patterns in other patterns, in particular, oc-
currences of indexes in a query. We say that a pattern P1 occurs in a pattern P2

if there is a mapping function S such that S(P1) ⊆ P2. Extending occurrences
and mappings also to RDF triples, we define an index over an RDF data graph
as follows.

Definition 1 (Index). An index I over a data graph G is a pair I = (P,O),
where P represents a pattern and O represents the set of all occurrences of P in
G.
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Indexes are precomputed queries suitable to speed up other queries when the
index pattern is “contained” in the query pattern. An index I is eligible for a
query Q when the patterns set of I occurs in the pattern set of Q. However, it
would be more advantageous when query processing uses more than one index.
For those cases, we require that indexes “overlap”. Overlapping indexes are good
candidates for reducing query processing because the query engine can combine
occurrences of these indexes and generate solutions without matching against
the RDF dataset.

We define two ways in which indexes overlap. Two indexes overlap intension-
ally iff there could exist a triple pattern in which their materialization would
overlap. Two indexes overlap extensionally if their materializations overlap on a
concrete data graph. Thus, intensional overlap relies only on the index patterns
and is independent of a concrete data graph, while extensional overlap needs to
consider the actual data graph.

Definition 2 (Overlapping Indexes). Let I1 = (P1, O1) and I2 = (P2, O2)
be two indexes over a data graph G.

– I1 and I2 intensionally overlap iff there exists mapping functions S1, S2 such
that

S1(P1) ∩ S2(P2) �= ∅

– I1 and I2 extensionally overlap in G iff

∃o1 ∈ O1, o2 ∈ O2 : o1 = o2

where oi is a concrete occurrence in Oi.

Here, we only consider intensional overlapping since it is independent from
the data graph and can be efficiently implemented. Using intensionally overlap-
ping indexes, we define a cover. Think of set E which contains all the eligible
indexes as graph nodes, connected by an edge when they overlap. For a given
query Q, we call every subset of E a cover of Q, for which the induced subgraph
has a single component. Furthermore, we are only interested in maximal covers,
i.e., those covers which cannot be extended further by adding new indexes.

3.2 Example

Finding covers requires to analyze the set of indexes and the given query. The
idea is to find mappings between index and query patterns. This process is per-
formed using a query containment algorithm [21] adapted for SPARQL queries.
Details of the algorithm can be found in [20]. Essentially, we find all mappings
between any index pattern and the query pattern by enumerating all possible
cases. If a mapping exists, the index is eligible for that query and we store
the mapping. Note that, for a given index, there are potentially many different
ways to be eligible, i.e., different mappings between index and query patterns.
Consider a SPARQL query and two indexes described in Table 1.
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Table 1. SPARQL query returning universities and their departments, Index1 com-
putes places and their names and Index2 computes universities with their departments.

Query: SELECT * WHERE {

?university rdf:type ub:University;

ub:name ?university_name.

?ub_department rdf:type ub:Department;

ub:name ?ub_name_department;

ub:subOrganizationOf ?university . }

Index1: SELECT * WHERE {

?place rdf:type ?place_type;

ub:name ?place_name. }

Index2: SELECT * WHERE {

?ub_department rdf:type ub:Department;

ub:name ?ub_name_department;

ub:subOrganizationOf ?university;

?university rdf:type ub:University .}

Index1 and Index2 are eligible for the query, using the mappings in Table 2.
Note that Index1 has two mappings. Each mapping represents an occurrence of
the patterns of Index1 in the query pattern. Index occurrences generated from
the previous mapping functions overlap in the triple pattern ?university rdf:type
ub:University, using the first mapping function of Index1. Hence, partial results
can be joined to completely cover the query.

Table 2. Mappings of Index1 and Index2

Index1: Mapping 1 Mapping 2

?place ⇒ ?university ?place ⇒ ?ub department
?place type ⇒ ub:University ?place type ⇒ ub:Department
?place name ⇒ ?university name ?place name ⇒ ?ub name department

Index2: Mapping 1

?ub department ⇒ ?ub department
?ub name department ⇒ ?ub name department

?university ⇒ ?university

Assume an RDF data stored in a RDBMS within a triple table (without in-
dexes), for instance, Triple(subj, prop, obj) [3, 15]. Hence, query in Table 1 could
be answered by the SQL query in Listing 2 requiring four self joins. However,
using pre-computed tables, Index1 and Index2, requires only one join as shown
in Listing 3.
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Listing 2. SQL representation of SPARQL query in Table 1
SELECT t1.subj AS a0, t2.obj AS a1 , t3.subj AS a2,t4.obj AS a3

FROM Triple AS t1 , Triple AS t2, Triple AS t3,

Triple AS t4 , Triple AS t5

WHERE t1.prop= ’type ’ AND t1.obj= ’University ’ AND

t2.prop= ’name ’ AND t3.prop= ’type ’ AND

t3.obj= ’Department ’ AND t4.prop= ’name ’ AND

t5.prop= ’subOrganizationOf ’ AND

t1.subj = t2.subj AND t3.subj = t4.subj AND

t3.subj = t5.subj AND t1.subj = t5.obj;

Listing 3. SQL representation of SPARQL query in Table 1 using RDFMatView
indexes
SELECT index2.university , index1.place_name AS university_name ,

index2.ub_department , index2.ub_name_department

FROM index1 , index2

WHERE index1.place = index2.university;

This example illustrates advantages to use materialized queries as indexes to
process SPARQL queries. Note that this case does not require to query against
the data graph, because all query patterns are covered and the partial results
are materialized. Other cases would require to extend the results of the covered
patterns with the results of query patterns which are not covered using indexes.

3.3 Cost Model

Previous sections define which indexes and which sets of indexes are eligible for
a given query. In the following, we define a model to estimate which cover brings
more savings in time to query execution. Our model is based on the definition
of selectivity of an index. Selectivity defines the relation of the number of index
occurrences in a given graph to the possible total number of index occurrences
in the graph. To this end, we need the size and frequency of the index pattern
(number of triples in the index pattern and number of tuples for the index
pattern in the data graph) and the size of the data graph (total number of
triples) represented by |I|, #(I) and |G| respectively. Hence, we define selectivity
as follows.

Definition 3 (Selectivity of an index). Let I be an index over a data graph
G. The selectivity s(I) of an index I is defined as:

s(I) =
#(I)

|G||I|
.

We can estimate selectivity of two indexes based on the overlapping of their
index patterns, i.e., they can completely, partially or not overlap at all. This
leads to estimate the selectivity of a cover.
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Definition 4 (Selectivity of a cover). Let C be a cover for a query Q con-
sisting of indexes I1, I2, . . . In. The selectivity s(C) of the cover C is defined
as:

sel(C) = sel(I1 ∪ I2 ∪ . . . ∪ In) ≤
min|O1|, ..., |On|
|G|max{|P1|,...,|Pn|}

Having the selectivity of all maximal covers, the query optimizer determines
which cover is the best for query processing.

4 Implementation

We describe the implementation of our approach into a SPARQL query proces-
sor by using the ARQ system [19]. However, we want to stress that the general
process would be the same for any other SPARQL query processors. We differ-
entiate two main phases in our approach. At offline-time, indexes are created
and materialized. At query-time, queries are answered using indexes (or covers).
We describe our implementation regarding these phases.

4.1 RDFMatView Index processing

Each index is preprocessed as a table in the underlying database. We create its
schema by materializing all variables of the index and not only those mentioned
in the SELECT clause. This strategy enables the materialized data to be eligible
also for those queries requesting variables that were not selected in the original
index. Occurrences of the index in the dataset are stored as values for these fields.
Each attribute of a tuple represents a binding for the respective variable. To avoid
large requirements of storage space, we use an RDF Data Dictionary, which maps
each resource to a unique identifier. Thus, instead of storing large literal values,
we store only numeric identifiers in the index structure. Table 3 summarizes the
space required to store 10 indexes for each RDF dataset. During the processing
of an index we also calculate and store index properties, for instance size and
frequency, which are later used to evaluate the query execution plans. These
tasks are executed only once per index and can be used to process any SPARQL
query.

Table 3. Storage required for a set of 10 RDFMatView indexes over 4 different
databases (BSBM) [22] (K = 1000, M = 1 Million triples).

250K 500K 1M 10M

index storage 12Mb 18Mb 34Mb 363Mb
total storage 379Mb 616Mb 1.2Gb 12Gb
storage ratio 0.03 0.02 0.02 0.03
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4.2 Executing a query using RDFMatView indexes

Query processing using RDFMatViews indexes usually combines results of mul-
tiple indexes. However, it is not always possible to cover all query patterns. The
set of uncovered patterns is referred to as residual part of a query. This breaks
down into the following steps: i) Analysis of the query to find all maximal covers
ii) Selection of the most suitable cover to answer the query given our cost model
iii) Rewriting of the query using the chosen cover iv) Extension of the results of
the cover to results of the query. Steps one and two were already discussed in
Sections 3.1 and 3.3 respectively. Here, we concentrate on the two last steps, the
query rewriting. We developed three strategies to fulfill this task:

– Our first strategy uses ARQ to process the residual part of the query. RDF-
MatView extends the results of the chosen cover by joining the partial solu-
tions with the solutions of the residual patterns.

– The second strategy is based on a SPARQL-to-SQL algorithm to translate
SPARQL queries into SQL queries. The idea is to directly access the native
Jena storage tables and to combine those results with the index tables to
generate the final solution.

– The last strategy is built from a combination of the previous two strategies,
i.e. ARQ and database execution engine.

These strategies are explained in detail in the next sections.

Method 1: MatView-and-ARQ Engine

Rewriting engine built on top of the Jena Framework. Given a query and a cover,
it computes the set of uncovered residual patterns of the query and uses ARQ
to execute this (sub-)query. Furthermore, it computes the result of the cover by
joining the respective index tables according to the variable mappings between
the query and the indexes forming the cover. Results are also joined with the
data dictionary to obtain RDF values, and joined to the result of the ARQ query
to produce the complete answer for the original query. This engine encapsulates
the logic for the execution of the cover and provides total independence from
the underlying database.

Method 2: MatView-to-SQL Engine

Rewriting engine which, unlike our first method, translates the residual part of
the query into a SQL query using an algorithm proposed by Chebotko in [23].
The SQL query is executed by the RDBMS which evaluates the query using
the Jena tables. The result set is processed using our dictionary and combined
with the results of the cover. The complete query processing is performed by the
database execution engine using a stored procedure.
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Method 3: Hybrid Engine

A mixture of MatView-and-ARQ and MatView-to-SQL. As in Method 1, after
rewriting the query, this engine transfers the residual patterns to the query
execution engine of ARQ. The second part of the process combines the results
of the residual patterns with the resulting set of the covered part of the query
patterns. Contrary to Method 1, this engine is database-dependent since this
task is performed inside the database execution engine, as in Method 2.

5 Evaluation

We evaluate our approach using two well known SPARQL benchmarks: the
Berlin SPARQL Benchmark (BSBM) [22] and the SPARQL Performance Bench-
mark (SP2B) [24]. We use the ARQ/Jena RDF Storage System (version 2.5.7)
on Postgres 8.2 as framework in which we integrated our solution. We generated
eight RDF datasets with sizes ranging from 250K to 10M triples and tested the
impact of the indexes on six different queries (three queries for each benchmark).
For each query, we manually defined a set of indexes, leading to covers composed
of one to three indexes. Our intention here is not to find the best set of indexes
given a workload (generally called index selection, see, e.g., [25–27]); instead, we
study to which degree indexes that use different processing schemes speed up
the execution of queries.

5.1 Dataset and queries

For each benchmark, we create four datasets containing 250K, 500K, 1M and
10M triples, respectively. As these datasets have identical value distributions
but different sizes, our evaluation concentrates on the scalability of our methods
in different domains. Based on the number of triple patterns we chose three
queries for each benchmark. We transformed the query patterns into simple
graph patterns and removed most bindings to variables. Bounded variables incur
high selectivity resulting in the retrieval of only a handful of triples. Such queries
are well supported by existing index structures and do not require the type of
join-optimization that is achieved with our optimization technique. Therefore,
performance gains would be only marginal. Our test queries are described in
Listings 4 and 5.

Listing 4. Test queries derived from BSBM
Query1: Finds products for a given set of generic features.

Query2: Retrieve basic information about products.

Query3: Retrieve in-depth information about products including

offers and reviews.
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Listing 5. Test queries derived from SP2B
Query4: Extract all information about inproceedings documents.

Query5: Select all pairs of articles of an author that have been

published in the same journal.

Query6: Return for each year , the set of all publications including

the name of the authors.

From the queries described in Listings 4 and 5, we derive two sets of indexes
containing 10 and 8 indexes respectively. Each index covers two to six patterns
from at least one query. However, none of them completely covers a query. We
focus to evaluate covers containing either a combination of indexes and possible
a residual part of the query since most real-life SPARQL queries would comply
with this case.

5.2 Results

For each benchmark we evaluated three queries over four data sets using our
three RDFMatView methods and plain ARQ (without indexes), which amounts
36 different configurations. We refer to the approaches to query execution as M1
for MatView-and-ARQ, M2 for MatView-to-SQL, M3 for the hybrid approach,
and ARQ for plain ARQ. The experiments use the optimal cover and evaluate the
real and estimated costs of different covers for the same query. All queries were
executed 5 times and average execution times are reported1. Furthermore, we
evaluated all different covers generated for Query1 and Query2 (BSBM) to show
the performance of our cost model in the selection of the query execution plan.
Figure 1 illustrates the average processing time for each query. Clearly, process-
ing time significantly improves in both domains when using MatView-and-ARQ
(M1) and Hybrid (M3). However, processing time does not significantly improve
when using MatView-to-SQL (M2) (see Fig. 1). The reason for this is the Jena
native storage schema. Since the values are encoded following the Jena layout,
our process needs to parse the stored values and extract the required information,
which increases the processing time.

Figure 2(a) and Figure 3(a) show the evaluation of real and estimated cost
for different covers for Query1 and Query2 (BSBM). Additionally, Figure 2(b)
and Figure 3(b) show the relation between the estimated costs of a cover, its
indexes and number of covered and uncovered patterns from the given query.
Note that our system selects as optimal Cover 6 in Figure 2(a) (for Query1) and
Cover 3 in Figure 3(a) (for Query2).

Figure 2(a) and Figure 3(a) show the costs estimated by our model together
with the real processing time. In all cases our model manages to prevent the
selection of exceptionally bad plans, and all plans improve the total execution
times when compared to those without using indexes. However, the figures also
show that our model can be improved further, as total real and estimated costs
do not correlate well. Especially, our model does not yet reflect the fact that, in

1 Except for Query5 without indexes over a 10 Million triples dataset, which did not
finish after 24 hours
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(a) Query1 (BSBM) (b) Query4 (SP2B)

(c) Query2 (BSBM) (d) Query5 (SP2B)

(e) Query3 (BSBM) (f) Query6 (SP2B)

Fig. 1. Processing time for test queries using BSBM and SP2B. Each query was pro-
cessed on four data sets using three rewriting methods. M1: MatView-and-ARQ; M2:
MatView-to-SQL; M3: Hybrid; ARQ: plain ARQ (time in milliseconds).
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(a) Estimated cost vs. real processing time

(b) Estimated cost vs elements processing time

Fig. 2. Figure 2(a) shows estimated cost, total real processing time, cover processing
time, and residual processing time of Query1. Values are plotted on log-scale. Note
that total real processing time virtually equals real processing time for the covers for
larger covers. Figure 2(b) shows estimated costs for each cover based on intensional
dependency between indexes for the same query. Costs are based on the model intro-
duced in Section 3.3 and are presented in relation to the size for each cover, number of
participating indexes and the size of the residual part of the query. This analysis shows
the influence of these elements in the selection of an optimal cover.

a setting with two covers both covering the same number of patterns, but with
a different number of indexes, it is usually advantageous to chose the cover with
less indexes as this requires less joins at runtime. Figure 2(b) illustrates that
plans with fewer indexes have a superior performance than plans with the same
number of covered patterns, but consisting of more indexes. Thus, the number
of necessary joins between indexes is a natural next factor to consider in future
work. In Figure 2(b), Covers 5 and 6 have the best estimated costs according
to our model. However, the residual part of the query (2 triple patterns) incurs
an undesirable overhead, which is not yet properly reflected in our model. An
interesting fact can be observed for those covers covering larger patterns using
two indexes (see covers 1, 2 and 3). These cases show the reduction of processing
time when joining two indexes. At the end, more patterns are covered and the
number of patterns to match against the data set decreases. Though their cost
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(a) Estimated cost vs. real processing time

(b) Estimated cost vs elements processing time

Fig. 3. Figure 3(a) shows estimated versus real cost for Query2. Estimated costs corre-
late with cover real processing time however, residual processing time consumes most
of the real processing time. Figure 3(b) shows for Query2 estimated cost versus number
of covered patterns and number of indexes; for explanation, see Figure 2(b).

estimation is not the best, their processing times are significantly better than
those of covers with a better estimated cost. We attribute this behavior to the
join (between indexes) and the processing of the residual part of the query which
decreases the fewer are the patterns.

As for Query1, Figure 3(a) shows that the estimated costs and the real pro-
cessing time for Query2 approximately correlate. Additionally, the graphic shows
that the residual part of the query should be considered as an important factor
when selecting an optimal cover, since residual processing time nearly spans the
complete total processing time. Figure 3(b) supports this conclusion showing the
details for the generated covers, i.e., covering a larger number of query patterns
using as few indexes as possible decreases the real processing time.

6 Conclusions and future work

In this article we proposed a logical framework and a prototype implementation
for answering SPARQL queries using materialized queries as indexes. At runtime,
queries are analyzed to see whether their execution can be sped-up by using one
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or more of those precomputed partial results. The subsequent query rewriting
and integration of precomputed results into the overall result generation was
implemented following three different approaches on a standard SPARQL query
processor. Initial experiments with different queries, different indexes, and dif-
ferent data sets showed that the performance gains in query processing can be
considerable.

However, a closer look reveals that our cost model needs to be improved in
several aspects. In particular, it needs to model the influence of the number of
used indexes, the size of the covers, and the number of residual query patterns.
A more accurate estimation of the impact of these elements and its inclusion in
the cost model is important to select an better cover.

Up to now, we assume a predefined set of indexes suitable for a given workload
of SPARQL queries. A natural extension to this assumption is to study ways of
finding the optimal set of indexes under some resources constraints, given a
workload. We report on some initial results in this direction in [28], but these
also need to be improved by using a better cost model.

References

1. Manola, F., Miller, E.: RDF Primer (February 2004) W3C Recommendation.
2. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (April

2008) W3C Recommendation.
3. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and

retrieval in Jena2. In: Proc. First International Workshop on Semantic Web and
Databases. (2003)

4. Stephen Harris, N.G.: 3store: Efficient Bulk RDF Storage. In: 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS’03). (2003)

5. Harris, S.: SPARQL Query Processing with Conventional Relational Database
Systems. In: International Workshop on Scalable Semantic Web Knowledge Base
System. (2005)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: International Semantic Web
Conference. (2002) 54–68

7. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a
Clustered RDF Store. In: 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009). (2009)

8. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the
Web. In: LA-WEB ’05: Proceedings of the Third Latin American Web Congress,
Washington, DC, USA, IEEE Computer Society (2005) 71

9. Goldstein, J., Larson, P.A.: Optimizing Queries Using Materialized Views: A
Practical, Scalable Solution. In: SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, New York, NY, USA,
ACM (2001) 331–342

10. Dataset, U.R.: http://dev.isb-sib.ch/projects/uniprot-rdf/
11. Project, W.S.C.: Linking Open Data on the Semantic Web.
12. Bio2RDF. http://bio2rdf.org/ (2009)

94



16 Roger Castillo, Christian Rothe, and Ulf Leser

13. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
Data Management using Vertical Partitioning. In: VLDB ’07: Proceedings of the
33rd international conference on Very large data bases, VLDB Endowment (2007)
411–422

14. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. Proc. VLDB Endow. 1(1) (2008) 1008–1019

15. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proc. VLDB
Endow. 1(1) (2008) 647–659

16. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A Graph Based RDF Index.
In: AAAI. (2007) 1465–1470

17. Groppe, S., Groppe, J., Linnemann, V.: Using an Index of Precomputed Joins in
order to speed up SPARQL Processing. In Cardoso, J., Cordeiro, J., Filipe, J.,
eds.: Proceedings 9th International Conference on Enterprise Information Systems
(ICEIS 2007 (1), Volume DISI), Funchal, Madeira, Portugal, INSTICC (June 12 -
16 2007) 13–20

18. Connolly, T.M., Begg, C.E., Strachan, A.D.: Database Systems: A Practical Ap-
proach to Design, Implementation and Management. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA (1996)

19. ARQJena: ARQ - A SPARQL Processor for Jena.
http://jena.sourceforge.net/ARQ/ (2010)

20. Castillo, R., Leser, U., Rothe, C.: RDFMatView: Indexing RDF Data for SPARQL
Queries. Technical Report 234, Humboldt Universitaet zu Berlin (2010)

21. Halevy, A.Y.: Answering Queries Using Views: A Survey. The VLDB Journal
10(4) (2001) 270–294

22. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal
On Semantic Web and Information Systems - Special Issue on Scalability and
Performance of Semantic Web Systems, 2009 (2009)

23. Chebotko, A., Lu, S., Jamil, H.M., Fotouhi, F.: Semantics Preserving SPARQL-
to-SQL Query Translation for Optional Graph Patterns. Technical report, Depart-
ment of Computer Science, Wayne State University (2006)

24. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Per-
formance Benchmark. Data Engineering, International Conference on 0 (2009)
222–233

25. Comer, D.: The Difficulty of Optimum Index Selection. ACM Trans. Database
Syst. 3(4) (1978) 440–445

26. Caprara, A., Fischetti, M., Maio, D.: Exact and Approximate Algorithms for
the Index Selection Problem in Physical Database Design. IEEE Transactions on
Knowledge and Data Engineering 7(6) (1995) 955–967

27. Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool
for Microsoft SQL Server. In: VLDB ’97: Proceedings of the 23rd International
Conference on Very Large Data Bases, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (1997) 146–155

28. Castillo, R., Leser, U.: Selecting Materialized Views for RDF Data. In: Semantic
Web Information Management Workshop (SWIM 2010). (2010)

95



B+Hash Tree: Optimizing query execution times
for on-Disk Semantic Web data structures

Minh Khoa Nguyen, Cosmin Basca, and Abraham Bernstein

DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
{lastname}@ifi.uzh.ch

Abstract. The increasing growth of the Semantic Web has substantially
enlarged the amount of data available in RDF format. One proposed so-
lution is to map RDF data to relational databases (RDBs). The lack
of a common schema, however, makes this mapping inefficient. Some
RDF-native solutions use B+Trees, which are potentially becoming a
bottleneck, as the single key-space approach of the Semantic Web may
even make their O(log(n)) worst case performance too costly. Alterna-
tives, such as hash-based approaches, suffer from insufficient update and
scan performance. In this paper we propose a novel type of index struc-
ture called a B+Hash Tree, which combines the strengths of traditional
B-Trees with the speedy constant-time lookup of a hash-based structure.
Our main research idea is to enhance the B+Tree with a Hash Map to
enable constant retrieval time instead of the common logarithmic one of
the B+Tree. The result is a scalable, updatable, and lookup-optimized,
on-disk index-structure that is especially suitable for the large key-spaces
of RDF datasets. We evaluate the approach against existing RDF index-
ing schemes using two commonly used datasets and show that a B+Hash

Tree is at least twice as fast as its competitors – an advantage that we
show should grow as dataset sizes increase.

1 Introduction

The increasing growth of the Semantic Web has substantially increased the
amount of data available in RDF1 format. This growth necessitates the avail-
ability of scalable and fast data structures to index and store RDF. Traditional
approaches store RDF in relational databases. Mapping RDF to a relational
database typically follows one of the following approaches: (1) all triples are
mapped to a single three column table – an approach which will result in nu-
merous inefficient self-joins of that table, (2) every property gets mapped to its
own three column table [1] – resulting in a high number of Unions for property-
unbound queries and a table creation for every newly encountered property type,
or (3) draws upon domain-knowledge to map properties to a relational database
schema – forgoing some flexibility when adding new properties. Moreover, ac-
cording to Abadi and Weiss, storing dynamically semi-structured data such as
RDF in relational databases may cause a high number of NULL values in the
tables, which imposes a significant computational overhead [15, 1]. As a conse-
quence, many native RDF databases have been proposed [15, 10].

1 http://www.w3.org/RDF/
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Most native RDF databases propose mapping the RDF-graph to some exist-
ing indexing scheme. The most straightforward approach, RDF-3X [10] essen-
tially proposes to store all possible subsets of the triple keys (i.e., s, p, and o from
every < subject, predicate, object > triple) as composite keys in a traditional
B+Tree structure. This approach results in 15 B+Trees, each of which having
large-keyspace (e.g., sizes of |s| · |p| · |o|, |s| · |o|, etc.) and many entries. Given
the O(log(n)) access time for single key lookup, this can result in a considerable
time overhead for some queries. Consequently, given the ever increasing amount
of data to be stored in RDF stores, traditional approaches relying on B+Trees
in the sprit of RDF-3X have the potential of becoming a main bottle-neck to
scalability [14]. Taking the adaptation to RDF structures to the extreme, Weiss
and colleagues [15] propose a specialized index consisting of 3-level cascades of
ordered lists and hashes. This approach provides a constant (i.e., O(c)) lookup
time but has the drawback that updating hashes can become quite costly. Whilst
the authors argue that updates in the Semantic Web are oftentimes rare, they
are, however, common and should not be dismissed.

In this paper we propose a novel type of index structure called a B+Hash

Tree, which combines the strengths of traditional B+Trees (i.e., ease of use
and updatability) with the speedy lookup of a hash-based structure. Our main
research idea is to enhance the B+Tree with a Hash Map to enable constant
retrieval time instead of the common logarithmic one of the B+Tree. The result
is a scalable, updatable and lookup-optimized, on-disk index-structure that
is especially suitable for the large key-spaces of RDF datasets. Consequently, the
main contribution of this paper is the presentation, formalization, and evaluation
of the B+Hash Tree.

This paper is structured as follows. In Section 2 we set the stage with a
discussion of related work, its benefits and drawbacks. Section 3 then introduces
the B+Hash Tree, provides a formalization as well as a cost model thereof, and
discusses some its limitations. In Section 4 we empirically compare the B+Hash

Tree to the RDF-3X like approach storing the key in a B+Tree. In the final
section we summarize our conclusions and discuss future work.

2 Related work

Several architectures for storing Semantic Web data have been proposed. Many
of them use relational databases to index RDF data. Row store systems such
as Jena [16, 17] map RDF triples into a relational structure, which results in
creating a giant three column < subject, predicate, object > table. Having a
single large table, however, oftentimes results in expensive self-joins; in particular
if the basic graph patterns of a query are not very selective. To counter this
problem, Jena creates property tables, which combine a collection of properties
of a resource in one table. Whilst this approach reduces the number of self-joins
it (1) assumes that the RDF actually has some common exploitable structure
that does not change often over time and (2) has the potential to result in a large
number of NULL values where properties are missing from some resources in a
table [1]. Hence, this inflexibility and the NULL values may lead to a significant
computational overhead [15].
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An alternative approach to the property table solution are column stores
such as SW-Store [1]. For each unique property of the RDF dataset, SW-Store
creates a two column table containing the subject and the object. Assuming a
run-length encoding of the column, this provides a compact storage mechanism
for RDF data that allows efficient joins, as only the join columns are retrieved
from disk (as opposed to the table in row-stores). Nevertheless, if a graph pattern
has an unbound property (e.g., < s, ?p, ?o >) then an increased number of joins
and unions are inevitable [15].

A recent approach is Hexastore [15], which stores RDF data in a native disk
vector-based index. Hexastore manages all six possible orderings of the RDF
triple keys in their own index. In each of the six indices, a triple is split into its
three levels: All levels are stored in native on-disk sorted vectors. A lookup of the
triple < s, p, o > would, hence, result in a hash-lookup in the first level of s, the
result of which would point to a second-level hash that would be used to lookup
p, which would point to an ordered list containing o. Given that a hash-lookup
can be achieved in constant time, Hexastore provides a constant-time lookup for
any given triple. Its six-fold indexing allows a fast lookup of any triple pattern
at the cost of a worst-case five fold space cost. The biggest drawback, however,
is that Hexastore in its “pure” implementation does not support incremental
updates, as inserts would require resorting the vectors of each of the six indices
– a time consuming process.

RDF-3X [10] avoids this drawback by storing the data in B+Trees instead
of vector lists. Specifically, it stores every possible subset combination of the
three triple keys in a separate B+Tree. This approach allows updates and has
an O(log(n)) complexity for retrieval, updates, and deletion. Note, however, that
this approach leads to a huge key-space for some B+Trees (at worst |s| · |p| · |o|),
as the composite key-space grows in the square of the number of nodes of the
RDF graph. Hence, even O(log(n)) can become a bottleneck. A similar approach
to RDF-3X or Hexastore is YARS2 [5], which indexes a certain subset of triples
in 6 separate B-Trees or Hash Tables. By not treating all possible < s, p, o >
subset combination equally, the missed indexes must be created by joining other
indexes, which can be a time-consuming process.

A more recent approach is BitMat [2], which is a compact in-memory storage
for RDF graphs. BitMat stores RDF data as a 3D bit-cube, where each dimension
represents the subjects, the objects, and the predicates. When retrieving data
the 3D bit-cube can be sliced for example along the ”predicates-dimension” to
get a 2D matrix. In each cell of the matrix, the value 1 or 0 denotes the presence
respectively the absence of a subject and object bounded by the predicate of that
matrix. Since bitwise operations are cheap, the major advantage of the BitMat
index is its performance when executing low-selectivity queries. Nevertheless,
BitMat is constrained by the available memory and, as the authors have shown
in their evaluation, traditional approaches such as RDF-3X or MonetDB [8]
outperform BitMat on high-selectivity queries.

In real-time systems, Hybrid Tree-Hashes [11] have been proposed to provide
a fast in-memory access structure. To index data, the Hybrid Tree-Hash combines
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the use of a T-Tree and a Chained Bucket Hash. Lehman describes the T-Tree
[7] as a combination of the AVL-Tree and the B-Tree: similarly to B+Trees,
nodes contain multiple elements whilst the binary search strategy of the AVL-
Tree is employed for retrieval. To enhance the retrieval time the keys in the
nodes of the T-Tree are hashed and the offset to that node is stored as the
value. Data retrieval is accomplished by a lookup in the Chained Bucket Hash,
which retrieves the offset value for the given search key. Then, the node that
holds the data is accessed directly without traversing the T-Tree. Whilst T-
Trees perform well as an in-memory data structure, their usage as an on-disk
structure is problematic: First, the use of a binary tree results in deep trees,
which in turn results in many disk pages being accessed. Second, the binary tree
nature of the T-Tree makes it cache oblivious: range queries are highly expensive,
as one has to continuously “jump” up and down the tree for traversal, leading
to costly disk-seek operations. This is in contrast to the B+Tree, where the data
is stored in the leaves as a linked list, resulting in fewer disk page seeks and
cache awareness. To the best of our knowledge the Hybrid Tree-Hash is the most
similar structure to our proposed B+Hash Tree index. The main difference is
that we optimized our index structure for disk-based operations, whereas Hybrid
Tree-Hashes were optimized for in-memory retrieval.

3 B+Hash Tree
In this section we introduce our B+Hash Tree, a scalable, updatable and
lookup-optimized, on-disk index-structure combining the strengths of B+Trees
and Hashes. First, we describe the structure of the B+Hash Tree and elucidate
its operations. Second, we provide a time and space complexity analysis of the
relevant B+Hash Tree operations. Finally, we discuss some limitations of the
B+Hash Tree and suggest appropriate solutions.

Note that throughout this section we propose to index a RDF graph akin
to the RDF-3X approach. In other words, we propose a separate index for each
possible subset combination of the < s, p, o > triples. Hence, a s1p3o2 triple is
stored in level 1 with the key s1, in level 2 with the composite key s1p3, and
finally in level 3 using the composite key s1p3o2. This structure allows retrieval
of all triple patterns with a single lookup [15, 10]. In contrast to RDF-3X, we
propose to use B+Hash Trees as opposed to B+Trees. Like all other approaches
we also propose to dictionary encode all literals.

3.1 B+Hash Tree Description

The architecture of the B+Hash Tree comprises two core elements: A B+Tree
and the Hash Map. Here, we first explain how these elements are combined to
form a joint index and then elaborate on the main operations.

We use the standard B+Tree as the basis for our B+Hash Tree. Recall
that B+Trees are optimized for disk access. In particular, nodes of the trees
are adapted to the size of a disk page to facilitate caching and limiting disk
access. Additionally, all values are stored in the leaf nodes of the tree, which are
interlinked, allowing fast index-range queries. More information about B+Trees
can be found in [4].
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As Figure 1 illustrates, the B+Hash Tree combines the B+Tree with a
Hash Map. Specifically, to improve retrieval performance the leaf nodes of the
B+Tree are being hashed. Each bucket entry in the Hash Map contains a key
(or ID), an offset containing the address of the element designated by the key
on disk and the count of distinct elements sharing the same prefix. The prefix
being the anterior part of the key. As an example consider the s2p1o4 triple: in
a level 2 index the prefix should be s2p1; in a level 1 index s2.

A retrieval operation in a B+Hash Tree starts with a lookup of the offset
in the Hash Map using the key and then accesses the node holding the search key
directly without traversing the tree. The count aids both the query optimizer
(e.g., to gauge selectivity) and the execution of range scans (indicating the num-
ber of elements to be read). As exemplified in Figure 1, “Bucket 1” indicates
that there are two predicates for subject S1 (“count = 2”).

Note that not every leaf node needs to be hashed. Usually, only the leaf nodes
containing the smallest suffix for a given prefix have to be hashed – an approach
which we refer to as overall hashing. For example, on level 1 of the spo index
only the leaf nodes where the S key changes need to be hashed, as illustrated in
Figure 1.

Alternatively, the hash can be tuned to contain the most popular keys – an
approach which we refer to as cached hashing, as it employs a Hash Map akin to a
cache of the B+Hash Tree’s contents. Cached hashing can be tuned to reduce
space consumption compared to overall hashing. This space saving comes at a
cost of slowing down non-frequent accesses. Therefore, the empirical evaluation
in this paper focuses on overall hashing.
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Fig. 1. Architecture of the B+Hash Tree: spo index level 1

3.2 Basic Operations

The B+Hash Tree has three basic operations: get, insert, and delete. To enable
the same model interface as Hexastore [14], we split the get operation into two
distinct ones:
getIdx(a) Given a triple pattern a, look up the offset and the count of elements

in the Hash Map: getIdx(a) : offseta, counta
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getSet(offset, count) Given an offset and a count, retrieve counta elements
from the leaf node:

getSet(offseta, counta) : seta
Hence, a traditional lookup would be composed of getSet(getIdx(a)), a very
common index range-query, not to be mistaken with a SPARQL range-query.
Furthermore, in contrast to Hexastore, we have the following data changing
operations:
insert(a) Insert triple a into the B+Hash Tree:

insert(a) : void
delete(a) Delete triple a from the B+Hash Tree:

delete(a) : void
Note, that an insert, respectively a delete operation may cause a rebalancing

of the B+Tree. If this occurs then the keys in the newly created leaf node have
to be verified if an update of their page offset’s in the Hash Map is required – a
process whose cost depends on the on-disk implementation of the B+Tree.

Index range-scans are quite common operations in Semantic Web applica-
tions. Just consider retrieving a list of all predicates that connect subject s with
an object o. Such an operation results in the triple pattern < s, ?p, o >. In a
B+Tree, neighboring leaf nodes are connected to each other, enabling sequential
iteration through the pertinent leaf nodes. Hence, the logical way to retrieve the
answers for this triple pattern in a RDF-3X like index is to iterate through the
level 2 sop index starting from the “smallest” (or first indexed) ps. Hence, the
B+Tree is first being traversed from the root node down to the leaf node to find
the node for sops and then sequentially iterating through the leaf nodes until a
different object is encountered. When using a B+Hash Tree, in contrast, we
first lookup the key so in the Hash Map of the appropriate index followed by the
B+Tree traversal like in the traditional tree. Hence, we reduce the tree traversal
down from the root node to the first leaf node – a O(log(n)) operation – to
a single hash lookup – a constant time (O(c)) operation. From a certain data
size the B+Hash Tree will, hence, outperform the B+Tree. We elaborate this
fact by doing a simple complexity analysis of the most important operations in
Section 3.3.

3.3 Time and Space Complexity Considerations

In this section we provide a formalization for the time and space complexity of
the most important B+Hash Tree operations. Note that since we are talking
about a disk-based index structure, the hard drive access times, as the slowest
component, are likely to dominate in-memory operations. Hence, the time com-
plexities of B+Tree operations are measured by the number of page reads. Given
that the B+Tree only stores the actual data in the leaves (the inner nodes of
the trees are “only” used to organize the index) and that the data for a single
key typically fits into one page, the number of page reads for any simple lookup
is solely dependent on the tree height. Assuming that we denote the order (i.e.,
the # of index elements per inner node) of the B+Tree as d and the number of
entries as n, Comer [4] elucidates the height of a B+Tree as:

height = logd (n) (1)

101



Time complexity: Given that most queries do not solely rely on simple key
lookups, but actually retrieve multiple elements (e.g., find all objects for a sub-
ject) we also need to account for the number of leaf pages that need to be read.
Assuming that the values fit on s pages then the number of page reads for a
query can be defined as:

ReadsB+Tree = logd (n) + s (2)

Note that this formula assumes that the values are (i) stored on consecutive
pages and (ii) that the leaf-pages are interlinked, which the B+Tree guarantees.

A logarithmic complexity is, obviously, excellent and has served the IT com-
munity well in many applications such as relational databases. If the key-space,
however, grows enormously and the number of separate accesses for any given
query is large – both of which are especially true for SPARQL queries – then
even a logarithmic complexity may slow the execution down. The main rationale
behind the B+Hash Tree is to cut down the time complexity of these reads
using a Hash Map with its constant-time accesses. As a result, the complexity
of a simple lookup is 2 – one access to retrieve the bucket hash entry and an-
other one to access the leaf node. In addition, as before, when performing index
range-scans we need to read all the pages which contain the data, resulting in:

ReadsHashMap = 2 + s (3)

Consequently, using the Hash Map results in fewer disk page reads than the
B+Tree, if the height of the B+Tree exceeds two levels. With Equations 2 and 3
we can calculate the number of disk page accesses for a set retrieval (range query).
To estimate the total retrieval time we multiply the number of disk page reads
with the average disk page access time of a common hard disk. However, in reality
there are three different types of disk page reads: random read, sequential
read, and cache read. Random disk page reads are the slowest kind, as the
seek operation requires the HDA (Head Disk Assembly) to jump to another
track. Sequential reads (i.e., reading some data from the same track) consists
of waiting until the required disk page arrives under the HDA, which depends
mainly on the rotational speed of the hard disk. The fastest form of access is the
cache read, i.e. when a previously read page is found in the on-board disk cache
and no mechanical action is required to retrieve the data.

In contrast to B+Trees – on-disk optimized data-structures enabling efficient
(sequential) scans – Hash Map data lookup and retrieval is usually random, due
to the lack of locality. Again, this is dependent on the actual hash implementa-
tion.

Inserting and deleting in the B+Hash Tree adds an additional level of
complexity. Assuming that the Hash Map has a sufficient number of free buckets,
then insert/delete operations in a B+Hash Tree add – in theory – just one
more write operation over the B+Tree: the update of the Hash Map. However, if
a leaf node in the B+Tree has to be split or merged during an insert, respectively
delete operation, then the page offsets of the keys in the affected leaf nodes may
have to be updated in the Hash Map. Depending on the B+Tree implementation,
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usually, only the keys where the prefix changes in the newly created or merged
node, may need an update. Worst case, this is an O(n) operation where n denotes
the number of keys with different prefixes in the affected node.

If the Hash Map is full, however, or there are too many collisions, then the
HashMap needs to be reorganized (rehashed) resulting in a higher cost operation
[6, 9].

Space complexity: The space consumption of a B+Tree depends on the num-
ber of nodes. In practice the size of the node is chosen as such to match the
size of a disk page (usually 4, 8 or 16 KB), therefore the space occupancy of a
B+Tree is the number of inner nodes plus the number of data containing leaf
nodes times the size of a disk page:

SizeB+Tree = SizePage(
h�

level=0

Pagelevel + Pageleafs) (4)

where Pagelevel denotes the number of nodes respectively disk pages on level l
of the tree and Pageleafs denotes the number of data containing leaf-nodes.

The space consumption of a B+Hash Tree additionally adds the size of
the Hash Map, which can be expressed by the number of chunks holding hash
buckets. Chunks in turn, are typically sized to match a disk page. Consequently,
the size of the Hash Map is:

SizeHashMap = SizePage ·#Chunks (5)

where #Chunks denotes the number of chunks needed for the Hash Map.
Summarizing, we find that the B+Hash Tree provides a better complexity

for reads compared to B+Trees. This advantage comes at the cost of additional
space shown in Equation 5 and some time to maintain the Hash Map. We would
argue that the cost in most cases is relatively small for Semantic Web applica-
tions. Addressing the former, we believe that given the price of disk space the
additional space complexity for the Hash Map is negligible. Addressing the lat-
ter, it can be argued that, assuming a sufficiently large hash and a higher ratio of
reads than writes/updates, the frequency of hash map reorganization operations
can be limited to a few instances.

Database space complexity: Consequently, given the multi-ordering multi-
level index structure chosen, the total space consumption of a full database index
(all possible index orderings for triples) is:

Sizeindex =
ORDS�

ord

2�

lvl=0

(Sizeord,lvl(B + Tree) + Sizeord,lvl(HashMap)) (6)

where ord represents the current index type (i.e. SPO, OPS, etc. ∈ ORDS), while
lvl denotes the current index level.

3.4 Limitations and Solutions

The overall hashing technique enhances the retrieval time of the B+Tree at the
cost of space consumption as described previously. Considering empirical evi-
dence such as Kryder’s Law [13], space consumption entails a rapidly decreas-
ing economical cost versus the high cost of query answering in today’s DBMS
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(Database Management Systems), where real time or near real time response is
often required.

For high update rate scenarios, the extra overhead induced by the B+Hash

Tree structure can be nullified by considering a parallel architecture where
the traditional B+Tree part of the index would reside on one disk unit while the
Hash Map would be served/updated on another disk. Furthermore, if the update
cost of the Hash Tree is higher than that of the B+Tree at one time, one can
still serve queries by reverting to the O(log(N)) worst case performance of the
B+Tree with no time penalty versus traditional indexing approaches. Hence,
in such a setup the worst-cost complexity of a B+Hash Tree is equal to a
B+Tree (whenever the Hash Map is reorganized). In most cases (when the Hash
Map is available), however, the retrieval complexity would be linear (as shown
in equation 3).

If space is a hard constraint (e.g. in an embedded system) one can change the
policy of updating all keys (overall hashing) to cached hashing, where similar to
cache policies, only “popular” keys are stored. In general, if incremental updates
are rare, then using the overall hashing approach is recommended.

System cache impact: As argued above, the Hash Map significantly improves
access to leaf nodes in comparison to a ”pure” B+Tree. Nonetheless, in reality
any modern computing system employs a hierarchy of cache systems starting
with the disk cache at the lowest level.

When considering the disk cache, there are four possible situations: (i) none of
the structures are in cache – in this case the the B+Hash Tree will provide the
highest performance as described previously, (ii) the Hash Map of the B+Hash

Tree is in cache while the B+Tree is not – the B+Hash Tree will outperform
the former, (iii) the B+Tree is cached and will gain the highest performance,
and (iv) both structures are in cache, which is the most likely scenario.

Nowadays, the typical size of the disk cache varies between 8 and 64 MB.
Performing a simple space consumption estimation for a B+Tree holding 30
million triples, the total number of inner nodes can be approximated to 0.5
million assuming a standard page size of 4KB. This results in an approximately
2 GB inner node index of the B+Tree. Given usual cache eviction approaches
(such as Least Recently Used) it is likely that only the higher inner node levels
of such a B+Tree will be cached while the lower levels will mostly reside on disk.
In this case, the B+Tree structure will have to read h − k pages from disk to
reach the queried leaf page, where h is the height of the tree and k represents the
number of levels in the cache. When the dataset is large enough then h− k > 2
(where 2 is the lookup cost in the B+Hash Tree). In these cases, neglecting
the OS filing system cache, the B+Hash Tree will outperform the traditional
approach. Due to the growth of the Semantic Web we expect that this gap will
grow.

4 Evaluation

To evaluate the performance of the B+Hash Tree compared to a B+Tree
we created a prototype for both indices, which we used in conjunction with
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an in-memory simulation of the on-disk structures. The advantage of the disk
simulation is that it can monitor actual disk page accesses regardless of wall-
clock-time confounding factors such as disk-cache and other operating system
processes. The main disadvantage of this method is that all evaluations were
constrained by the available memory (72GB). Hence, the largest dataset we
could run contained 31 million triples.

Given that the B+Hash Tree is solely an index and not a full-fledged triple
store, we used the query optimizer of a triple store called TokyoTyGR2 to obtain
the index access traces for a query and then ran the traces on the B+Hash

Tree. Since we solely evaluate the index and not the overall triple store in this
paper, we limited our measurements to the retrieval time of the B+Hash Tree

(or B+Tree) index structure and not complete query answering such as parsing of
the SPARQL query or selectivity estimations – these measures would have been
the same for both index structures. Moreover, we do not monitor the additional
sequential page reads for range scans, because as discussed in Equations 2 and
3, the number of additional page-accesses due to the scan is identical (i.e., s) for
both considered approaches. Therefore we only track the differentiating parts of
the equations, which excludes the scans. To maximize disk access performance
we set the B+Tree page size to the size of the disk page size (4 KB).

Consequently, each result presented in Figures 2a–f shows the number of disk
page reads of a whole index access trace during a single query execution and not
just a single lookup of an element in the index. All test simulations use the
overall hashing technique.

For the traditional B+Tree approach, we discriminate between sequential
and random disk page reads in the diagrams. In the case of the B+Hash Tree,
we present only ”all reads”, as most reads from a Hash Map are random.

The space consumption was calculated by applying the formulas provided in
our complexity analysis of the B+Hash Tree.

In the remainder of the section we first present the two datasets—the Berlin
SPARQL Benchmark dataset and Yago—with their associated queries as well as
performance measures, and then discuss the results and their limitations.

4.1 The Berlin SPARQL Benchmark Dataset

The first dataset, the Berlin SPARQL Benchmark3 (BSBM), is a synthetic
dataset. It simulates an enterprise setting, where a set of products are offered
by different vendors and clients can review them [3]. The dataset can be gener-
ated using the available data generator and the BSBM provides twelve distinct
SPARQL queries.

Some of these SPARQL queries contained ”REGEX”, ”OFFSET”, ”UNION”,
”DESCRIBE”, and other expressions, which TokyoTyGR does not support.
Therefore, we selected a subset of 5 queries without these elements from which

2 The TokyoTyGR is an extension of the Hexastore [15] triple store. It can easily
accommodate inserts/deletes and has a state of the art query optimizer based on
selectivity estimation techniques.

3 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark
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we further removed “FILTER”-expressions and “OPTIONALS”, as they would
be handled in the exact same way by both the B+Hash Tree and the B+Tree.
The result are the 5 queries (denoted as Query 1 to 5), which we list in Appendix
A in ascending query complexity (in terms of variables and triple-patterns).

To compare the performance of the index structures with increasingly larger
dataset sizes, we created five different datasets ranging from 1 million to 31
million triples. The details of these datasets are shown in Table 1. Note that
the number of unique predicates in all datasets is the same while the number of
unique subjects and objects increases. The results of running the five queries on

Dataset # Triples S P O

BSBM

1,075,597 99,527 40 224,032
2,160,331 200,096 40 443,753
4,969,590 452,507 40 966,120

10,632,426 966,013 40 1,979,668
31,741,096 2,863,525 40 5,297,862

Yago 16,348,563 4,339,591 91 8,628,329

Table 1. Number of triples, unique subjects, predicates, and objects in the datasets

the different dataset sizes are shown in Figure 2a–e. For every query and dataset,
the B+Hash Tree is in each case faster (i.e., uses fewer disk reads) than the
traditional B+Tree approach. Furthermore, the difference between the number
of disk page reads for both structures increases with the size of the dataset.
Therefore, for the 31 million triple dataset, the B+Hash Tree performs twice
as fast as the B+Tree.

Figure 2g) shows the disk space consumption of both data structures. As
expected, the B+Hash Tree consumes more space. We believe, however, that
for most applications, trading-in 20% of the space against a halved access-time
is a worthy trade-off.

4.2 Yago Dataset

To complement the synthetic BSBM dataset with a real-world representative,
we employed Yago4 as a second dataset, which consists of facts extracted from
Wikipedia. Again, Table 1 shows the characteristics of the Yago dataset, which
contains about 16 million distinct triples and almost 13 million resources.

The Yago dataset does not come with a defined set of queries. Therefore, we
constructed three queries (numbered Queries 6–8; shown in Appendix A), which
simulate a realistic information request such as “What actors play in American
movies?” or “Which scientist is born in Switzerland?”. In addition, we ensured
that two queries (Q6 and Q7) have a low selectivity and, therefore, “touch” a
lot of the data, and one query (Q8) is highly selective and is, therefore, expected
to “touch” fewer disk pages.

To simplify the comparison, and as Yago has only one dataset size, we
graphed all results in a single plot (Figure 2f). Also, given the large number
distribution, the plot employs a logarithmic scale on the x-axis.
4 http://www.mpi-inf.mpg.de/yago-naga/yago/n3.zip
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a) Query 1 - BSBM b) Query 2 - BSBM

c) Query 3 - BSBM d) Query 4 - BSBM

e) Query 5 - BSBM

g) Disk Space Consumptionkey for diagram a) - f)

f) Yago (logarithmic scale)
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Fig. 2. Number of disk reads for the queries and disk space consumption

Again, the B+Hash Tree outperforms the traditional B+Tree by accessing
about half the pages. As expected, Query 8 reads fewer disk pages. It is note-
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worthy to observe that the performance improvement seems independent of the
query’s selectivity.

Figure 2g again graphs the space consumption. Note that the higher space
consumption of Yago compared to BSBM can be attributed to the number of
distinct values for URIs and literals: while the 31 million BSBM dataset has 8
million distinct values, Yago’s 16 million triples have 13 million distinct values.

4.3 Discussion and Limitations

Our results confirm the theoretical analysis that the performance improvement
of the B+Hash Tree compared with the normal B+Tree increases with the
size of the dataset. To further illustrate the result, Figure 3 graphs the speed-up
factor against the dataset size. Observably, the speed-up factor increases with
the size of the number of triples inserted and therefore confirms Equations 2
and 3 in practice. Given that Equation 2 grows logarithmically and Equation 3
is constant (ignoring the scan element) we would expect the difference to grow
logarithmically with dataset size.
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Fig. 3. Speed Up Factor vs. Dataset Size (error bars show results for different queries)

We also investigated, if the query complexity in terms of number of query
variables (which varies from 2 to 11) and triple patterns (which varies from 2 to
12) affects the speed performance. Visually, Figure 2 indicates no such difference.
Indeed, a pairwise, two-tailed t-test confirmed that the speed-up between queries
remains constant with a signifiance of far below 0.1%.

This B+Hash Tree prototype consumes a considerable amount of space
which can be traced to four main reasons. First, by storing all possible subset
combinations of a triple we gain speed in query answering, as highlighted in the
Hexastore project. Second, we set the size of a disk page to 4KB which entails
B+Trees containing more inner nodes, thus consuming more space. Third, we
use 20 byte instead of 8 byte keys typically used in DBMS, as we wanted a global
rather than a ”table-local” key space. And last, we have not yet considered index
compression, further reducing the consumed space while still maintaining access
speed, as shown by Neumann [10].

Building the RDF index in the B+Hash Tree from scratch can increase the
build time significantly compared to the B+Tree depending on the Hash Map
implementation. A more thorough investigation of this issue is still open.
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Limitations: We see three major limitations in our evaluation; not of our pro-
posed approach. First, all our empirical calculations are based on an in-memory
simulation of an on-disk B+Hash Tree structure. To mitigate this problem
we ensured that our hard-disk model was as accurate as possible and we pa-
rameterized it with present-day hard disk parameters. In addition, we measured
disk page accesses rather than wall-clock time, essentially focusing on the most
time-intensive element of the queries. Consequently, we are confident that our
findings generalize to the on-disk setting.

Second, our simulation disregards disk caches. Disk-caches in modern day
operating systems are intricate structures that any on-disk index would share
with other disk-accessing processes. This makes an adequate simulation a highly-
complex issue and may mislead evaluations in a real, on-disk setting. As discussed
in Section 3.4, however, we would expect a B+Hash Tree to outperform a
traditional B+Tree even in the presence of disk-caches.

Last, we used the TokyoTyGR RDF store to obtain index-access traces for
each of the experimental queries. It could be argued that the results of our
experiments are biased towards its query optimizer. Given that TokyoTyGR uses
a selectivity-based optimizer [12] like most other modern triple stores (such as
Hexastore or RDF-3X) the danger of a systematic bias seems limited—especially
since it seems unlikely that other query optimizations would lead to a vastly
different access pattern between a B+Hash Tree and a B+Tree. Nonetheless, a
completely different query optimization approach might require the re-evaluation
of our results.

Note that even in light of these limitations, the use of a disk-simulation had
several advantages: First, it allowed us to isolate the evaluation from confounding
effects (e.g., by the operating system). Second, it allowed us to meticulously
distinguish between different types of disk accesses—an undertaking that is non-
trivial in a real on-disk structure. Nonetheless, a future on-disk evaluation will
have to complement our current findings.

5 Conclusion and Future Work

In this paper we proposed the B+Hash Tree—a scalable, updatable, and
lookup-optimized on-disk index-structure especially suitable to the Semantic
Web with its large key-space. We showed that using a Hash Map to store the off-
sets of the leaf nodes successfully trades a slight increase in database size against
significantly reduced retrieval time. When used in the context of existing index
approaches such as Hexastore and RDF-3X, this will allow for effective retrieval
of all possible triple patterns.

To evaluate the B+Hash Tree empirically, we benchmarked the number of
page reads (and hence indirectly retrieval time) using two well-established Se-
mantic Web test datasets. As the results show, the B+Hash Tree consistently
requires approximately half the page reads of a B+Tree. Note that this difference
is expected to grow with the logarithm of the dataset size.

The current implementation of the B+Hash Tree was only used in the
simulated measurements. We, therefore, intend to implement a fully operational
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disk-based version of the index and evaluate it with several “truly” large datasets.
In this context we also want to investigate the interaction between the B+Hash

Tree and the disk-cache. Last but not least, we intend to consider the use of
index-compression to develop even more efficient index structures.

Research in index structures has come a long way, from the early days of
simple re-use of traditional, relational, row-based data base indices to the con-
struction of specialized structures such as Hexastore and RDF-3X. We believe
that the B+Hash Tree provides a new quality to this exploration. It does not
smartly reuse existing structures like its predecessors but investigates a Seman-
tic Web data specific algorithmic extension. As such it calls for the exploration
of index structures that exploit the structural and statistical idiosyncrasies of
Semantic Web data. The result of this exploration should be truly web-scalable
triple stores, which lie at the very foundation of the Semantic Web vision, and the
B+Hash Tree can provide a major building block towards that foundation.
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A Appendix

The Berlin SPARQL Benchmark (BSBM) Dataset queries:
Query1: SELECT ?product ?label WHERE { ?product <label> ?label;

<type> <Product>; <productFeature> <ProductFeature50>;

<productFeature> <ProductFeature580>; <productPropertyNumeric1> ?value1 . } LIMIT 10

Query2: SELECT ?offer ?price WHERE { ?offer <product> <Product62>; <vendor> ?vendor;

<publisher> ?vendor . ?vendor <country> <US> . ?offer <deliveryDays> ?deliveryDays;

<price> ?price; <validTo> ?date . } LIMIT 10

Query3: SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName WHERE {

?review <reviewFor> <Product197>; <title> ?title; <text> ?text; <reviewDate> ?reviewDate;

<reviewer> ?reviewer . ?reviewer <name> ?reviewerName . } LIMIT 20

Query4: SELECT ?product ?productLabel WHERE { ?product <label> ?productLabel .

<Product613> <productFeature> ?prodFeature . ?product <productFeature> ?prodFeature .

<Product613> <productPropertyNumeric1> ?origProperty1 .

?product <productPropertyNumeric1> ?simProperty1 .

<Product613> <productPropertyNumeric2> ?origProperty2 .

?product <productPropertyNumeric2> ?simProperty2 . } LIMIT 5

Query5: SELECT ?label ?comment ?producer ?productFeature ?propTextual1

?propTextual2 ?propTextual3 ?propNumeric1 ?propNumeric2 WHERE {

<Product2227> <label> ?label; <comment> ?comment; <producer> ?p .

?p <label> ?producer; <publisher> ?p; <productFeature> ?f . ?f <label> ?productFeature .

<Product2227> <productPropertyTextual1> ?propTextual1;

<productPropertyTextual2> ?propTextual2; <productPropertyTextual3> ?propTextual3;

<productPropertyNumeric1> ?propNumeric1; <productPropertyNumeric2> ?propNumeric2 . }

The YAGO Dataset queries:
Query6: SELECT ?actor ?p WHERE { ?actor <actedIn> ?p .

?p <type> <wikicategory_American_films> . }

Query7: SELECT ?scientist WHERE { ?scientist <type> <wordnet_scientist>; <bornIn> ?city .

?city <locatedIn> <Switzerland> . }

Query8: SELECT ?person WHERE { ?person <graduatedFrom> <University_of_Zurich>

?person <hasWonPrize> ?price . }
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Abstract. Ontology-based semantic query answering algorithms suffer
from high computational complexity and become impractical in most
cases that OWL is used as a framework for data access in the Seman-
tic Web. For this reason, most semantic query answering systems prefer
to lose some possible correct answers of user queries rather than being
irresponsible. Here, we present a method that follows an alternative di-
rection that we call progressive semantic query answering. The idea is
to start giving the most relevant correct answers to the user query as
soon as possible and continue by giving additional answers with decreas-
ing relevance until you find all the correct answers. We first present a
systematic analysis that formalises the notion of answer relevance and
that of query answering sequences that we call strides, providing a formal
framework for progressive semantic query answering. Then, we describe
a practical algorithm performing sound and complete progressive query
answering for the W3C’s OWL 2 QL Profile.

Keywords: scalable query answering, tractable reasoning, approximate
query answering, semantic queries over relational data, OWL 2 Profiles

1 Introduction

The use of ontologies in data access is based on semantic query answering, in
particular on answering user queries expressed in terms of a terminology (that
is connected to the data) and usually represented in the form of conjunctive
queries (CQs) [6, 1]. The main restriction of the applicability of the specific ap-
proach is that the problem of answering CQs in terms of ontologies represented in
description logics (the underlying framework of the W3C’s Web Ontology Lan-
guage -OWL) has been proved to be difficult, suffering from very high worst-case
complexity (higher than other standard reasoning problems) that is not relaxed
in practice [6]. This is the reason that methods and techniques targeting the
development of practical systems mainly follow two distinct directions. The first
suggests the reduction of the ontology language expressivity used for the rep-
resentation of CQs vocabulary, while the second sacrifices the completeness of
the CQ answering process, providing as much expressivity as possible. Meth-
ods of the first approach mainly focus on decoupling CQ answering into (a) the
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2 Progressive Semantic Query Answering

use of terminological knowledge provided by the ontology (the reasoning part of
query answering) and (b) the actual query execution (the data retrieval), thus
splitting the problem into two independent steps [1, 4, 10]. During the first step
(usually called query rewriting) the CQ is analysed with the aid of the ontology
and expanded into a (hopefully finite) set of conjunctive queries, using all the
constrains provided by the ontology. Then, the CQs of the above set are pro-
cessed with traditional query answering methods on databases or triple stores,
since terminological knowledge is no longer necessary. The main objective is to
reduce the expressivity of the ontology language until the point that the proce-
dure guarantees completeness. Late research in the area, introduced the DL-Lite
family of description logics, underpinning W3C’s OWL 2 QL Profile [4, 3], in
which the CQ answering problem is AC0 w.r.t. data. Despite the obvious advan-
tage of using the mature technology (more than 40 years research) of relational
databases, there are also other major technological advantages of the specific
approach, most of them connected with the use of first-order resolution-based
reasoning algorithms [7][5, Ch.2]. The main restriction is that in the presence
of large terminologies, the algorithm becomes rather impractical, since the ex-
ponential behaviour (caused by the exponential query complexity) affects the
efficiency of the system.

The attempts to provide scalable semantic query answering over ontologies
expressed in larger fragments of OWL introduced the notion of approxima-
tion. Approximate reasoning usually implies unsoundness and/or incomplete-
ness, however in the case of semantic query answering most systems are sound.
Typical examples of incomplete query answering systems are the well-known
triple stores (Sesame, OWLIM, Virtuoso, AllegroGraph, Mulgara etc). The two
main characteristics distinguishing incomplete semantic CQ answering systems
is how efficient and how incomplete they are. The efficiency of semantic query
answering is usually tested with the aid of real data of a specific application or
using standard benchmarks [8]. Lately, a systematic approach of the study of
incompleteness of semantic query answering systems has been also presented [9].
A major issue here is that the user should be aware of the type of lost correct
answers, i.e. there should be a general deterministic criterion expressing a type
of relevance, indicating how crucial is the loss of each correct answer.

Within the above framework, herein we present an alternative direction in
scalably solving the problem of semantic query answering ensuring a safe ap-
proximation process that hopefully converges to a complete solution. The idea is
to provide the user with correct answers as soon as they are derived and continue
until all the correct answers are found, ensuring that the relevant correct answers
will be first given. For example, in the case of the query rewriting approach this
means that instead of clearly splitting the steps of query rewriting and query
processing, whenever a new rewriting is found it can be evaluated against the
database and the results can be presented to the user. In order for this idea
to be successfully applied, several intuitive requirements should be fulfilled: the
first correct answers should be given very fast; an important amount of correct
answers should be found in a first small percentage of execution time; complete-
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ness should be ideally reached (or at least approximated); correct answers should
be given following a degree of importance, according to a semantic preference
criterion; the results should not be widely replicated.

In the present paper, we provide a systematic approach formalising the above
idea. We introduce progressive semantic query answering based on the notion
of CQ answering strides that are flows of correct answers with specific proper-
ties that formalise the intuitive meaning of the above criteria. We then provide a
practical progressive semantic CQ answering algorithm that has some nice prop-
erties and is complete in OWL 2 QL and present the results of its implementa-
tion and evaluation (we call the implemented system ProgRes). The algorithm is
based on a query rewriting resolution-based procedure that computes a sequence
of rewritings, the elements of which have a decreasing importance according to a
query similarity criterion (measuring the similarity of the rewriting with the user
CQ). The order is proved to be ensured under a specific resolution rule applica-
tion strategy that ProgRes follows. It is interesting that although the results are
ordered (ranked) and given during the execution, the efficiency of the algorithm
is not worse than other similar ones (like the one implemented in Requiem [7]).

2 Preliminaries

The most relevant with the problem of query answering OWL QL Profile is
based on DL-LiteR [1, 4]. A DL-LiteR ontology is a tuple 〈T ,A〉, where T is the
terminology (usually called TBox) representing the entities of the domain and A
is the assertional knowledge (usually called ABox) describing the objects of the
world in terms of the above entities. Formally, T is a set of terminological axioms
of the form C1 # C2 or R1 # R2, where C1, C2 are concept descriptions and R1,
R2 are role descriptions, employing atomic concepts, atomic roles and individuals
that are elements of the denumerable, disjoint sets C,R, I, respectively. The
ABox A is a finite set of assertions of the form A(a) or R(a, b), where a, b ∈
I, A ∈ C and R ∈ R. A DL-LiteR-concept can be either an atomic one or
∃R.&. Negations of DL-LiteR-concepts can be used only in the right part of
subsumption axioms. A DL-LiteR-role is either an atomic role R ∈ R or its
inverse R−. A conjunctive query (CQ) has the form q : Q(x) ←

∧n
i Ci(x;y),

where Q(x) is the answering predicate (the head of the CQ), employing a finite
set of variables, called distinguished, and the conjuncts Ci(x;y) (forming the
body of the CQ) are predicates possibly employing non-distinguished variables.
We say that a CQ q is posed over an ontology O iff all the conjuncts of its body
are concept or role names occurring in the ontology. A tuple of constants a is
a certain answer of a conjunctive query Q posed over the ontology O = 〈T ,A〉
iff O ∪ q |= Q(a), considering q as a universally quantified implication under
the usual FOL semantics. The set containing all the answers of the query q over
the ontology O is denoted with cert(q,O). A union of CQs q′ is a rewriting of
q over a TBox T iff cert(q′, 〈∅,A〉) = cert(q,O), with O = 〈T ,A〉 and A any
ABox. We will denote the set of all CQs in the rewriting of q over the TBox
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T by rewr(q, T ). With a little abuse of notation we write rewr(q,O), meaning
rewr(q, T ) (T is the TBox of O).

3 Semantic query answering strides

Semantic CQ answering systems are based on sophisticated algorithms that try
to find as many certain answers of CQs as possible. Formally, any procedure
A(q,O) that computes a set of tuples a for a CQ q posed over an ontology O is
a CQ answering algorithm (CQA algorithm). A(q,O) is sound iff res(A(q,O)) ⊆
cert(q,O) and complete iff cert(q,O) ⊆ res(A(q,O)) (res(+) is the result of any al-
gorithm +). Any procedure R(q, T ) computing a set of rewritings of q over a TBox
T is a CQ rewriting algorithm. R(q, T ) can be the basis of a CQ answering algo-
rithm A(q,O) with the aid of a procedure E(q,A) that evaluates the query and re-
trieves the data from the database. In this case, we write A(q,O) = [R | E] (q,O).
Obviously, it is res([R | E] (q,O)) = res (E(res (R(q, T )),A)). With a little abuse of
notation, we freely write A(U,O), R(U, T ) and E(U,A) for procedures computing
answers to sets U of CQs. A natural question arising in cases where scalability is
a major requirement is how to split the execution of a CQ query answering algo-
rithm into parts enabling a progressive extraction of certain answers. Also, how
to control the progress of the algorithm ensuring that certain answers extracted
until any specific time have desirable characteristics. Let us now proceed to the
definitions that form the framework of progressive CQ answering, covering the
above intuition.

Definition 1. Progressive CQ answering (PCQA)
Any sequence P(q,O; i) = {Aj}i, i ∈ N, i > 1 where Aj are CQA algorithms for
a query q posed over an ontology O = 〈T ,A〉, is a progressive CQ answering
algorithm. The elements of P are its componets. If P is finite, we write P(q,O) =
[A1;A2; · · · ;An] (q,O).

It is important to notice that the components of PCQA algorithms can freely
change inputs and outputs in a forward manner, leaving the sequence P(i) to
possibly have a recursive character. The restriction is that any component should
be considered as a CQA algorithm meaning that, at any time point, we can ask
for the result of any subset of the components being able to compute it (possibly
using the output of the previous components). We say that P(q,O) is sound iff
res(P) ⊆ cert(q,O) and complete iff cert(q,O) ⊆ res(P). Since our intention is to
provide users with correct answers during the execution of P, we need refer to
the result set of a subset of components of P stratifying the desired answer flow.

Definition 2. PCQA Strides
Let P(q,O) be a PCQA algorithm. A stride s(P; i : j), i, j ∈ N, i ≤ j of P (if it
is infinite j can be equal to ∞) is the result of the execution of its components
Ai to Aj, i.e. s(P; i : j) =

⋃
[i,j] res(Ak).

Let Σ(P) denote the set of all strides of P. Obviously, res(A) ∈ Σ(P), for any
component A of P and also res(P) ∈ Σ(P). We will refer to the former as a single
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stride and to the latter as the total stride. A stratification of P is a sequence
s1, s2, ..., sk of strides of P. Now, we turn our attention to the study of PCQA
algorithms the strides of which provide answers with decreasing relevance to the
user query posed. The first step is to rank the elements of the strides according
to the query posed by the user. Let σ(O;a, q) be a relevance measure expressing
the importance of the tuple a ∈ s, with s ∈ Σ(P), i.e. the degree in which the
specific tuple ideally (and with the less risk) fits to the user query.

The nature of the relevance measure may differ from one application to an-
other. In the present paper we consider the case of a measure representing the
possibility of correctness of a specific answer. Similar measures play an impor-
tant role in information retrieval systems, in the process of ranking the results of
query answering (see for example [12, 14–16]). Intuitively, here we consider that
some axioms of the TBox are not always valid for the specific data, i.e. some
exceptions may exist in the large data set making the specific axiom typically
inconsistent. The effect is that some answers derived from the query answering
process are not correct. This could be a result of untrusted knowledge or by the
nature of the specific axiom that is only usually valid. For example, although
we know that all professors are teaching some courses, there could be the case
that some professors (for some reasons) are not teaching. The problem could be
solved if we had some additional information about the correctness of the TBox
axioms (the provenance of the specific axiom implying a degree of trust etc). If
we do not have any additional information, the only rule that we could follow
is that the answer is more safe if we use less knowledge to derive it, i.e. the less
reasoning the most relevance. We will further clarify this later that we focus to
query rewriting PCQAs.

Definition 3. Stride Ordering
Let P(q,O) be a PCQA algorithm and Σ(P) the set of its strides after the execu-
tion of the query q over the ontology O. Let also σ(a, q) be a relevance measure
of the elements of the total stride and the CQs. We say that a stride s1(P; i : j)
σ-precedes a stride s2(P; i′ : j′) for the query q and we write s1 .q

σ s2 iff for all
a1 ∈ s1, a2 ∈ s2 we have σ(a1, q) ≥ σ(a2, q). If σ(a1, q) > σ(a2, q), we say that
s1 strictly σ-precedes s2 and we write s1 ≺q

σ s2. If neither s1 .q
σ s2 nor s2 .q

σ s1,
we have s1 ⊀q

σ s2 (they are σ-irrelevant for q).

It is not difficult to see that Σ(P) forms a lattice under any ≺q
σ operator, where

∅ is its infimum and cert(q,O) is its supremum (supposing that P is sound and
complete). Now that we have an ordering of strides, we are ready to proceed
to the definition of progressive algorithms the strides of which are ordered. Al-
gorithms of this type ensure that the answer blocks are ordered according to a
specific relevance measure. Therefore, they can be considered as approximation
algorithms with deterministically controllable behaviour.

Definition 4. Sorted PCQA Algorithms
Let P(q,O) be a PCQA algorithm, ε = s1, s2, ..., sk a stratification of P and ≺q

σ

an ordering relation over Σ(P). We say that P is σ-sorted under ε iff for any
successive strides si, sj of ε it is si .q

σ sj. It is strictly σ-sorted iff si ≺q
σ sj

otherwise it is σ-unsorted for q.
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Example 1. Consider the simple DL-LiteR ontology O = 〈T ,A〉 , with

T = {PhDStudent # Researcher,Professor # ResDirector,

SeniorResearcher # ResCoordinator,ResCoordinator # ∃advise.Researcher,
ResDirector # ∃advise.SeniorResearcher, supervise # advise}

A = {Mary : Researcher, Bill : ResCoordinator, John : ResDirector
Alan : Researcher, George : PhDSudent, Peter : SeniorResearcher,
Sofia : Professor, Ema : Professor, (Bill,Mary) : advise, (John,Bill) : advise,
(Peter,George) : supervise, (Alan,Peter) : advise}

A represents a materialisation of a relational database or a triple store. Let
q(x) ← advise(x, y) ∧ advise(y, z). It is not difficult to see that cert(q,O) =
{Alan, John, Sofia,Ema}. John is a direct result from the ABox, since it is explic-
itly given that he advises Bill, who advisesMary. It is a bit more difficult to derive
Alan since some of the knowledge should be employed. Specifically, we should
consider that Alan advises Peter that supervises George (who is a PhDStudent and
thus a Researcher), which means that Peter advises George. More complex de-
ductions lead to the conclusion that Sofia and Ema are also answers of the query.
PCQA algorithms ensure that the results are given in a specific order that the
user knows before the query answering process, according to a specific relevance
criterion. For example, we could develop P = A1;A2;A3;A4;A5 with a stratifi-
cation s1; s2; s3, where s1(P; 1 : 1)) = res(A1) = {John}, s2(P; 2 : 3) = res(A3) ∪
res(A4) = {John,Alan} and s3(P; 4 : 5) = res(A5 ∪ A5) = {John, Sofia,Ema}.
Here, we consider that data is more strong than the knowledge, meaning that
there could be possible exceptions in some restrictions expressed as TBox ax-
ioms. Thus, an obvious solution is that John should be the first answer (explicitly
given), Alan employs a bit more risk (some reasoning is needed), while Sofia and
Ema are the most risky answers (for example it could be the case that Sofia does
not advise anyone for some reasons). It is not difficult to see that P is sorted
according to the above intuitive measure.

4 Practical progressive query answering

The problem of progressive query answering is more difficult than the non-
progressive one, since the extracted results should be ranked according to a
specific criterion and the ranking should be ensured during the query answering
process (without knowledge of all the results). Obviously, the difficulty strongly
depends on the expressivity of the ontology language and the specific relevance
measure. Here, we focus on query rewriting PCQA algorithms for DL-LiteR, i.e.
on cases where the components of P are based on query rewriting algorithms.
We follow a resolution-based FO rewriting strategy (more details can be found
in [7]). Intuitively, algorithms of this category are based on the translation of
the terminology into a set of FOL axioms and the repeated application of a set
of resolution rules employing the query and the FOL axioms until no rule can
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be applied. It is ensured that when the algorithm stops it has produced all the
rewritings of the user query. The idea is to stratify the application of the reso-
lution rules in order to ensure that the rewritings will be extracted according to
a specific order, following a similarity criterion in comparison to the user query.
Thus, we can evaluate against the database the fresh queries (rewritings) as
they are derived and provide the user with a set of fresh answers. The proposed
algorithm remains sound and complete and, although it solves a more difficult
problem, in several cases it is more efficient than the respective non-progressive
algorithm proposed in [7].

We will use a graph representation of the CQs that is more convenient for
the definition of similarity measures. Let q : Q(x) ←

∧n
i Ci(x;y) posed over

an ontology O. Since the conjuncts of q are entities of the terminology, they
can only employ one (if they are concepts) or two (if they are roles) variables
(distinguished or not). A non-distinguished variable that appears only once in
the query body is called unbound, otherwise it is bound. We represent a CQ
as an undirected graph Gq(Vq, Eq,LVq ,LEq ), where Vq is the set of nodes repre-
senting the variables of the query, Eq is the set of edges, LVq is the set of node
labels (representing the set of concept conjuncts employing each variable) and
LEq = 〈L+

Eq
,L−

Eq
〉 is the tuple of sets of edge labels (representing the set of role

conjuncts employing each variable pair in L+
Eq

and its inverse in L−
Eq
). The nodes

corresponding to unbound variables are called blank nodes. Moreover, let V(b)
q

(V(u)
q ) denote the set of bound (unbound) variable nodes and E(b)

q (E(u)
q ) denote

the set of edges employing two bound (at least one unbound) variable node(s).

Obviously, LVq (x) = ∅ and |L+
Eq
(x, y)∪L−

Eq
(x, y)| = 1, for each x ∈ V(u)

q , y ∈ Vq.
We can easily extend the above notations to represent general terms instead of
simple variables. The only issue that needs more attention is that in this case a
node is blank only if it represents a term employing functions and variables that
do not appear in any other term. For simplicity, we can delete the blank nodes
of the graph and add the role name that appears in L+

Eq
(x, y) (or its inverse if

it appears in L−
Eq
(x, y)) in the label of the node x that is connected with the

specific blank node. In this case, the node label sets can also include role names
(or inverse role names). We will make use of this simplifying convention in the
sequel, in the description of our algorithm. There are several graph similarity
measures (relations between graphs that are reflexive and symmetric) proposed
in the literature, especially in the framework of ontology matching [11, 13]. Here,
we will introduce a new measure that captures the intuitive meaning of the query
similarity that is useful in query rewriting PCQA algorithms.

Definition 5. Query Similarity
Let q1 and q2 be two non-empty conjunctive queries and Gq1(Vq1 , Eq1 ,LVq1

,LEq1
),

Gq2(Vq2 , Eq2 ,LVq2
,LEq2

) their graph representations. Their similarity can be de-
fined as follows (up to variable renaming):

σ(q1, q2) = 1−
λv+λε

vmin+εmin
+ (δv + δε)

|V(b)
q1 |+ |V(b)

q2 |+ |E(b)
q1 |+ |E(b)

q2 |+ 1
(1)
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where vmin = min (|V(b)
q1 |, |V(b)

q2 |), εmin = min (|E(b)
q1 |, |E(b)

q2 |), δv = |V(b)
q1 3V(b)

q2 |,
δε = |E(b)

q1 3E(b)
q2 | (3 computes the non-common elements of the two sets), λv =

|
{
x : x ∈ V(b)

q1 ∧ x ∈ V(b)
q2 ∧

(
LVq1

(x) 4= LVq2
(x) ∨ L(u)

q1 (x, y) 4= L(u)
q2 (x, y)

)}
| and

λε = |{(x, y) : (x, y) ∈ E(b)
q1 ∧ (x, y) ∈ E(b)

q2 ∧ LEq1
(x, y) 4= LEq2

(x, y)}|.

The first term of the numerator of the similarity measure (Eq. 1) captures
the node and edge labeling differences, the second term the structure difference,
while the denominator normalises the values between 0 and 1. The main intuition
behind Eq. 1 is that the labeling differences should be counted as a secondary
dissimilarity cause, while the primer one should be the difference in structure.
Thus, the maximum value of the first term of the fraction should not exceed the
value of the second term (cannot exceed the value 1, which is the lowest structural
difference). The computation of differences ignores all the unbound variables
(the blank nodes of the graph), that are only involved in the computation of
λv (summarising the node label differences). The intuition behind this is that
blank nodes are introduced only by unqualified existentials (∃R.&) and thus
the specific unbound variable could be rejected without any problem if we just
remember the role of the existential. It is important to notice that in the presence
of role inverse, the bound variable could be either in the subject or in the filler

part of the role; this is the reason why we consider undirected graphs and L(u)
q

(considering both L(u)+
q and L(u)−

q ) is involved in the computation of λv. Finally,
we should notice that with a little abuse of notation, we introduced the similarity
between two queries and not between queries and answers (as imposed in the
previous section), implicitly meaning that the similarity is between the first
query and the answers of the second one. In this way, we significantly simplified
the notation in the case of query rewriting based PCQA algorithms.

Table 1. Translation of DL-LiteR axioms into clauses of Ξ(O). (Note: A different
function f must be used for each axiom involving an existential quantifier.)

Axiom Clause Type Axiom Clause
A ! B B(x) ← A(x) (1)

P ! R
S(x, y) ← P (x, y) (2)

P ! R−
S(x, y) ← P (y, x)

R ! P R− ! P

∃P ! A A(x) ← P (x, y) (3) ∃P− ! A A(x) ← P (y, x)

A ! ∃P P (x, f(x)) ← A(x) (4) A ! ∃P− P (f(x), x) ← A(x)

A ! ∃P.B P (x, f(x)) ← A(x) (4)
A ! ∃P−.B

P (f(x), x) ← A(x)
B(f(x)) ← A(x) (5) B(f(x)) ← A(x)

We are now ready to introduce a PCQA algorithm, which we call ProgResAns
and is sorted according to σ(q1, q2). In order to compute the query rewritings of
a user query q, the algorithm employs a set of resolution rules. The main premise
is always a query (q or a subsequently computed query rewriting) and the side
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premise a clause of Ξ(O). Ξ(O) is obtained from ontology O as described in
Table 1 [7]. The idea of the algorithm is the following: start from the user query;
apply the resolution rule using side premises that preserve the structure of the
query (we call this step structure preserving resolution or sp-resolution); apply
the resolution rule using side premises that minimally change the structure of
the query (we call this step structure reducing resolution or sr-resolution); apply
anew sp-resolution to the query rewritings produced by sr-resolution, and so
on; at each step evaluate the queries against the database and provide the user
with the results. sp- and sr-resolution are performed by procedures sp-Resolve
and sr-Resolve, respectively. sp-Resolve takes as input a query q and an element
s of Gq (i.e. either a node or an edge), and computes all possible rewritings of
q, by iteratively applying the resolution rule using as side premises the clauses
of Ξ(O) that are of type (1)-(4) (see Table 1). Initially, the main premise is
q and the resolution rule is applied for all atoms in q that correspond to s.
The same process is iteratively applied to all the resulting rewritings, until no
more rewritings can be obtained. The clauses of type (4) are used only if the
skolemized term f(x) unifies with an unbound variable of the main premise. sp-
Resolve preserves the query structure, since resolution with clauses of type (1)
or (2) affects only the sets LV and LE , respectively. Clauses of type (3) and (4)
introduce and eliminate blank nodes.

sr-Resolve takes as input a query q and an element s of Gq (i.e. either a node
or an edge) and computes all possible rewritings of q, by iteratively applying the
resolution rule using as side premises the clauses of Ξ(O) that are of type (4) and
(5). Clauses of type (4) are used only if f(x) unifies with a bound variable of the
query. In terms of graphs, sr-Resolve deletes a node together with the edges that
connect it to the rest of the graph. ProgResAns applies sr-Resolve only on selected
atoms (the atoms that correspond to the elements s of Gq mentioned above) of
q, called the sink node atoms of q. Sink nodes s correspond to non distinguished
terms and are determined by the following condition concerning their labels:
L±
E (s, y) = ∅ and L∓

E (s, y) ≥ 1. The selective application of the resolution rule
only to the sink node atoms is proved to suffice for the production of eventually
all the possible query rewritings which can be evaluated against the database
(i.e. query rewritings that do not contain functional terms).

We now provide the full definition of ProgResAns. Its components are the
query rewriting procedures (sp-Rewrite and sr-Rewrite) and the procedure Eval,
which evaluates a set of rewritings against the database:

ProgResAns = Eval ; {{[sp-Rewrite | Eval ]}nj

i=1 ; [sr-Rewrite | Eval ]}mj=1

sp-Rewrite and sr-Rewrite are defined by algorithms 1 and 2. sp-Rewrite em-
ploys sp-Resolve to perform exhaustive sp-resolution for all queries in the input
set Qsp

in. Therefore, the queries in res(sp-Resolve) have the same structure (up to
blank nodes) with the queries in Qsp

in, but each one of them is the result of the ex-
haustive application of sp-resolution on a single node or edge. The node or edge
whose label is modified is annotated, so that by recursively applying sp-Resolve
we can compute all possible rewritings that have the same number of different
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10 Progressive Semantic Query Answering

labels. In particular, the queries computed by the k-th recursive application of
sp-Resolve differ in k labels w.r.t the queries Qsp

in of the first application. Finally,
sr-Rewrite uses sr-Resolve to compute the rewritings that have a single structural
change w.r.t. Qsr

in.

Data: Set of annotated conjunctive queries Qsp
in, ontology O

Result: Set of annotated query rewritings
Q := {};
foreach query q in Qsp

in do
foreach s in Vq ∪ Eq that is not annotated do

Q := Q
⋃

sp-Resolve(q, s, Ξ(O));
end

end
return Q;

Algorithm 1: Procedure sp-Rewrite

Data: Set of conjunctive queries Qsr
in, ontology O

Result: Set of query rewritings
Qsr

in := filter(Qsr
in);

Q := {};
foreach query q in Qsr

in do
X := sink-nodes(q);
foreach x in X do

if L(x) = {A1, . . . , An} (L(x) is a set of concepts) then
forall the concepts C such that ∀i = 1 . . . nΞ (O) |= Ai ← C do

Q := Q
⋃

sr-Resolve(q, C(x), Ξ(O));
end

else if R ∈ L±(x, y) then
Q := Q

⋃
sr-Resolve(q, R(x, y), Ξ(O));

end

end

end
return Q;

Algorithm 2: Procedure sr-Rewrite

ProgResAns, after evaluating first the user query, enters an (outer) loop, part
of which is the (inner) loop [sp-Rewrite | Eval]. The outer loop is executed (let’s
say m times) until sr-Rewrite can make no further structural change to the query.
The j-th time the outer loop is executed, the inner loop is executed nj times,
where nj is the number of nodes and edges of the queries in Qsp

inj
(all have

the structure and m ≤ n1) and Qsp
inj

is the input of the first application of

sp-Rewrite at the j-th iteration of the outer loop. Qsp
inj

contains only the user
query when j = 1, otherwise it is equal to res(sp-Rewrite) obtained at iteration
j − 1. The input Qsr

inj
of sr-Rewrite contains the rewritings that are computed

by the execution of sp-Rewrite. Before entering its main body, sr-Rewrite calls
procedure filter on Qsr

inj
, which keeps only the rewritings in which sp-Rewrite
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has changed only sink node atoms, so that, as mentioned before, sr-resolution
is applied only on these atoms. As soon as sp-Rewrite or sr-Rewrite return, Eval
computes cert(res(sp-Rewrite),O) and cert(res(sr-Rewrite),O), respectively. The
following theorem can be proved:

Theorem 1. ProgResAns terminates and it is sound, complete and σ-sorted.

Proof. The proof is omitted due to restricted space.

Example 2. (continued) Table 2 summarises the results of applying ProgResAns
to the input of Example 1 (all the single strides are shown).

Table 2. Results of ProgRes in the data of Example 1

Stride Query rewritings Similarity Answers

1 Q(x) ← advise(x, y) ∧ advise(y, z) 1.000 John

2

Q(x) ← supervise(x, y) ∧ advise(y, z) 0.952
Q(x) ← advise(x, y) ∧ ResCoordinator(y) 0.952 John
Q(x) ← advise(x, y) ∧ ResDirector(y) 0.952
Q(x) ← advise(x, y) ∧ supervise(y, z) 0.952 Alan
Q(x) ← advise(x, y) ∧ SeniorResearcher(y) 0.952 Alan
Q(x) ← advise(x, y) ∧ Professor(y) 0.952

3

Q(x) ← supervise(x, y) ∧ ResCoordinator(y) 0.905
Q(x) ← supervise(x, y) ∧ ResDirector(y) 0.905
Q(x) ← supervise(x, y) ∧ supervise(y, z) 0.905
Q(x) ← supervise(x, y) ∧ SeniorResearcher(y) 0.905
Q(x) ← supervise(x, y) ∧ Professor(y) 0.905

4 Q(x) ← ResDirector(x) 0.400 John
5 Q(x) ← Professor(x) 0.400 Sofia, Emma

5 System evaluation

We now present an empirical evaluation of ProgRes, which implements the
ProgResAns algorithm, assuming that ABoxes are stored in a relational data-
base. Our goal is to evaluate the performance of ProgRes and investigate whether
the ranked computation of the answers introduces a significant time overhead.
Given the progressive nature of ProgRes, meaning that each rewriting should
be evaluated against the database upon its computation, our implementation
follows a producer/consumer approach: A thread computes the rewritings and
adds them to an execution queue, while another thread implementing the Eval
procedure, retrieves the rewritings from the queue, translates them into SQL,
dispatches them to the database, and collects the answers. We compare ProgRes
with Requiem (implementation of the algorithm in [7]), which is the most similar
non-progressive DL-LiteR query answering system. We should point out, how-
ever, that a fair comparison is not possible since we are comparing a ranking,
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12 Progressive Semantic Query Answering

progressive algorithm with a non-ranking, non-progressive one. For an as fair as
possible comparison, we reimplemented the greedy unfolding strategy of Requiem
within our programming framework. This was mainly done for the comparison
of the time performance to be done on equal terms and did not alter in any way
the Requiem algorithm (although as we shall see in the sequel in one case our
implementation performed significantly better than the original one). Neverthe-
less, we have to notice that the results should be interpreted only as indicative
of the relative performance of the two systems.

An important issue our system had to face is the fact that, due to the real-
time orientation of ProgRes, many redundant rewritings (i.e. rewritings that
are structurally subsumed by subsequent, not yet computed rewritings) may be
obtained. If all of them are dispatched to the database, performance may be
significantly compromised. For this reason we slightly delay the addition of the
new rewritings to the execution queue, by computing first all the rewritings of
a stride, check for redundancies and add only the non-redundant ones to the
queue. The structure of the Requiem algorithm does not allow for a directly
comparable optimization strategy. In fact, the last step of Requiem is precisely a
final query redundancy check step, in which any redundant queries are discarded
all together. Therefore, in our evaluation of Requiem, following the original im-
plementation, all the queries are added to the queue after the entire algorithm
has finished and the final redundancy check has been performed.

We present the results for the A and S ontologies [7], as well as for P5S,
a modified version of P5, in which we have included some subconcepts for the
PathX concepts of P5. Briefly, ontology A is an ontology that models information
about abilities, disabilities and related devices developed for the South African
National Accessibility Portal. Ontology S is an ontology that models information
about European Union financial institutions. Ontology P5 is a synthetic ontology
developed by the authors of [7] that models information about graphs (nodes
and vertices) and contains classes that represent paths of length 1-5.

We evaluate ontology A with queries AQ4 and AQ5 (of size 3 and 5, respec-
tively), ontology S with query SQ5 (of size 7) and P5S with queries PQ4 and
PQ5 (of size 4 and 5, respectively). Due to restricted space we do not present the
results of all ontologies and queries in [7], we choose the particular combinations
as most representative of several diverse cases. We populated the ABoxes accord-
ing to [9]. The results are shown in Fig. 1. In each row, the lhs graphs present the
total number of retrieved answers vs time and the rhs graphs the evolution of
similarity as new answers are retrieved. Execution time is total time, including
both query rewriting computation and answer retrieval time. The small vertical
bars at the two horizontal dotted lines on the top of the lhs graphs indicate
the time points at which one or more new rewritings become available for ex-
ecution. The upper line corresponds to ProgRes, the lower to Requiem. Table 3
presents the number of rewritings and inferences. Within parentheses are the no.
of inferences during sp-resolution (which corresponds roughly to the unfolding
of Requiem) and the no. of inferences during sr-resolution (which corresponds
roughly to the saturation step of Requiem). Note that some of the inferences
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Fig. 1. Execution time and similarity. From top to bottom the graphs in each row
correspond to the ontology-query pairs A-AQ4, A-AQ5, S-SQ5, P5S-PQ4 and P5S-
PQ5. The thick and thin lines correspond to ProgRes and Requiem, respectively
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14 Progressive Semantic Query Answering

that ProgRes performs during sp-resolution, in Requiem are performed during
saturation. The last part of Table 3 presents the time required for the com-
putation of the rewritings (not including the query execution) for ProgRes and
Requiem. For Requiem two times are given: the first refers to our implementa-
tion of Requiem (which we used in all other parts of the evaluation), and the
second one, within parenthesis, to the original implementation (obtained from
http://www.comlab.ox.ac.uk/projects/requiem). We note that in one case,
in particular for ontology S, our implementation performs significantly better.
This is due to the fact that it handles more effectively and removes at an earlier
stage atoms that happen to be redundant within a single rewriting; as we shall
also mention in the sequel, SQ5 happens to be a query that produces a lot of
rewritings that contain several redundant atoms.

Table 3. Number of rewritings, number of inferences and query rewriting time for
ProgRes and Requiem.

ontology/ no. of rewritings no. of inferences rewriting time (ms)
query ProgRes Requiem ProgRes Requiem ProgRes Requiem
A AQ4 320 224 532 (507/25) 540 (507/25) 188 78 (156)
A AQ5 624 624 1326 (1324/2) 1017 (811/206) 750 484 (625)
S SQ5 128 8 892 (891/1) 1457 (1433/24) 156 5250 (21062)
P5 PQ5 16 16 25 (5/20) 11350 (0/11350) 31 657 (687)
P5S PQ5 76 76 95 (75/20) 11424 (74/11350) 47 17015 (16860)

Ontology A is to a large extent taxonomic. Both queries AQ4 and AQ5 pro-
duce many non-redundant rewritings, after a long sp-resolution/unfolding phase.
In AQ4, ProgRes produces more queries (some redundant ones) and in AQ5 it
performs more inferences than Requiem. This is due to the structured pattern
followed in the computation of the rewritings, which as mentioned before may
introduce more redundancies. This is more obvious in ontology S, where ProgRes
produces a lot of redundant queries. This is however an extreme degenerate case:
SQ5 is a bad query, as half of its atoms are essentially redundant. Back to ontol-
ogy A, we note that although ProgRes needs slightly more time to compute the
rewritings, it terminates faster. This is due to the progressive nature of ProgRes.
While the producer thread computes the query rewritings, the consumer thread
executes the already available ones, so there is no significant idle time for the
consumer thread. In contrast, in Requiem the rewritings are obtained at the
end, all together. This demonstrates the significant benefit from progressively
computing and evaluating the query rewritings. The situation is quite different
in ontology P5S, in which the inference procedure consist mainly of a chain of
sr-reduction/saturation steps. Here, the strategy of ProgRes is much more effi-
cient and scalable. It avoids a very large number of inference sequences that are
guaranteed to give no new queries, by applying sr-resolution only on sink atoms.
As a result, it finishes almost instantly, while for query PQ5 Requiem needs sig-
nificantly more time and inferences. It is important to note, that in this case the
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performance of Requiem is not scalable in the size of the query, as it is easy to
see by comparing the results for queries PQ4 and PQ5 (in PQ5 we search for all
graph paths of length 5, while in PQ4 for paths of length 4). In contrast to Re-
quiem, almost the entire execution time of ProgRes is answer retrieval time. The
synthetic nature of P5S allows us to comment also on the evolution of the simi-
larity of the answers. In (the original) ontology P5, only sr-resolution/saturation
steps are involved, hence we expect ProgRes and Requiem to compute the rewrit-
ings in the same order (but not the same fast). In ontology P5S, however, for
each rewriting produced at a sr-reduction step, ProgRes computes immediately
all its sp-resolutions, and so the progressive decrease of similarity is achieved.
Requiem computes first all the rewritings resulting from the saturation step and
then all the unfoldings, hence no ranking of the answers is possible. Similar is
the situation for query AQ4. In the case of AQ5, all the rewritings have the same
graph structure, so the slight fluctuations in the similarity graph for Requiem
are due to the non-ordered computation of the unfoldings. A steep decrease in
the similarity measure occurs only when the structure of a rewriting w.r.t the
original query changes.

6 Conclusions and future work

We have presented a systematic approach to the problem of stratifying over
time the execution of CQA algorithms. We introduced the notions of progressive
CQA algorithms (sequences of CQAs - its components), of strides (result sets of
subsets of the components), of ordering of strides measuring the relevance of the
answers with the user query and of sorted progressive CQAs ensuring a control-
lable approximation of the correct answer set. We have also presented a practical
algorithm for progressive CQA in DL-LiteR that implements the above ideas and
showed that it is possible to develop progressive algorithms that are efficient. Ac-
tually, it has been found that in the presence of large queries and TBoxes that
are not simple taxonomies of atomic concepts the proposed algorithm can be
much more efficient than the similar non-progressive ones (overcoming a strong
limitation of some DL-LiteR CQA systems). An obvious advantage of the specific
approach is the ability to be responsive even in cases of huge databases under
a predetermined approximation strategy. A second advantage is that in case
of inconsistency and considering data as stronger than theory (in information
retrieval this is reasonable), PCQAs ensure a decreased possibility of incorrect
answers. Finally, PCQA have ideal structure for parallel processing. The main
disadvantage is that it is difficult to reduce the redundancies, since the complete
set of answers is not available before the output. The present work can be ex-
tended in several directions. We could take advantage of the ideas presented in
[10] and dramatically improved the performance of DL-LiteR CQAs. Also, we
could develop PCQA algorithms and systems for more expressive DLs. Finally,
we could try to stratify smaller strides in ProgRes avoiding wide replications by
applying sophisticated redundancy checking.
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