
Configuring a Self-Organized Semantic Storage Service

H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

Freie Universität Berlin
Department of Computer Science – Networked Information Systems Group

Königin-Luise-Str. 24/26, D-14195 Berlin, Germany
{muehleis,twalther,aaugusti,harasic}@inf.fu-berlin.de, tolk@ag-nbi.de

http://digipolis.ag-nbi.de

Abstract. Scalability requirements for semantic stores lead to distributed hardware-
independent solutions to handle and analyze massive amounts of semantic data.
We use a different approach by imitating the behaviour of swarm individuals
to achieve this scalability. We have implemented our concept of a Self-organized
Semantic Storage Service (S4) and present preliminary evaluation results in order
to investigate to what extent the performance of a distributed and swarm-based
storage system is dependent on its configuration.

1 Introduction and Motivation

Most Semantic Web applications require a semantic store, a specialized database
for semantic data storage and analysis. Data for such applications is becoming
more and more available, which leads to increased performance and scalability
requirements for semantic stores. While considerable amounts of semantic data
have been successfully processed on a single computer, distributed hardware-
independent solutions are necessary to handle and analyze the massive amount
of semantic data expected to become available in the near future.

Distributed storage poses two main questions: Where should an arbitrary
data item be stored, and how should a specific stored item be located and re-
trieved efficiently. Many systems use a central catalog server, others maintain
overlay network structures to answer these questions. We propose a different ap-
proach, where no node in the storage network has any distinct functionality, and
where the tasks of data distribution and retrieval are performed by autonomous
processes imitating the behaviour of swarm individuals, which have been shown
to accomplish astonishing tasks using strictly local knowledge, limited memory,
a limited set of rules, and a simple yet scalable way of passing information to
other individuals.

This concept has been researched and simulated before as we will show in
the following section, in this paper we focus on the presentation of central con-
figuration parameters controlling the behaviour of our swarm-based system. We
present preliminary evaluation results in order to answer our research question:

1

http://digipolis.ag-nbi.de


2 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

To what extent is the performance of a swarm-based system dependent on single
configuration parameters?

To answer the research question in a setting as realistic as possible, we
have implemented central parts from our concept of a Self-organized Semantic
Storage Service (S4) and deployed this implementation on our lab network con-
sisting of 150 virtual machines. For every relevant configuration parameter iden-
tified, a number of test runs was performed using different settings for this pa-
rameter. Test runs were comprised of storing a fixed dataset the system, and then
testing whether the stored data could be retrieved efficiently from an arbitrary
node.

The remainder of this paper is structured as follows: First, in Section 2, we
introduce our relevant previous work and then continue with describing var-
ious approaches in distributed semantic storage and analysis. Section 3 then
describes the basic concepts for retrieval and storage of data within our swarm-
based S4 system with special focus on the relevant configuration parameters.
Using our implementation, Section 4 presents our preliminary evaluation re-
sults both for storage and retrieval of a LUBM test data set. Finally, Section 5
concludes this paper by discussing evaluation results and describing our next
steps.

2 Previous and Related Work

The need for distributed storage solutions emerges from the inherent limitations
present on every stand-alone computer system. For those distributed solutions,
two general approaches can be followed: Centralized network structures rely on
systems orchestrating storage operations between storage nodes, while decen-
tralized structures make no conceptual distinction between nodes, thus eliminat-
ing the single point of failure.

For the distributed decentralized storage of semantic information, various
concepts such as Edutella [13], RDFPeers [2], GridVine [3] or YARS [9] have
been proposed. They make use of Peer-to-Peer (P2P) technology to create an
overlay network to store and retrieve semantic information in a distributed way.

Apart from mere storage, reasoning is also a crucial requirement for a se-
mantic storage system. However, the support for reasoning is limited at best in
the proposed concepts. So far, distributed reasoning has been attempted using
different distribution techniques: Urbani et al. employ MapReduce to achieve
reasoning over a very large amount of semantic data [18], Oren et al. use dis-
tributed hash tables (DHTs) in their MaRVIN reasoning system [15], and Dentler
et al. rely on swarm intelligence for scalable reasoning [4].

2



Configuring a Self-Organized Semantic Storage Service 3

Swarm intelligence has been identified to be a powerful family of meth-
ods by Bonabeau et al. [1]. Different applications of this family were described
by Mamei et al. [10]. Menezes and Tolksdorf applied swarm intelligence to a
distributed tuple space built to implement the Linda coordination model [6].
They introduced basic concepts of ant colony algorithms that are suitable for
tuple storage and retrieval [11]. Tolksdorf and Augustin then applied this idea
to distributed RDF storage and used a syntax-based similarity metric to clus-
ter syntactically similar resources on neighboring storage nodes. Their concept
was evaluated using simulation runs [16]. A similarity metric based on seman-
tic similarity measures and aimed at achieving the clustering of related concepts
was introduced in [17]. Harasic et al. proposed a different similarity metric us-
ing a hash function and also contributed an implementation architecture and
evaluation results from a first prototype [8].

3 Self-Organized Semantic Storage Service - Concepts

In this section, we introduce basic concepts and operations of our Self-Orga-
nized Semantic Storage System (S4). The S4 system is a distributed semantic
storage system. Triples are stored on a number of nodes that have been added
to a storage network by configuration. This network does not contain a single
central component, all a node has to know in order to join the network is the
address of an arbitrary member. Each node maintains a list of neighbor nodes
it is connected to. This list is built by a simple bootstrap algorithm. The algo-
rithm simply asks all known nodes for other nodes, and tries to connect to them.
The connection is successful, if the involved nodes have not yet reached their
configurable neighbor limit. The process is repeated until a node has reached a
minimum amount of neighbors, which is typically set to half the neighbor limit.
It is expected that a higher neighbor limit leads to a better system performance,
as a higher connectivity in the network reduces the average hop count to find a
single node, and thus improves overall response time.

S4 offers two basic storage and retrieval operations, which are exported over
an API available on every node. For both operations, custom adaptions of ant
colony algorithms are employed. These algorithms have been described in [12],
but we will outline the basic ideas and introduce the relevant configuration pa-
rameters as well as their expected effects below:

3.1 Retrieval

The system is able to locate information by a single key using a method of
foraging found in the behaviour of several species of ants. Searching is per-
formed by following virtual pheromone trails left behind by previous operations.

3



4 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

These trails are located to each connection to another node, thus by checking all
present pheromones on a single node, an operation is able to determine which
node to visit next, where it can access the triples stored there. This process is
repeated until either a match was found or the configured maximum hop count
has been reached. If a match was found, the path taken is tracked back in order
to spread pheromones for the current key to be used by subsequent operations.

Pheromones are volatile due to the dynamics of the stored triples. For ex-
ample, if a triple is deleted the pheromones leading to it should also disappear.
Since manual removal would require broadcast messages through the entire net-
work, their intensity decays by a configurable percentage per time unit. The fol-
lowing behaviour is expected for different decay rate settings: A smaller decay
rate allows pheromones outlive the duration of few operations, and also leads to
more triples being found.

For every retrieval operation, only a subset of the potential matches is to
be returned. This is due to the intended use of our system by applications and
also the expected size of the storage network. If the amount of data stored is
exceeding a certain amount, it may be not feasible to return all matching results.
Instead the user is asked to specify time an result set limit for the operation.
Retrieval operations are terminated if one of these limits is reached.

3.2 Clustered Storage

A basic concept is the clustering of the stored triples by their similarity, which is
intended to lead to triples with similar keys being stored on the same or neigh-
boring storage nodes. This is achieved by a similarity metric and the “Brood
Sorting” ant-based clustering algorithm. Storage operations are designed to store
new triples on a node or in a neighborhood where similar triples are stored, ac-
cording to the similarity metric. The new triples are taken on a path through the
storage network similar to the retrieval operations and every node is checked for
similar triples. If a sufficient amount of similar triples are found, the new triples
are stored on the current node. Additional effort is invested to move misplaced
triples to a node or a neighborhood where similar triples are stored, a special
move operation performs this task by picking up triples not fitting on a node
and moving them to another location. For information on the concrete similarity
measures, we refer to the related work introduced in section 2.

3.3 Reasoning Support

The system performs forward-chaining assertional reasoning based on the knowl-
edge that is held in the store and writes the inferred triples back into it. This
section provides an overview of the basic concepts for reasoning used in the

4



Configuring a Self-Organized Semantic Storage Service 5

semantic store. However, we do not not focus on this aspect yet, as the un-
derlying storage layer has to reach a stable state first. A detailed discussion of
the theoretical underpinnings has been given in [14]. The introduced basic stor-
age operations cannot always guarantee correct results, reasoning on top of our
system also trades away completeness for the degree of scalability we aim to
achieve. Inferred statements are retrieved using the described read operations,
there is no systemic differentiation between explicit and inferred triples.

In S4, terminological and assertional triples are stored together, i.e. TBox
and ABox of the description logic are separated only conceptionally, not phys-
ically. For every terminological axiom that is inserted in the TBox a reasoning
process is started. This process applies the axiom to matching assertions within
the ABox, following the virtual pheromone trails through the network for the
localization of the fitting triple clusters. Once a match is found, the resulting as-
sertion is derived and then written back in the store in order to make it available
for retrieval operations.

As an example we consider an example axiom from [14]:

ta := professor � researcher � seniorresearcher

a part of the TBox. This means that every resource that is an instance of professor
and researcher is also an instance of seniorresearcher.

In order to generate the inferred axioms, a retrieval operation for the triples
matching the different predicates of the expression is executed. In this case the
first step is to look for instances of the type professor. In a second step the
corresponding axiom, that defines the matching instance to be also of the type
researcher is looked for, again following the pheromone trails in the store. If the
process identifies a matching instance, the resulting axiom to define the instance
to be also of the type seniorresearcher is inferred and written back using the
standard storage process as described.

Since all axioms for the reasoning process are retrieved from the store, the
reasoning process is subject to the probabilistic influences of the swarm algo-
rithms. Because of the constantly expanding data base in the store and its de-
centralized nature the reasoning itself is a continuous process. Thus, the inferral
of new axioms can take some time as well as there is no guarantee for a certain
inferred axiom to be retrievable at a certain time.

RDFS Inferencing To give an example of our approach on reasoning, we will
present our implementations for a selection of RDF Schema (RDFS) inferencing
rules in the following. For each rule, we present the task given to the reasoning
operations, which then move through the storage network to fulfill their respec-
tive tasks. A similar approach has also been followed in [4], where swarm in-

5



6 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

dividuals are used to locate seldom-visited parts of an RDF graph. In our case,
however, the storage network possesses the ability to find the path to nodes
where triples matching the inferencing rules are stored, thus making a far larger
amount of nodes possible.

For any property, a domain and a range can be defined. If a property has a
concept as its domain, every resource annotated with this property is an instance
of this concept. Range is very similar: If a property has a concept as its range,
every resource referred to by this property is an instance of this concept. The
formal definition for rdfs:domain and rdfs:range is given as follows:
(?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type ?c)
(?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)
For our reasoning operation, domain definitions are evaluated using several
steps. The following list shows the required steps to evaluate this rule within
our swarm-based system.

1. Read a rdfs:domain statement on the local node in the form (?p
rdfs:domain ?c), bind p and c to values from the matching statement.

2. Using p as lookup key for routing, move to the next node
3. Locate all statements in the form (?r1 p ?r2), bind r1 to values from

the matching statement.
4. Create new statements of the form (?r1 rdf:type c) for all matches.
5. Write new statements to the storage network.
6. Continue with step 2 until no more matches have been found for a config-

urable number of steps.

Range definitions are evaluated using the same method, but with (?r2
rdf:type c) as new statement in step 4.

3.4 Optimizations and System Behaviour

In order to efficiently compare the new triples with a potentially large amount of
locally stored triples, the statements are again organized into local clusters [12].
The same local clustering algorithm which is based on the agglomerative hier-
archical clustering method is used to limit the amount of pheromones present
on each neighbor connection. Our clustering algorithm is configured by a limit
for the maximum number of local clusters. A higher number of local clusters is
expected to increase the accuracy of the global clustering, and hence the perfor-
mance of the retrieval and storage processes.

Read operations are restarted, until a user-defined timeout or maximum re-
sult count is reached. If a read operation has been successful in locating triples
matching its pattern on a particular node, results are sent back to the host the

6



Configuring a Self-Organized Semantic Storage Service 7

query originated from. Since the notion of our similarity measures and global
clustering supports the assumption of fitting triples being available on nearby
nodes, the read operation is continued on the neighboring nodes.

The decisions on which node to go to next or whether new triples should
be stored on the current node are influenced by various random factors in ac-
cordance to the basic principles of swarm-based algorithms. This leads to non-
deterministic behaviour of the entire system. Thus, this approach can only be
verified by simulations or test runs. In the conceptual phase, one can only make
educated guesses about the influence single configuration parameters would
have on the behaviour of the entire system.

3.5 Advantages of the Swarm-Based Approach

In contrast to other distributed storage systems, S4 does not require a central
catalog server nor an overlay network structure that is costly to maintain in
the event of network topology changes. Network organization is decentralized
and robust to changes, as node failures only affect the data stored on that very
node and perhaps the nodes the failed one was connected to. The remainder
of the potentially huge storage network is completely unaffected. Every node
has sufficient local information to take all decisions required from them by the
straightforward swarm algorithms, hence eliminating error-prone synchroniza-
tion. The main advantage over deterministic solutions is the ability of the swarm
algorithms to adapt to an ever-changing environment very well, whether a sin-
gle node may be overloaded with data or requests, or the mentioned node failure
issue: Swarm algorithms have the potential to handle these issues without sig-
nificant overhead, while still being able to efficiently respond to the various
requests. For example, triples with the RDF:type property describing the type
of an resource occurs in approx. 20% of the triples in our test data set. If data
distribution is determined by an hash function, all those triples will be stored
on and retrieved from the same node, which will then be soon overloaded, if a
lot of queries contain this property (which is the case). In our system, a node
will slowly start to reject triples if it detects its load approaching a certain limit.
This will lead to these triples being stored on other nodes, all using only local
knowledge and status and no observer whatsoever.

4 Performance Evaluation

In this section, preliminary evaluation results of our current S4 development
version are presented. We have implemented the S4 system as a distributed Java
application [12] and deployed it onto a cluster of 150 virtual Linux nodes run-
ning on a server equipped with eight 2.6 GHz processors and a total of 64 GB

7



8 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

memory. For each test run, a predefined data set generated by the LUBM data
generator [7] containing 1.3 million triples was written to the storage system.
After a short cool-down period, a single query was sent to all cluster nodes. The
amount of results returned as well as the time required to return those results
was measured. In order to determine the influence of the relevant configura-
tion parameters, a set of configuration files covering various settings for each
of the relevant parameters was created and a full test run was performed with
all configuration files. In particular, the influence of the following parameters
conceptually influencing the swarm algorithms was evaluated:

– CLUSTER LIMIT - The maximum number of local clusters allowed for
triple storage and pheromone management

– MAX STEPS - The maximum amount of hops between nodes a single oper-
ation is allowed to perform

– NEIGHBOR LIMIT - The amount of neighbor nodes to connect to
– DECAY RATE - The decay rate of the virtual pheromone trails per time unit

Due to the probabilistic behaviour of the algorithms employed in the S4
system, no two test runs yield entirely equivalent results. The results presented
below were taken from one single test cycle with identical software versions
containing 30 test runs, each with a different configuration. However, these re-
sults are regarded to be exemplary, as other test cycles showed comparable re-
sults, and the test runs presented here have been selected to show the influence
of the single parameters as clearly as possible. For this preliminary evaluation,
the parameters were considered to be independent, in an attempt to reduce the
search space.

4.1 Storage Performance

The LUBM-10 dataset we used to evaluate the system performance is written
into 189 files by the data generator, each containing around 7000 triples. We
used the HTTP API on an arbitrary node to store each file sequentially into the
S4 system. Obviously, not all triples were stored on the node the requests were
issued to. Fig. 1 shows the distribution of the amount of triples stored per storage
node using a value of 25 for the MAX STEPS parameter.

The time required to write a single file of the test data set into the S4 system
was measured. Box plots describing the statistical trends of the write time for
all files in the different configuration tested are given in Fig. 2:

As expected, a higher CLUSTER LIMIT leads to a larger amount of com-
parably expensive cluster maintenance operations, therefore the write times for

8



Configuring a Self-Organized Semantic Storage Service 9

Fig. 1. Storage load distribution

cs040 cs400 ms05 ms25 nl06 nl20 ph90 ph99

0
20

40
60

80

Cycle 20100625−1652 − Write Results

Configuration

W
rit

e 
Ti

m
e 

(s
)

Fig. 2. Storage performance for LUBM-10 dataset files

configuration cs400 with a cluster limit of 400 greatly exceed those of config-
uration cs040 with a limit of 40.

The influence of the amount of steps to be taken, as configured by the
MAX STEPS parameter was tested in configuration sets ms05 and ms25 with
5 and 25 for maximum step number, respectively. As the transition of an oper-
ation from one storage node to another one is an expensive operation as well, a
smaller value also leads to an improved write performance.

9



10 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

System performance was also expected to be influenced by the amount of
neighbor nodes a single node connects itself to (NEIGHBOR LIMIT). In con-
trast to our first expectation of a larger amount of neighbor nodes also distribut-
ing the load over more shoulders, configuration sets nl06 and nl20 with 6
and 20 as neighbor limits show a smaller neighborhood having a beneficial im-
pact on the write performance. This may be due to the larger amount of possible
paths that can be marked by the pheromones and thus missing pheromone data
on some of the nodes.

A central configuration parameter for all systems based on ant foraging is
the pheromone decay rate [5, p. 212 ff], thus the influence of this value over the
parameter DECAY RATEwas also tested: Configuration ph90 used a decay rate
of 90, in which pheromone intensities are reduced by 10% every second, ph99
employed only a 1% decay rate. Again, the results did not meet our expectations:
Normally, longer pheromone endurance would result in better paths through
the storage network, and thus reduced step counts, but the test result showed
the opposite to be true for write operations. An possible explanation for this
phenomenon might be the following: As pheromones on more frequently used
paths are also updated more often, sub-optimal paths are then discarded sooner.

4.2 Retrieval Performance

To measure the performance for operations retrieving data from the S4 system,
a SPARQL query was evaluated several times on each of the 150 storage nodes
sequentially. The query contained a single triple pattern matching approx. 20%
of the stored triples. Each node started the corresponding read operations within
the S4 system, and collected the results from inside the storage network. The
time limit for each query was set to five seconds, and the requested result set size
was 1000 results. For each node, the amount of results returned as well as the
time required to deliver the results was measured by the test driver. After three
warm-up runs, five query executions were performed, and the average results
determined the final result for a node in a configuration set. The result plots are
structured as follows: The x axis contains all 150 storage nodes by their ID, the
left y axis denotes the required time for each query (+ marker), and the right
y axis describes the amount of triples returned (× marker). In general, a very
low response time with a high amount of results returned are desirable for every
storage node.

Fig. 3 shows the read results for different local cluster sizes, both for triple
storage and pheromone clustering. The upper configuration used a CLUSTER-
LIMIT value of 40, while the lower configuration used a value of 400. A higher

amount of pheromone clusters leads to a more precise path selection and thus

10



Configuring a Self-Organized Semantic Storage Service 11

node location, which reduces read times and increases result counts due to the
smaller amount of hops required for a successful read operation.

Fig. 3. Read results for CLUSTER LIMIT parameter variations

The read operations are also greatly influenced by the amount of hops a
single operation is allowed to take. Fig. 4 shows a test run with a MAX STEPS
setting of 5 on the top and 25 on the bottom. The upper configuration clearly
shows a quick response time for the majority of nodes, but only the minimum
amount of triples returned. This expected behaviour is confirmed by the bot-
tom configuration: Not only are results delivered at a comparable speed, but the
average amount of triples returned is also increased.

11



12 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

Contrary to in-memory executions of a swarm algorithm, the amount of
steps allowed for a swarm individual has a huge impact on overall performance
in a distributed system. This is due to the high costs of the transition operation
between the storage nodes. Therefore, for any system built on swarm intelli-
gence, this parameter has to be adjusted carefully.

Fig. 4. Read results for MAX STEPS parameter variations

Network setup from our bootstrapping algorithm is restricted to a limited
amount of neighbor nodes. This behaviour is controlled by the NEIGHBOR-
LIMIT parameter. In Fig. 5 two test runs with a neighbor limit of six on the

top and a neighbor limit of 20 on the bottom are displayed. The configuration
with the smaller limit performs better, the amount of triples returned is in gen-

12



Configuring a Self-Organized Semantic Storage Service 13

eral higher, and the response times are consistently below one second with very
few exceptions. This coincides with the observation of the read performance in
the preceding section, where a smaller value for the neighbor limit also brought
improvements in system performance. This may be due to a random error fac-
tor considered for the decision which neighbor to visit next. If there are more
neighbor nodes, this error factor could have an increasingly disadvantageous
influence, which will be evaluated in our further work.

Fig. 5. Read results for NEIGHBOR LIMIT parameter variations

The amount of decay in the intensity of the virtual pheromone also plays
a role during read operations. Fig. 6 displays two test runs with a decay rate
of 10% on the top and 1% on the bottom. As in the storage evaluation, the re-

13



14 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

sults again did not meet our expectations for the influence of this parameter.
The test run with the increased decay shows very quick responses on nearly all
nodes with a large amount of results, while the test run with the lower value
shows considerably increased response times. This suggests that the introduc-
tion a mechanism to adjust this particular parameter is necessary for a distributed
system based on swarm algorithms.

Fig. 6. Read results for DECAY RATE parameter variations

5 Conclusion and Future Work

This paper started with outlining previous work in the application of swarm-
based algorithms on distributed storage as well as distributed semantic storage

14



Configuring a Self-Organized Semantic Storage Service 15

systems in general and current distributed reasoning approaches. We then con-
tinued introducing the relevant concepts of our Self-Organized Semantic Stor-
age Service (S4), which uses self-organizing algorithms found in the behaviour
of several ant species. A number of relevant configuration parameters for this
system was identified and their expected impact on the system performance was
described. Our preliminary evaluation of our implementation of the S4 system
then showed the actual impact of the identified parameters in exemplary test
runs using different values for those parameters in their configuration.

Our evaluation of basic storage and retrieval capabilities was set in an envi-
ronment as close as possible to a real-world setting, as the desired performance
of a swarm-based self-organizing system cannot be shown using formal proofs,
but only by collecting statistical data. Therefore, simulations were not deemed
to be satisfactory for our purpose. Successful test runs for a part of the config-
uration sets continue to show the general feasibility of building a larger-scale
distributed system using swarm algorithms to facilitate self-organization. Tun-
ing the various parameters was identified to be one of the main issues of swarm-
based self-organizing systems, and tweaking the parameters to values where the
storage network exhibits the desired results can be a tedious process, compara-
ble to the work of a specialized database administrator. In some cases, heuristics
could be used to adjust a particular parameter. However, special care has to be
taken for these heuristics not to require global knowledge. This would contradict
one of the basic concepts for swarm-based algorithms.

In our future work we would like to use our lab network to further advance
our S4 implementation, and continue with evaluations using a variety of data
sets, queries, network structures and configuration sets. We will implement the
swarm-based distributed reasoning approach, and evaluate it as well. Further
advancements of the S4 concepts are expected to be the design of additional
auxiliary algorithms to support the basic algorithms, with the hope of achieving
a system supporting its users by adjusting as many parameters as possible by
itself.

Acknowledgments

We would like to thank our reviewers for their insightful comments. This work
has been partially supported by the “DigiPolis” project funded by the German
Federal Ministry of Education and Research (BMBF) under the grant number
03WKP07B.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Santa Fe Institute Studies in the Sciences of Complexity Series, Oxford Press (July

15



16 H. Mühleisen, T. Walther, A. Augustin, M. Harasic & R. Tolksdorf

1999)
2. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a structured

peer-to-peer network. In: WWW ’04: Proceedings of the 13th international conference on
World Wide Web. pp. 650–657. ACM, New York, NY, USA (2004)

3. Cudré-Mauroux, P., Agarwal, S., Aberer, K.: GridVine: An infrastructure for peer in-
formation management. IEEE Internet Computing 11(5), 36–44 (2007), http://doi.
ieeecomputersociety.org/10.1109/MIC.2007.108

4. Dentler, K., Gueret, C., Schlobach, S.: Semantic web reasoning by swarm intelligence. In:
Proceedings of Nature inspired Reasoning for the Semantic Web, ISWC 2009 (2009)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge, Mas-
sachusetts (2004)

6. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming
Languages and Systems 7, 80–112 (1985)

7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Sem 3(2-3), 158–182 (2005), http://dx.doi.org/10.1016/j.websem.2005.
06.005

8. Harasic, M., Augustin, A., Tolksdorf, R., Obermeier, P.: Cluster mechanisms in a self-
organizing distributed semantic store. In: Proceedings of Web Information System and Tech-
nologies, WEBIST 2010 (2010)

9. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository for query-
ing graph structured data from the web. In: The Semantic Web, ISWC 2007, Busan, Ko-
rea, November 11-15, 2007. Lecture Notes in Computer Science, vol. 4825, pp. 211–224.
Springer (2007), http://dx.doi.org/10.1007/978-3-540-76298-0_16

10. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-organization in
computer science. J. Syst. Archit. 52(8), 443–460 (2006)

11. Menezes, R., Tolksdorf, R.: A new approach to scalable linda-systems based on swarms. In:
Proceedings of ACM SAC 2003. pp. 375–379 (2003)

12. Mühleisen, H., Harasic, M., Tolksdorf, R., Teymourian, K., Augustin, A.: A self-organized
semantic storage service (2010), submitted to the 12th International Conference on Informa-
tion Integration and Web-based Applications & Services (iiWAS2010), preprint available at
http://digipolis.ag-nbi.de/preprint/iiwas2010-s4-preprint.pdf

13. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M.,
Palmr, M., Risch, T.: EDUTELLA: A P2P networking infrastructure based on RDF.
Proceedings of the eleventh international World Wide Web Conference (Jan 01
2002), http://wwwconf.ecs.soton.ac.uk/archive/00000306/;http://
wwwconf.ecs.soton.ac.uk/archive/00000306/01/index.htm

14. Obermeier, P., Augustin, A., Tolksdorf, R.: Towards swarm-based federated web knowledge-
bases (2009), submitted to Nature inspired Reasoning for the Semantic Web (NatuReS09),
preprint available at http://digipolis.ag-nbi.de/preprint/natures2009-sr-preprint.pdf

15. Oren, E., Kotoulas, S., Anadiotis, G.: MaRVIN: A platform for large-scale analysis of se-
mantic web data. In: Proceeding of the WebSci’09: Society On-Line (March 2009)

16. Tolksdorf, R., Augustin, A.: Selforganisation in a storage for semantic information. Journal
of Software 4 (2009)

17. Tolksdorf, R., Augustin, A., Koske, S.: Selforganization in distributed semantic repositories.
Future Internet Symposium 2009 (FIS2009) (2009)

18. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning using
MapReduce. In: The Semantic Web - ISWC 2009, Chantilly, VA, USA, October 25-29, 2009.
Lecture Notes in Computer Science, vol. 5823, pp. 634–649. Springer (2009), http://
dx.doi.org/10.1007/978-3-642-04930-9

16

http://doi.ieeecomputersociety.org/10.1109/MIC.2007.108
http://doi.ieeecomputersociety.org/10.1109/MIC.2007.108
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1007/978-3-540-76298-0_16
http://dx.doi.org/10.1007/978-3-642-04930-9
http://dx.doi.org/10.1007/978-3-642-04930-9

	Configuring a Self-Organized Semantic Storage Service



