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Abstract. The increasing growth of the Semantic Web has substantially
enlarged the amount of data available in RDF format. One proposed so-
lution is to map RDF data to relational databases (RDBs). The lack
of a common schema, however, makes this mapping inefficient. Some
RDF-native solutions use B+Trees, which are potentially becoming a
bottleneck, as the single key-space approach of the Semantic Web may
even make their O(log(n)) worst case performance too costly. Alterna-
tives, such as hash-based approaches, suffer from insufficient update and
scan performance. In this paper we propose a novel type of index struc-
ture called a B+Hash Tree, which combines the strengths of traditional
B-Trees with the speedy constant-time lookup of a hash-based structure.
Our main research idea is to enhance the B+Tree with a Hash Map to
enable constant retrieval time instead of the common logarithmic one of
the B+Tree. The result is a scalable, updatable, and lookup-optimized,
on-disk index-structure that is especially suitable for the large key-spaces
of RDF datasets. We evaluate the approach against existing RDF index-
ing schemes using two commonly used datasets and show that a B+Hash

Tree is at least twice as fast as its competitors – an advantage that we
show should grow as dataset sizes increase.

1 Introduction

The increasing growth of the Semantic Web has substantially increased the
amount of data available in RDF1 format. This growth necessitates the avail-
ability of scalable and fast data structures to index and store RDF. Traditional
approaches store RDF in relational databases. Mapping RDF to a relational
database typically follows one of the following approaches: (1) all triples are
mapped to a single three column table – an approach which will result in nu-
merous inefficient self-joins of that table, (2) every property gets mapped to its
own three column table [1] – resulting in a high number of Unions for property-
unbound queries and a table creation for every newly encountered property type,
or (3) draws upon domain-knowledge to map properties to a relational database
schema – forgoing some flexibility when adding new properties. Moreover, ac-
cording to Abadi and Weiss, storing dynamically semi-structured data such as
RDF in relational databases may cause a high number of NULL values in the
tables, which imposes a significant computational overhead [15, 1]. As a conse-
quence, many native RDF databases have been proposed [15, 10].

1 http://www.w3.org/RDF/
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Most native RDF databases propose mapping the RDF-graph to some exist-
ing indexing scheme. The most straightforward approach, RDF-3X [10] essen-
tially proposes to store all possible subsets of the triple keys (i.e., s, p, and o from
every < subject, predicate, object > triple) as composite keys in a traditional
B+Tree structure. This approach results in 15 B+Trees, each of which having
large-keyspace (e.g., sizes of |s| · |p| · |o|, |s| · |o|, etc.) and many entries. Given
the O(log(n)) access time for single key lookup, this can result in a considerable
time overhead for some queries. Consequently, given the ever increasing amount
of data to be stored in RDF stores, traditional approaches relying on B+Trees
in the sprit of RDF-3X have the potential of becoming a main bottle-neck to
scalability [14]. Taking the adaptation to RDF structures to the extreme, Weiss
and colleagues [15] propose a specialized index consisting of 3-level cascades of
ordered lists and hashes. This approach provides a constant (i.e., O(c)) lookup
time but has the drawback that updating hashes can become quite costly. Whilst
the authors argue that updates in the Semantic Web are oftentimes rare, they
are, however, common and should not be dismissed.

In this paper we propose a novel type of index structure called a B+Hash

Tree, which combines the strengths of traditional B+Trees (i.e., ease of use
and updatability) with the speedy lookup of a hash-based structure. Our main
research idea is to enhance the B+Tree with a Hash Map to enable constant
retrieval time instead of the common logarithmic one of the B+Tree. The result
is a scalable, updatable and lookup-optimized, on-disk index-structure that
is especially suitable for the large key-spaces of RDF datasets. Consequently, the
main contribution of this paper is the presentation, formalization, and evaluation
of the B+Hash Tree.

This paper is structured as follows. In Section 2 we set the stage with a
discussion of related work, its benefits and drawbacks. Section 3 then introduces
the B+Hash Tree, provides a formalization as well as a cost model thereof, and
discusses some its limitations. In Section 4 we empirically compare the B+Hash

Tree to the RDF-3X like approach storing the key in a B+Tree. In the final
section we summarize our conclusions and discuss future work.

2 Related work

Several architectures for storing Semantic Web data have been proposed. Many
of them use relational databases to index RDF data. Row store systems such
as Jena [16, 17] map RDF triples into a relational structure, which results in
creating a giant three column < subject, predicate, object > table. Having a
single large table, however, oftentimes results in expensive self-joins; in particular
if the basic graph patterns of a query are not very selective. To counter this
problem, Jena creates property tables, which combine a collection of properties
of a resource in one table. Whilst this approach reduces the number of self-joins
it (1) assumes that the RDF actually has some common exploitable structure
that does not change often over time and (2) has the potential to result in a large
number of NULL values where properties are missing from some resources in a
table [1]. Hence, this inflexibility and the NULL values may lead to a significant
computational overhead [15].
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An alternative approach to the property table solution are column stores
such as SW-Store [1]. For each unique property of the RDF dataset, SW-Store
creates a two column table containing the subject and the object. Assuming a
run-length encoding of the column, this provides a compact storage mechanism
for RDF data that allows efficient joins, as only the join columns are retrieved
from disk (as opposed to the table in row-stores). Nevertheless, if a graph pattern
has an unbound property (e.g., < s, ?p, ?o >) then an increased number of joins
and unions are inevitable [15].

A recent approach is Hexastore [15], which stores RDF data in a native disk
vector-based index. Hexastore manages all six possible orderings of the RDF
triple keys in their own index. In each of the six indices, a triple is split into its
three levels: All levels are stored in native on-disk sorted vectors. A lookup of the
triple < s, p, o > would, hence, result in a hash-lookup in the first level of s, the
result of which would point to a second-level hash that would be used to lookup
p, which would point to an ordered list containing o. Given that a hash-lookup
can be achieved in constant time, Hexastore provides a constant-time lookup for
any given triple. Its six-fold indexing allows a fast lookup of any triple pattern
at the cost of a worst-case five fold space cost. The biggest drawback, however,
is that Hexastore in its “pure” implementation does not support incremental
updates, as inserts would require resorting the vectors of each of the six indices
– a time consuming process.

RDF-3X [10] avoids this drawback by storing the data in B+Trees instead
of vector lists. Specifically, it stores every possible subset combination of the
three triple keys in a separate B+Tree. This approach allows updates and has
an O(log(n)) complexity for retrieval, updates, and deletion. Note, however, that
this approach leads to a huge key-space for some B+Trees (at worst |s| · |p| · |o|),
as the composite key-space grows in the square of the number of nodes of the
RDF graph. Hence, even O(log(n)) can become a bottleneck. A similar approach
to RDF-3X or Hexastore is YARS2 [5], which indexes a certain subset of triples
in 6 separate B-Trees or Hash Tables. By not treating all possible < s, p, o >
subset combination equally, the missed indexes must be created by joining other
indexes, which can be a time-consuming process.

A more recent approach is BitMat [2], which is a compact in-memory storage
for RDF graphs. BitMat stores RDF data as a 3D bit-cube, where each dimension
represents the subjects, the objects, and the predicates. When retrieving data
the 3D bit-cube can be sliced for example along the ”predicates-dimension” to
get a 2D matrix. In each cell of the matrix, the value 1 or 0 denotes the presence
respectively the absence of a subject and object bounded by the predicate of that
matrix. Since bitwise operations are cheap, the major advantage of the BitMat
index is its performance when executing low-selectivity queries. Nevertheless,
BitMat is constrained by the available memory and, as the authors have shown
in their evaluation, traditional approaches such as RDF-3X or MonetDB [8]
outperform BitMat on high-selectivity queries.

In real-time systems, Hybrid Tree-Hashes [11] have been proposed to provide
a fast in-memory access structure. To index data, the Hybrid Tree-Hash combines
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the use of a T-Tree and a Chained Bucket Hash. Lehman describes the T-Tree
[7] as a combination of the AVL-Tree and the B-Tree: similarly to B+Trees,
nodes contain multiple elements whilst the binary search strategy of the AVL-
Tree is employed for retrieval. To enhance the retrieval time the keys in the
nodes of the T-Tree are hashed and the offset to that node is stored as the
value. Data retrieval is accomplished by a lookup in the Chained Bucket Hash,
which retrieves the offset value for the given search key. Then, the node that
holds the data is accessed directly without traversing the T-Tree. Whilst T-
Trees perform well as an in-memory data structure, their usage as an on-disk
structure is problematic: First, the use of a binary tree results in deep trees,
which in turn results in many disk pages being accessed. Second, the binary tree
nature of the T-Tree makes it cache oblivious: range queries are highly expensive,
as one has to continuously “jump” up and down the tree for traversal, leading
to costly disk-seek operations. This is in contrast to the B+Tree, where the data
is stored in the leaves as a linked list, resulting in fewer disk page seeks and
cache awareness. To the best of our knowledge the Hybrid Tree-Hash is the most
similar structure to our proposed B+Hash Tree index. The main difference is
that we optimized our index structure for disk-based operations, whereas Hybrid
Tree-Hashes were optimized for in-memory retrieval.

3 B+Hash Tree
In this section we introduce our B+Hash Tree, a scalable, updatable and
lookup-optimized, on-disk index-structure combining the strengths of B+Trees
and Hashes. First, we describe the structure of the B+Hash Tree and elucidate
its operations. Second, we provide a time and space complexity analysis of the
relevant B+Hash Tree operations. Finally, we discuss some limitations of the
B+Hash Tree and suggest appropriate solutions.

Note that throughout this section we propose to index a RDF graph akin
to the RDF-3X approach. In other words, we propose a separate index for each
possible subset combination of the < s, p, o > triples. Hence, a s1p3o2 triple is
stored in level 1 with the key s1, in level 2 with the composite key s1p3, and
finally in level 3 using the composite key s1p3o2. This structure allows retrieval
of all triple patterns with a single lookup [15, 10]. In contrast to RDF-3X, we
propose to use B+Hash Trees as opposed to B+Trees. Like all other approaches
we also propose to dictionary encode all literals.

3.1 B+Hash Tree Description

The architecture of the B+Hash Tree comprises two core elements: A B+Tree
and the Hash Map. Here, we first explain how these elements are combined to
form a joint index and then elaborate on the main operations.

We use the standard B+Tree as the basis for our B+Hash Tree. Recall
that B+Trees are optimized for disk access. In particular, nodes of the trees
are adapted to the size of a disk page to facilitate caching and limiting disk
access. Additionally, all values are stored in the leaf nodes of the tree, which are
interlinked, allowing fast index-range queries. More information about B+Trees
can be found in [4].
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As Figure 1 illustrates, the B+Hash Tree combines the B+Tree with a
Hash Map. Specifically, to improve retrieval performance the leaf nodes of the
B+Tree are being hashed. Each bucket entry in the Hash Map contains a key
(or ID), an offset containing the address of the element designated by the key
on disk and the count of distinct elements sharing the same prefix. The prefix
being the anterior part of the key. As an example consider the s2p1o4 triple: in
a level 2 index the prefix should be s2p1; in a level 1 index s2.

A retrieval operation in a B+Hash Tree starts with a lookup of the offset
in the Hash Map using the key and then accesses the node holding the search key
directly without traversing the tree. The count aids both the query optimizer
(e.g., to gauge selectivity) and the execution of range scans (indicating the num-
ber of elements to be read). As exemplified in Figure 1, “Bucket 1” indicates
that there are two predicates for subject S1 (“count = 2”).

Note that not every leaf node needs to be hashed. Usually, only the leaf nodes
containing the smallest suffix for a given prefix have to be hashed – an approach
which we refer to as overall hashing. For example, on level 1 of the spo index
only the leaf nodes where the S key changes need to be hashed, as illustrated in
Figure 1.

Alternatively, the hash can be tuned to contain the most popular keys – an
approach which we refer to as cached hashing, as it employs a Hash Map akin to a
cache of the B+Hash Tree’s contents. Cached hashing can be tuned to reduce
space consumption compared to overall hashing. This space saving comes at a
cost of slowing down non-frequent accesses. Therefore, the empirical evaluation
in this paper focuses on overall hashing.
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Fig. 1. Architecture of the B+Hash Tree: spo index level 1

3.2 Basic Operations

The B+Hash Tree has three basic operations: get, insert, and delete. To enable
the same model interface as Hexastore [14], we split the get operation into two
distinct ones:
getIdx(a) Given a triple pattern a, look up the offset and the count of elements

in the Hash Map: getIdx(a) : offseta, counta
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getSet(offset, count) Given an offset and a count, retrieve counta elements
from the leaf node:

getSet(offseta, counta) : seta
Hence, a traditional lookup would be composed of getSet(getIdx(a)), a very
common index range-query, not to be mistaken with a SPARQL range-query.
Furthermore, in contrast to Hexastore, we have the following data changing
operations:
insert(a) Insert triple a into the B+Hash Tree:

insert(a) : void
delete(a) Delete triple a from the B+Hash Tree:

delete(a) : void
Note, that an insert, respectively a delete operation may cause a rebalancing

of the B+Tree. If this occurs then the keys in the newly created leaf node have
to be verified if an update of their page offset’s in the Hash Map is required – a
process whose cost depends on the on-disk implementation of the B+Tree.

Index range-scans are quite common operations in Semantic Web applica-
tions. Just consider retrieving a list of all predicates that connect subject s with
an object o. Such an operation results in the triple pattern < s, ?p, o >. In a
B+Tree, neighboring leaf nodes are connected to each other, enabling sequential
iteration through the pertinent leaf nodes. Hence, the logical way to retrieve the
answers for this triple pattern in a RDF-3X like index is to iterate through the
level 2 sop index starting from the “smallest” (or first indexed) ps. Hence, the
B+Tree is first being traversed from the root node down to the leaf node to find
the node for sops and then sequentially iterating through the leaf nodes until a
different object is encountered. When using a B+Hash Tree, in contrast, we
first lookup the key so in the Hash Map of the appropriate index followed by the
B+Tree traversal like in the traditional tree. Hence, we reduce the tree traversal
down from the root node to the first leaf node – a O(log(n)) operation – to
a single hash lookup – a constant time (O(c)) operation. From a certain data
size the B+Hash Tree will, hence, outperform the B+Tree. We elaborate this
fact by doing a simple complexity analysis of the most important operations in
Section 3.3.

3.3 Time and Space Complexity Considerations

In this section we provide a formalization for the time and space complexity of
the most important B+Hash Tree operations. Note that since we are talking
about a disk-based index structure, the hard drive access times, as the slowest
component, are likely to dominate in-memory operations. Hence, the time com-
plexities of B+Tree operations are measured by the number of page reads. Given
that the B+Tree only stores the actual data in the leaves (the inner nodes of
the trees are “only” used to organize the index) and that the data for a single
key typically fits into one page, the number of page reads for any simple lookup
is solely dependent on the tree height. Assuming that we denote the order (i.e.,
the # of index elements per inner node) of the B+Tree as d and the number of
entries as n, Comer [4] elucidates the height of a B+Tree as:

height = logd (n) (1)
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Time complexity: Given that most queries do not solely rely on simple key
lookups, but actually retrieve multiple elements (e.g., find all objects for a sub-
ject) we also need to account for the number of leaf pages that need to be read.
Assuming that the values fit on s pages then the number of page reads for a
query can be defined as:

ReadsB+Tree = logd (n) + s (2)

Note that this formula assumes that the values are (i) stored on consecutive
pages and (ii) that the leaf-pages are interlinked, which the B+Tree guarantees.

A logarithmic complexity is, obviously, excellent and has served the IT com-
munity well in many applications such as relational databases. If the key-space,
however, grows enormously and the number of separate accesses for any given
query is large – both of which are especially true for SPARQL queries – then
even a logarithmic complexity may slow the execution down. The main rationale
behind the B+Hash Tree is to cut down the time complexity of these reads
using a Hash Map with its constant-time accesses. As a result, the complexity
of a simple lookup is 2 – one access to retrieve the bucket hash entry and an-
other one to access the leaf node. In addition, as before, when performing index
range-scans we need to read all the pages which contain the data, resulting in:

ReadsHashMap = 2 + s (3)

Consequently, using the Hash Map results in fewer disk page reads than the
B+Tree, if the height of the B+Tree exceeds two levels. With Equations 2 and 3
we can calculate the number of disk page accesses for a set retrieval (range query).
To estimate the total retrieval time we multiply the number of disk page reads
with the average disk page access time of a common hard disk. However, in reality
there are three different types of disk page reads: random read, sequential
read, and cache read. Random disk page reads are the slowest kind, as the
seek operation requires the HDA (Head Disk Assembly) to jump to another
track. Sequential reads (i.e., reading some data from the same track) consists
of waiting until the required disk page arrives under the HDA, which depends
mainly on the rotational speed of the hard disk. The fastest form of access is the
cache read, i.e. when a previously read page is found in the on-board disk cache
and no mechanical action is required to retrieve the data.

In contrast to B+Trees – on-disk optimized data-structures enabling efficient
(sequential) scans – Hash Map data lookup and retrieval is usually random, due
to the lack of locality. Again, this is dependent on the actual hash implementa-
tion.

Inserting and deleting in the B+Hash Tree adds an additional level of
complexity. Assuming that the Hash Map has a sufficient number of free buckets,
then insert/delete operations in a B+Hash Tree add – in theory – just one
more write operation over the B+Tree: the update of the Hash Map. However, if
a leaf node in the B+Tree has to be split or merged during an insert, respectively
delete operation, then the page offsets of the keys in the affected leaf nodes may
have to be updated in the Hash Map. Depending on the B+Tree implementation,
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usually, only the keys where the prefix changes in the newly created or merged
node, may need an update. Worst case, this is an O(n) operation where n denotes
the number of keys with different prefixes in the affected node.

If the Hash Map is full, however, or there are too many collisions, then the
HashMap needs to be reorganized (rehashed) resulting in a higher cost operation
[6, 9].

Space complexity: The space consumption of a B+Tree depends on the num-
ber of nodes. In practice the size of the node is chosen as such to match the
size of a disk page (usually 4, 8 or 16 KB), therefore the space occupancy of a
B+Tree is the number of inner nodes plus the number of data containing leaf
nodes times the size of a disk page:

SizeB+Tree = SizePage(
h�

level=0

Pagelevel + Pageleafs) (4)

where Pagelevel denotes the number of nodes respectively disk pages on level l
of the tree and Pageleafs denotes the number of data containing leaf-nodes.

The space consumption of a B+Hash Tree additionally adds the size of
the Hash Map, which can be expressed by the number of chunks holding hash
buckets. Chunks in turn, are typically sized to match a disk page. Consequently,
the size of the Hash Map is:

SizeHashMap = SizePage ·#Chunks (5)

where #Chunks denotes the number of chunks needed for the Hash Map.
Summarizing, we find that the B+Hash Tree provides a better complexity

for reads compared to B+Trees. This advantage comes at the cost of additional
space shown in Equation 5 and some time to maintain the Hash Map. We would
argue that the cost in most cases is relatively small for Semantic Web applica-
tions. Addressing the former, we believe that given the price of disk space the
additional space complexity for the Hash Map is negligible. Addressing the lat-
ter, it can be argued that, assuming a sufficiently large hash and a higher ratio of
reads than writes/updates, the frequency of hash map reorganization operations
can be limited to a few instances.

Database space complexity: Consequently, given the multi-ordering multi-
level index structure chosen, the total space consumption of a full database index
(all possible index orderings for triples) is:

Sizeindex =
ORDS�

ord

2�

lvl=0

(Sizeord,lvl(B + Tree) + Sizeord,lvl(HashMap)) (6)

where ord represents the current index type (i.e. SPO, OPS, etc. ∈ ORDS), while
lvl denotes the current index level.

3.4 Limitations and Solutions

The overall hashing technique enhances the retrieval time of the B+Tree at the
cost of space consumption as described previously. Considering empirical evi-
dence such as Kryder’s Law [13], space consumption entails a rapidly decreas-
ing economical cost versus the high cost of query answering in today’s DBMS
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(Database Management Systems), where real time or near real time response is
often required.

For high update rate scenarios, the extra overhead induced by the B+Hash

Tree structure can be nullified by considering a parallel architecture where
the traditional B+Tree part of the index would reside on one disk unit while the
Hash Map would be served/updated on another disk. Furthermore, if the update
cost of the Hash Tree is higher than that of the B+Tree at one time, one can
still serve queries by reverting to the O(log(N)) worst case performance of the
B+Tree with no time penalty versus traditional indexing approaches. Hence,
in such a setup the worst-cost complexity of a B+Hash Tree is equal to a
B+Tree (whenever the Hash Map is reorganized). In most cases (when the Hash
Map is available), however, the retrieval complexity would be linear (as shown
in equation 3).

If space is a hard constraint (e.g. in an embedded system) one can change the
policy of updating all keys (overall hashing) to cached hashing, where similar to
cache policies, only “popular” keys are stored. In general, if incremental updates
are rare, then using the overall hashing approach is recommended.

System cache impact: As argued above, the Hash Map significantly improves
access to leaf nodes in comparison to a ”pure” B+Tree. Nonetheless, in reality
any modern computing system employs a hierarchy of cache systems starting
with the disk cache at the lowest level.

When considering the disk cache, there are four possible situations: (i) none of
the structures are in cache – in this case the the B+Hash Tree will provide the
highest performance as described previously, (ii) the Hash Map of the B+Hash

Tree is in cache while the B+Tree is not – the B+Hash Tree will outperform
the former, (iii) the B+Tree is cached and will gain the highest performance,
and (iv) both structures are in cache, which is the most likely scenario.

Nowadays, the typical size of the disk cache varies between 8 and 64 MB.
Performing a simple space consumption estimation for a B+Tree holding 30
million triples, the total number of inner nodes can be approximated to 0.5
million assuming a standard page size of 4KB. This results in an approximately
2 GB inner node index of the B+Tree. Given usual cache eviction approaches
(such as Least Recently Used) it is likely that only the higher inner node levels
of such a B+Tree will be cached while the lower levels will mostly reside on disk.
In this case, the B+Tree structure will have to read h − k pages from disk to
reach the queried leaf page, where h is the height of the tree and k represents the
number of levels in the cache. When the dataset is large enough then h− k > 2
(where 2 is the lookup cost in the B+Hash Tree). In these cases, neglecting
the OS filing system cache, the B+Hash Tree will outperform the traditional
approach. Due to the growth of the Semantic Web we expect that this gap will
grow.

4 Evaluation

To evaluate the performance of the B+Hash Tree compared to a B+Tree
we created a prototype for both indices, which we used in conjunction with
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an in-memory simulation of the on-disk structures. The advantage of the disk
simulation is that it can monitor actual disk page accesses regardless of wall-
clock-time confounding factors such as disk-cache and other operating system
processes. The main disadvantage of this method is that all evaluations were
constrained by the available memory (72GB). Hence, the largest dataset we
could run contained 31 million triples.

Given that the B+Hash Tree is solely an index and not a full-fledged triple
store, we used the query optimizer of a triple store called TokyoTyGR2 to obtain
the index access traces for a query and then ran the traces on the B+Hash

Tree. Since we solely evaluate the index and not the overall triple store in this
paper, we limited our measurements to the retrieval time of the B+Hash Tree

(or B+Tree) index structure and not complete query answering such as parsing of
the SPARQL query or selectivity estimations – these measures would have been
the same for both index structures. Moreover, we do not monitor the additional
sequential page reads for range scans, because as discussed in Equations 2 and
3, the number of additional page-accesses due to the scan is identical (i.e., s) for
both considered approaches. Therefore we only track the differentiating parts of
the equations, which excludes the scans. To maximize disk access performance
we set the B+Tree page size to the size of the disk page size (4 KB).

Consequently, each result presented in Figures 2a–f shows the number of disk
page reads of a whole index access trace during a single query execution and not
just a single lookup of an element in the index. All test simulations use the
overall hashing technique.

For the traditional B+Tree approach, we discriminate between sequential
and random disk page reads in the diagrams. In the case of the B+Hash Tree,
we present only ”all reads”, as most reads from a Hash Map are random.

The space consumption was calculated by applying the formulas provided in
our complexity analysis of the B+Hash Tree.

In the remainder of the section we first present the two datasets—the Berlin
SPARQL Benchmark dataset and Yago—with their associated queries as well as
performance measures, and then discuss the results and their limitations.

4.1 The Berlin SPARQL Benchmark Dataset

The first dataset, the Berlin SPARQL Benchmark3 (BSBM), is a synthetic
dataset. It simulates an enterprise setting, where a set of products are offered
by different vendors and clients can review them [3]. The dataset can be gener-
ated using the available data generator and the BSBM provides twelve distinct
SPARQL queries.

Some of these SPARQL queries contained ”REGEX”, ”OFFSET”, ”UNION”,
”DESCRIBE”, and other expressions, which TokyoTyGR does not support.
Therefore, we selected a subset of 5 queries without these elements from which

2 The TokyoTyGR is an extension of the Hexastore [15] triple store. It can easily
accommodate inserts/deletes and has a state of the art query optimizer based on
selectivity estimation techniques.

3 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark

105



we further removed “FILTER”-expressions and “OPTIONALS”, as they would
be handled in the exact same way by both the B+Hash Tree and the B+Tree.
The result are the 5 queries (denoted as Query 1 to 5), which we list in Appendix
A in ascending query complexity (in terms of variables and triple-patterns).

To compare the performance of the index structures with increasingly larger
dataset sizes, we created five different datasets ranging from 1 million to 31
million triples. The details of these datasets are shown in Table 1. Note that
the number of unique predicates in all datasets is the same while the number of
unique subjects and objects increases. The results of running the five queries on

Dataset # Triples S P O

BSBM

1,075,597 99,527 40 224,032
2,160,331 200,096 40 443,753
4,969,590 452,507 40 966,120

10,632,426 966,013 40 1,979,668
31,741,096 2,863,525 40 5,297,862

Yago 16,348,563 4,339,591 91 8,628,329

Table 1. Number of triples, unique subjects, predicates, and objects in the datasets

the different dataset sizes are shown in Figure 2a–e. For every query and dataset,
the B+Hash Tree is in each case faster (i.e., uses fewer disk reads) than the
traditional B+Tree approach. Furthermore, the difference between the number
of disk page reads for both structures increases with the size of the dataset.
Therefore, for the 31 million triple dataset, the B+Hash Tree performs twice
as fast as the B+Tree.

Figure 2g) shows the disk space consumption of both data structures. As
expected, the B+Hash Tree consumes more space. We believe, however, that
for most applications, trading-in 20% of the space against a halved access-time
is a worthy trade-off.

4.2 Yago Dataset

To complement the synthetic BSBM dataset with a real-world representative,
we employed Yago4 as a second dataset, which consists of facts extracted from
Wikipedia. Again, Table 1 shows the characteristics of the Yago dataset, which
contains about 16 million distinct triples and almost 13 million resources.

The Yago dataset does not come with a defined set of queries. Therefore, we
constructed three queries (numbered Queries 6–8; shown in Appendix A), which
simulate a realistic information request such as “What actors play in American
movies?” or “Which scientist is born in Switzerland?”. In addition, we ensured
that two queries (Q6 and Q7) have a low selectivity and, therefore, “touch” a
lot of the data, and one query (Q8) is highly selective and is, therefore, expected
to “touch” fewer disk pages.

To simplify the comparison, and as Yago has only one dataset size, we
graphed all results in a single plot (Figure 2f). Also, given the large number
distribution, the plot employs a logarithmic scale on the x-axis.
4 http://www.mpi-inf.mpg.de/yago-naga/yago/n3.zip
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a) Query 1 - BSBM b) Query 2 - BSBM

c) Query 3 - BSBM d) Query 4 - BSBM

e) Query 5 - BSBM

g) Disk Space Consumptionkey for diagram a) - f)

f) Yago (logarithmic scale)
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Fig. 2. Number of disk reads for the queries and disk space consumption

Again, the B+Hash Tree outperforms the traditional B+Tree by accessing
about half the pages. As expected, Query 8 reads fewer disk pages. It is note-
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worthy to observe that the performance improvement seems independent of the
query’s selectivity.

Figure 2g again graphs the space consumption. Note that the higher space
consumption of Yago compared to BSBM can be attributed to the number of
distinct values for URIs and literals: while the 31 million BSBM dataset has 8
million distinct values, Yago’s 16 million triples have 13 million distinct values.

4.3 Discussion and Limitations

Our results confirm the theoretical analysis that the performance improvement
of the B+Hash Tree compared with the normal B+Tree increases with the
size of the dataset. To further illustrate the result, Figure 3 graphs the speed-up
factor against the dataset size. Observably, the speed-up factor increases with
the size of the number of triples inserted and therefore confirms Equations 2
and 3 in practice. Given that Equation 2 grows logarithmically and Equation 3
is constant (ignoring the scan element) we would expect the difference to grow
logarithmically with dataset size.
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Fig. 3. Speed Up Factor vs. Dataset Size (error bars show results for different queries)

We also investigated, if the query complexity in terms of number of query
variables (which varies from 2 to 11) and triple patterns (which varies from 2 to
12) affects the speed performance. Visually, Figure 2 indicates no such difference.
Indeed, a pairwise, two-tailed t-test confirmed that the speed-up between queries
remains constant with a signifiance of far below 0.1%.

This B+Hash Tree prototype consumes a considerable amount of space
which can be traced to four main reasons. First, by storing all possible subset
combinations of a triple we gain speed in query answering, as highlighted in the
Hexastore project. Second, we set the size of a disk page to 4KB which entails
B+Trees containing more inner nodes, thus consuming more space. Third, we
use 20 byte instead of 8 byte keys typically used in DBMS, as we wanted a global
rather than a ”table-local” key space. And last, we have not yet considered index
compression, further reducing the consumed space while still maintaining access
speed, as shown by Neumann [10].

Building the RDF index in the B+Hash Tree from scratch can increase the
build time significantly compared to the B+Tree depending on the Hash Map
implementation. A more thorough investigation of this issue is still open.
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Limitations: We see three major limitations in our evaluation; not of our pro-
posed approach. First, all our empirical calculations are based on an in-memory
simulation of an on-disk B+Hash Tree structure. To mitigate this problem
we ensured that our hard-disk model was as accurate as possible and we pa-
rameterized it with present-day hard disk parameters. In addition, we measured
disk page accesses rather than wall-clock time, essentially focusing on the most
time-intensive element of the queries. Consequently, we are confident that our
findings generalize to the on-disk setting.

Second, our simulation disregards disk caches. Disk-caches in modern day
operating systems are intricate structures that any on-disk index would share
with other disk-accessing processes. This makes an adequate simulation a highly-
complex issue and may mislead evaluations in a real, on-disk setting. As discussed
in Section 3.4, however, we would expect a B+Hash Tree to outperform a
traditional B+Tree even in the presence of disk-caches.

Last, we used the TokyoTyGR RDF store to obtain index-access traces for
each of the experimental queries. It could be argued that the results of our
experiments are biased towards its query optimizer. Given that TokyoTyGR uses
a selectivity-based optimizer [12] like most other modern triple stores (such as
Hexastore or RDF-3X) the danger of a systematic bias seems limited—especially
since it seems unlikely that other query optimizations would lead to a vastly
different access pattern between a B+Hash Tree and a B+Tree. Nonetheless, a
completely different query optimization approach might require the re-evaluation
of our results.

Note that even in light of these limitations, the use of a disk-simulation had
several advantages: First, it allowed us to isolate the evaluation from confounding
effects (e.g., by the operating system). Second, it allowed us to meticulously
distinguish between different types of disk accesses—an undertaking that is non-
trivial in a real on-disk structure. Nonetheless, a future on-disk evaluation will
have to complement our current findings.

5 Conclusion and Future Work

In this paper we proposed the B+Hash Tree—a scalable, updatable, and
lookup-optimized on-disk index-structure especially suitable to the Semantic
Web with its large key-space. We showed that using a Hash Map to store the off-
sets of the leaf nodes successfully trades a slight increase in database size against
significantly reduced retrieval time. When used in the context of existing index
approaches such as Hexastore and RDF-3X, this will allow for effective retrieval
of all possible triple patterns.

To evaluate the B+Hash Tree empirically, we benchmarked the number of
page reads (and hence indirectly retrieval time) using two well-established Se-
mantic Web test datasets. As the results show, the B+Hash Tree consistently
requires approximately half the page reads of a B+Tree. Note that this difference
is expected to grow with the logarithm of the dataset size.

The current implementation of the B+Hash Tree was only used in the
simulated measurements. We, therefore, intend to implement a fully operational
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disk-based version of the index and evaluate it with several “truly” large datasets.
In this context we also want to investigate the interaction between the B+Hash

Tree and the disk-cache. Last but not least, we intend to consider the use of
index-compression to develop even more efficient index structures.

Research in index structures has come a long way, from the early days of
simple re-use of traditional, relational, row-based data base indices to the con-
struction of specialized structures such as Hexastore and RDF-3X. We believe
that the B+Hash Tree provides a new quality to this exploration. It does not
smartly reuse existing structures like its predecessors but investigates a Seman-
tic Web data specific algorithmic extension. As such it calls for the exploration
of index structures that exploit the structural and statistical idiosyncrasies of
Semantic Web data. The result of this exploration should be truly web-scalable
triple stores, which lie at the very foundation of the Semantic Web vision, and the
B+Hash Tree can provide a major building block towards that foundation.
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A Appendix

The Berlin SPARQL Benchmark (BSBM) Dataset queries:
Query1: SELECT ?product ?label WHERE { ?product <label> ?label;

<type> <Product>; <productFeature> <ProductFeature50>;

<productFeature> <ProductFeature580>; <productPropertyNumeric1> ?value1 . } LIMIT 10

Query2: SELECT ?offer ?price WHERE { ?offer <product> <Product62>; <vendor> ?vendor;

<publisher> ?vendor . ?vendor <country> <US> . ?offer <deliveryDays> ?deliveryDays;

<price> ?price; <validTo> ?date . } LIMIT 10

Query3: SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName WHERE {

?review <reviewFor> <Product197>; <title> ?title; <text> ?text; <reviewDate> ?reviewDate;

<reviewer> ?reviewer . ?reviewer <name> ?reviewerName . } LIMIT 20

Query4: SELECT ?product ?productLabel WHERE { ?product <label> ?productLabel .

<Product613> <productFeature> ?prodFeature . ?product <productFeature> ?prodFeature .

<Product613> <productPropertyNumeric1> ?origProperty1 .

?product <productPropertyNumeric1> ?simProperty1 .

<Product613> <productPropertyNumeric2> ?origProperty2 .

?product <productPropertyNumeric2> ?simProperty2 . } LIMIT 5

Query5: SELECT ?label ?comment ?producer ?productFeature ?propTextual1

?propTextual2 ?propTextual3 ?propNumeric1 ?propNumeric2 WHERE {

<Product2227> <label> ?label; <comment> ?comment; <producer> ?p .

?p <label> ?producer; <publisher> ?p; <productFeature> ?f . ?f <label> ?productFeature .

<Product2227> <productPropertyTextual1> ?propTextual1;

<productPropertyTextual2> ?propTextual2; <productPropertyTextual3> ?propTextual3;

<productPropertyNumeric1> ?propNumeric1; <productPropertyNumeric2> ?propNumeric2 . }

The YAGO Dataset queries:
Query6: SELECT ?actor ?p WHERE { ?actor <actedIn> ?p .

?p <type> <wikicategory_American_films> . }

Query7: SELECT ?scientist WHERE { ?scientist <type> <wordnet_scientist>; <bornIn> ?city .

?city <locatedIn> <Switzerland> . }

Query8: SELECT ?person WHERE { ?person <graduatedFrom> <University_of_Zurich>

?person <hasWonPrize> ?price . }
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