
Case-Based Reuse of Software Examplets�

Markus Grabert & Derek Bridge
University College Cork

Ireland
m.grabert/d.bridge@cs.ucc.ie

Abstract: We present a software tool for examplet reuse. We define examplets to be
goal-directed snippets of source code, often written for tutorial purposes, that show
how to use program library facilities to achieve some task. Our tool allows users to
specify both their goal (in free text) and their ‘situation’ (the source code on which they
are working). The system combines text retrieval and spreading activation through a
semantic net representation of the source code.

1 Introduction

It has long been an aspiration of the software industry that software development should
proceed, at least in part, by a process of reuse of components. The anticipated benefits are
improvements in programmer productivity and in software quality.

Over the last 15 years, researchers have been looking at ways of providing software sup-
port to programmers engaged in software reuse (see Section 5). Their efforts have mostly
been concerned with the retrieval of reusable components (especially source code) from
repositories. Search engines can scan repositories much more quickly than the human
programmer can. The challenge, of course, is to equip the search engine with ways of
recognising which of the items it visits have the potential to fulfil the user’s needs. Pro-
cesses other than retrieval have largely not been the subject of these research efforts. It is
left to the human programmer to, for example, adapt the retrieved components and inte-
grate them into her software.

The research we report in this paper is likewise concerned with retrieval of reusable com-
ponents. Like a lot of the research into software-supported reuse, we draw ideas from
Case-Based Reasoning (CBR). The CBR-cycle [AP94], retrieve-reuse-revise-retain, has
obvious parallels with the processes involved in software reuse [TA97].

In Section 2, we describe examplets, which are the reusable components that our system
stores and retrieves. Section 3 describes the architecture and operation of our system
for examplet retrieval, explaining both the text retrieval and semantic net retrieval. In
Section 4, we present the results of some experiments with the system. We describe related
research in Section 5.

�This research was funded in part by grant ST/2000/092 from Enterprise Ireland.

2 Examplets

Modern programming languages, especially object-oriented languages, make use of li-
braries of reusable components (e.g. class definitions). These libraries are large. In the
case of Java, for example, the standard class library (SDK 1.4) alone contains approxi-
mately 3000 class definitions and Java interfaces.

We want to make it easier for programmers to make use of the resources contained in
these libraries. This may be especially helpful for novice programmers, whose familiarity
with the contents of even standard libraries may be low. However, experienced program-
mers sometimes find themselves in the position of novices: when the software they are
developing requires knowledge of technologies with which they are less familiar.

In many CBR systems for software reuse, each class definition in the library is treated as
a case. But cases are supposed to have characteristics that class definitions in a library
do not. “A case is a contextualized piece of knowledge representing an experience that
teaches a lesson fundamental to achieving the goals of the reasoner.” [Ko93].

The cases in our case base live up to the definition given in the previous paragraph. Each
of our cases contains a representation of what we call an examplet. An examplet has two
parts. One part is a snippet of source code, in our case in Java. This snippet shows how
to accomplish a task in Java using library components. Crucially then, it shows library
components in use. Each examplet is goal-directed, and so the other part of an examplet
is a statement of the goal in free text. One of our smaller examplets is shown in Figure 1.

Examplets are widely available, both in printed form and on the World Wide Web, e.g.
[Ch99]. They capture HOWTO knowledge; each might also be thought of as a kind of
FAQ. Each is hand-crafted, which tends to ensure that it addresses programmer needs. The
effort of crafting examplets is borne by library authors and others interested in promoting
use of the library.

Examplets facilitate reuse at two levels. On the one hand, they direct the attention of a
programmer to the facilities provided within a library, which encourages reuse of those
facilities. (The provision of hyperlinks within examplets to the library API can increase
the likelihood of this.) On the other hand, they show a typical usage pattern, involving
the co-ordinated use of multiple library facilities. Programmers may be able to adapt the
usage patterns expressed in these stretches of source code to their own needs.

3 A Software Tool that Recommends Examplets

3.1 Overview

The system that we have developed helps programmers to solve common problems by
recommending the HOWTO knowledge embodied in a case base of examplets. We expect
programmers who use such a system to be actively writing their program, and then to find
that they have some quite specific goal which, due to, e.g., lack of familiarity with the

Examplet Goal Text
How to read directly from a URL using BufferedReader

Examplet Source Code

import j a v a . n e t . � ;
import j a v a . i o . � ;

p u b l i c c l a s s URLReader
f

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) throws E x c e p t i o n
f

URL yahoo = new URL(” h t t p : / / www. yahoo . com / ”) ;
B u f f e r e d R e a d e r i n = new B u f f e r e d R e a d e r (

new I n p u t S t r e a m R e a d e r (yahoo . openStream ())) ;
S t r i n g i n p u t L i n e ;
whi le ((i n p u t L i n e = i n . r e a d L i n e ()) ! = n u l l)

System . o u t . p r i n t l n (i n p u t L i n e) ;
i n . c l o s e () ;

g
g

Figure 1: An Examplet

language facilities or forgetfulness, they are uncertain how to solve. One programmer, for
example, might not know how to define and export a remote object; another might need to
be reminded how to open a text file for reading.

As we have seen, each examplet contains a free-text statement of the problem that it solves,
the examplet goal text. The user will express her goal, the query goal text, also in free-text.
Standard text retrieval techniques can be used to retrieve relevant examplets. We describe
the design of this part of our system in a little more detail in Section 3.2.

In allowing the user to provide in his query a statement of what he is looking for (the query
goal text), our system is no different from numerous other search engines, including ones
that have been built to support software reuse. However, we had a suspicion, borne out
by the results of experiments (Section 4), that matching the goal texts in the query and
examplets would not alone give especially good results.

But, if the programmer is actively writing her program, then she can tell us, not only what
she is looking for, but also what she has already. In addition to a goal text, her query
can contain some or all of the source code that she has written already. By default, this
source code would be the class definition that the user is currently editing; but a user might
explicitly highlight a section of source code, e.g. the context that surrounds the part of the
code that she does not yet know how to write.

So in addition to doing text retrieval on goal texts, our system will attempt to match query
source code with examplet source code (the snippets of code in the examplets). This

matching is done using spreading activation in a semantic net. It is described in more detail
in Section 3.3. We believe that this makes our system more faithful to strong conceptions
of CBR. The user’s problem (query) is described by both a goal and a ‘situation’.

3.2 Text Retrieval for the User’s Goal

For text retrieval, we are using a modified version of ht://Dig1. This is an open-source
search engine, written in C/C++, designed for use with Web sites.

Given a set of cases, one per examplet, we use ht://Dig to produce an inverted index to
the goal texts. Index entries are produced using word stemming and exclude a list of stop
words.

For retrieval, we provide ht://Dig with a thesaurus.2

The query goal text, after word stemming and the removal of words from the stop list, is
treated purely conjunctively. Cases are scored by counting how many word stems or their
synonyms in the query match word stems in the cases.

3.3 Semantic Net Retrieval for the User’s Situation

We have to store each examplet’s source code, if only so that it can later be displayed to
the user. To support retrieval, we could have chosen to treat the source code as raw text
and built an index to it using ht://Dig. We did not think this was appropriate for several
reasons:

� Programming language keywords recur and so are likely to have low predictive
power.

� Identifiers in examplets tend to be short and relatively non-descriptive. For example,
a variable that references a button might be called simply b. Examplet authors can
justify this practice because examplets are often short and are not situated in the
context of a larger software system. But, the non-descriptiveness of these identifiers
reduces the likelihood of true hits.

� Even when identifiers are meaningful, the user and the examplet authors may use
a variety of idiosyncratic naming schemes. For example, a variable that holds a
unique, numeric student identifier might be called any of studentId, student-
Num, studNum, stdntNo, etc. These variations reduce the likelihood of true hits.

� A purely textual approach ignores the potentially valuable structural information
conveyed by source code (e.g. class membership, message sending, subclassing,
etc.).

1http://www.htdig.org/
2We based this on data extracted from WordWeb (http://wordweb.info/), a free cut-down version of

WordWeb Pro.

We decided, in our system, to extract some structure from each snippet of source code and
use this, rather than the raw source code, for retrieval.

We decided to express essential aspects of the structure of each snippet of code using a
semantic net. We placed two requirements on the process of constructing and activating
the net from code snippets:

� It should be wholly automatic. This allows the easy incorporation of new examplets
into the case base.

� It should be as robust as possible in the face of incompleteness or ill-formedness
in the source code. This is needed for two reasons. Firstly, ellipsis is common in
examplets: the author may elide code that is unimportant to the lesson conveyed by
the examplet. Secondly, since the query source code is still under development, it
will typically be incomplete and may not yet compile.

Our approach is to use a parser, and to build the net from parse trees. We used the ANTLR
translator generator3, which comes with a Java grammar. We modified the parser that
ANTLR generated so that, even in the face of compiler-errors, it would still output a
parse tree, and this parse tree would contain as much of the source code’s token stream as
possible.

Our net is constructed by walking the parse tree. It contains five kinds of node: case, class,
interface, method and variable.

� A case node is constructed for each examplet.

� Class nodes and interface nodes are created for each unique class identifier or Java
interface identifier, wherever it is encountered.

� Method nodes are created for each unique method identifier (whether encountered
in method headers when defining a method or in blocks of code when invoking a
method). A method identifier does not qualify for a new node if and only if there
already exists a method node for the same method name, the same signature (includ-
ing return type) within the same class or interface.

� Finally, variable nodes are created for each declaration of an instance variable or
class variable. (We ignore formal parameters and local variables, and we consider
only variable declarations, not variable accesses.)

Our net contains five kinds of relationship (although their semantics currently plays no
part in the retrieval): relevance, subclass, implements, member and invokes.

� The net contains a relevance-arc between a case node for a particular examplet and
each of the class, method and variable nodes that would be created from its source
code.

3http://www.antlr.org/

� Where the source code declares that one class or interface extends another or a class
implements an interface, the corresponding case nodes are linked with subclass- or
implements-arcs, as appropriate.

� Class and interface nodes are linked by member-arcs to the nodes for their members.
Possible members are: inner classes; variables declared in the class or interface; and
methods defined within the class or interface.

� When a method body contains a statement that invokes another method, two kinds
of arc are created, if possible. Firstly, there will be an invokes-arc between the two
method nodes (the client method and the method being invoked). Secondly, an at-
tempt will be made to link the node for the invoked method to its class or interface
node using a member-arc, if such an arc does not already exist. If the method is
invoked implicitly or explicitly by sending a message to this, the method is linked
to the containing class node. If the method is invoked by sending a message to a
variable that contains a reference to some object, then the type of that variable is de-
termined from the source code, if possible, and this gives the class or interface node
to which this method is linked. (Note that this has at least two limitations. Firstly,
the code may be incomplete, so the variable declaration may not be present in the
snippet, in which case no arc can be created. Secondly, Java’s dynamic method
binding means that the type of the variable in the source code may not fully deter-
mine the method’s class.) Finally a class method can be invoked by prefixing the
call with the class name, enabling the method and its class to be straightforwardly
linked.

The arcs are given weights, initialised to 1 on creation. The weights are increased (cur-
rently by a factor of 1.2) for each time that the relationship is repeated in the source code
(e.g. if a method body contains more than one invocation of some other method).

With these rules, our net is a good, pragmatic approximation of the source code structure.
Due in particular to the possibility of incompleteness or ill-formedness in the source code,
it may not be wholly faithful to the intended semantics of the code.4 But we believe the
quality of analysis that we get is good enough for the kind of retrieval that our system
supports.

A fragment of the net, corresponding to the examplet in Figure 1, is shown in Figure 2.
(Nodes for the String and Exception classes have been omitted in the interests of
compactness.)

The source code in the examplets is used to construct the net. The query source code, by
contrast, is used to activate the net. The query source code is parsed and the parse tree is
walked in search of identifiers. For each class identifier, all class nodes for that identifier
are activated. For each class variable or instance variable declaration, all variable nodes
for the same identifier and type are activated. For each method identifier, all method nodes
for the same identifier and signature (including return type) are activated.

4Our current implementation also ignores the namespaces given by Java packages and the role of Java im-
port statements. This can mean that equal identifiers from different packages might be incorrectly represented
by a single node in the net.

Case
#21

main close printlnreadLine
open

Stream

URL
Reader

Buffered
ReaderURL

Input

Reader
Stream System

Key

Case Node

Class Node

Method Node

Relevance Arc

Member Arc

Invokes Arc

Figure 2: Semantic Net Fragment

In fact, this initial activation does not exclusively use identifier equality. We use an inexact
string matching algorithm to compare identifiers in the query source code with node labels
in the semantic net. The initial activation is multiplied by the degree of similarity, [0,1].
The current implementation of inexact string matching is simplistic: it is computed as the
size of any common prefix divided by the length of the identifier in the query source code.

The search for relevant case nodes (examplets) is implemented by spreading activation
through the net. At each time point, each node spreads a proportion of the activation that
it received at the previous time point to all of its immediate neighbours. We spread only a
proportion (presently 0.7) to simulate the idea that activation decays the further it travels.
This also forms the basis of a stopping criterion (see below). The amount of activation
spread down a particular arc is further modified by multiplying by the arc weight.

A node does not spread any of its new activation if the amount of that activation is less than
a threshold amount (presently 0.1). When no node is in a position to spread any activation
or when a maximum number of time points has elapsed (currently 150), the spreading
activation terminates.

Those case nodes that have received the highest total activation are retrieved.

4 Experimental Results

We collected 40 examplets from the Web. They came from several different sources5

which reduces the dependence of our results on any one style of examplet. Each examplet
comprises between 10 and 120 lines of text.

As well as a snippet of source code, each examplet must have a goal text. Unfortunately,
we found that the textual descriptions associated with the original examplets to be unsuit-
able. Too often, the descriptions were insufficiently goal-oriented. Rather than describing
the problem that the examplet solves, they focused on how the lines of code contribute to
the solution. We decided, therefore, to write our own goal texts, and we use only these in
the experiments.

Our experimental methodology is that of an ablation study and we use the leave-one-in
methodology [AB97]. Each case in the case base is selected in turn (with replacement); a
query is created from the selected case (in the manner described below); and the query is
evaluated against the full case base. The query is successful if the case from which it was
created is among the top 5 retrieved cases, and we measure the proportion of times this
happens.

We will explain first how we create the query goal text, and then how we create the query
source code. We asked three experienced Java programmers to look independently at
different subsets of the 40 examplets in our case base. They saw only the source code. For
each examplet that they looked at, we asked them to write their own sentence describing
the problem to which the examplet would be the solution. By this means, we obtained two
query goal texts per case. Here are the goal texts we obtained for the examplet shown in
Figure 1:

“How to copy from a URL to an output stream”
“How to read from an URL using a BufferedReader”

In the experiments, when constructing the query, one of the two query goal texts is chosen
at random. Stopwords are removed and word-stemming is applied to the chosen goal
text. Then a proportion of the text is deleted at random. The remainder is submitted to
ht://Dig. Our approach loosely simulates users whose query goal texts might be quite
fragmentary, perhaps comprising only one or two keywords.

The other part of a query is the query source code, which is used to activate the semantic
net. We needed to simulate the idea that the user is working on some class definition when
he submits his query. His class definition may therefore be incomplete and even ill-formed.
So we delete a randomly-chosen proportion of the nodes in the parse tree and we use the
remainder to activate the net.

As we have described, query creation for a given case involves random deletion of portions
of the goal texts and source code. This places a requirement that we use cross-validation to
ensure we do not report results from unduly favourable or unfavourable random selections.

5The sources include: http://java.sun.com/docs/books/tutorial/ and
http://examples.oreilly.com/jenut2/2nd edition/

Figure 3: Accuracy for query source code/query text alone

In our experiments, we use 100-fold cross-validation.

Figures 3 and 4 show our results. In particular, Figure 3 plots the retrieval accuracy for
each retrieval mode separately. We see that the more query source code or query goal text
that is supplied (i.e. the less that gets ablated) the higher the retrieval accuracy. Source code
retrieval has marginally the poorer performance when there is most ablation, but it climbs
slightly more steeply, and achieves 100% retrieval accuracy, which goal text retrieval does
not do. However, our experimental results for source code retrieval may be better than
they would be in practice: random ablation of an examplet’s source code will result in
query source code that is still structurally quite similar to the original examplet, especially
at lower levels of ablation.

The results in Figure 4 are obtained by combining the retrieval scores from the two forms
of retrieval using a weighted average, where the two forms of retrieval are weighted equally
(both 0.5). Of course, this does not guarantee that the two forms of retrieval are being
treated equally, since the normalisation of the scores may be imperfect. We have tried
other weighting schemes (not shown in this paper); the results are not much different.

For our 40 examplets, the semantic net contains approximately 340 nodes and 480 arcs.
The system is written in Java. Running the Java 1.3 interpreter on a 1GHz Pentium3
with 256MB RAM, it takes approximately 10 seconds on average to run a single query,
of which slightly over half is the time to run our modified parser. An optimised and
compiled version of the system would run much faster. It might even be possible to obtain
a negligible response time if we were to redesign the system to work in an incremental
‘any-time’ fashion as a background activity.

Figure 4: Combined Results

5 Related Work

The literature reports numerous systems that have been built to support software reuse.
Approaches vary widely. There are those based purely on textual retrieval. For example,
in [MBK94], software documentation (comments and manuals) are indexed (having regard
for lexical affinities and statistical distributions) to allow the use of standard IR techniques.

In [PF87], software components themselves are described using sextuples of facets (fea-
tures) whose values are drawn from expert-defined controlled vocabularies. They are clas-
sified by these facets, and the classes are assigned, by the experts, into a conceptual dis-
tance graph. User queries also take the form of sextuples. A similar, but perhaps more
flexible approach, is reported in [Os92]. In neither the IR approaches, nor these classifica-
tion approaches, is there any real representation of the content of the code itself.

The LaSSIE system [De91] uses a system of frames to represent a large software system.
There is an emphasis on representing the system’s actions. The knowledge base is pro-
duced manually, which is an intensive task. User queries can also be expressed as frames
with unfilled slots or in natural language. We think it an advantage of our approach, by
contrast, that the semantic net is produced wholly automatically, and that queries can com-
prise code as well as text.

By far the greatest amount of related work uses CBR (focusing on case retrieval). An
ambitious CBR system, for example, is proposed in [Fe96]. The system design combines
text retrieval on component documentation with similarity-based retrieval on a case base
of software components represented in LOOM. The cases represent classes, methods and
what are described as ‘cookbook recipes’. Cookbook recipes may well correspond to
what we are calling examplets. The LOOM representation captures much the same kind
of structural information that we extract from our parse trees. However, certain compo-

nents of their representation, especially those concerned with case justification, cannot be
created automatically.

In [Te98], information about a repository of Java class definitions is extracted using Java’s
reflection facilities, and this information is used to index the repository. In addition, knowl-
edge engineers can encode information about abstract data types (ADTs). Any class whose
indexes have a high degree of similarity with the features of the ADT will be indexed by
that ADT. A user’s query is a possibly incomplete class interface. A potential weakness is
that any user who can specify her query sufficiently in this way is probably knowledgeable
enough to know which class definitions in the repository are relevant and so may find the
system of limited value.

One of the more concerted efforts has been conducted by Gomes and others at the Uni-
versity of Coimbra in Portugal. In the earlier work [GB99] [GB00] the emphasis was on a
quite deep representation of software components. Specifically, they used what they called
a Function-Behaviour Case Representation, attempting to express both the ‘what’ and the
‘how’ of the component. Attention, however, was confined to cases written in VHDL, a
simple hardware description language.

In later work [Go01] [Go02a] [Go02b], their attention has moved to software design.
Cases represent designs and design patterns expressed as class diagrams in the Unified
Modeling Language (UML). Similarity-based retrieval exploits the identifiers (class, at-
tribute and method names) and the structural relations in the UML diagrams. Semantic
relations between identifiers can be found by using WordNet. Once candidate cases have
been retrieved in this fashion, a heuristically-guided structural mapping algorithm sets up
correspondances between the user’s partial design and the retrieved cases. The work is
unusual in providing some support for automatic adaptation of the user’s design: the sys-
tem has procedural knowledge that enables it to attempt to apply a retrieved design to the
user’s design.

CBR has also been used at a corporate level to support organisation learning in software
development projects [Al98] [Je01]. This work uses CBR to give a concrete realisation
of the idea of an Experience Factory [BCR94]. This work obviously addresses somewhat
broader goals than our own.

6 Conclusions

We have presented a tool for retrieval of software examplets. The user can specify both
her goal (as text) and her current situation (the code that she has been writing). The sys-
tem uses textual retrieval and spreading activation in a semantic net to achieve promising
results.

In future work, we wish to take a broader view, supporting design-oriented activities as
well as coding ones. We would expect, however, to continue to pursue the idea of retrieval
based on both user goal and situation.

References

[AB97] Aha, D.W. & Breslow, L.A.: Refining Conversational Case Libraries, in D.B.Leake &
E.Plaza (eds.), Procs. of the Second International Conference on Case-Based Reason-
ing, LNAI 1266, pp.267–278, Springer, 1997.

[Al98] Althoff, K.-D., Birk, A., von Wangenheim, C.G. & Tautz, C.: CBR for Experimental
Software Engineering, in M.Lenz, B.Bartsch-Spörl, H.-D.Burkhard & S.Wess (eds.),
Case-Based Reasoning Technology: From Foundations to Applications, LNAI 1400,
Springer, pp.235–254, 1998.

[AP94] Aamodt, A. & Plaza, P.: Case-Based Reasoning: Foundational Issues, Methodologi-
cal Variants, and System Approaches, Artificial Intelligence Communications, vol.7(1),
pp.39–59, IOS Press, 1994.

[BCR94] Basili, V.R., G. Caldiera & H.D. Rombach: Experience Factory, in J.J. Marciniak, En-
cyclopedia of Software Engineering, vol.1, pp.469–476, Wiley, 1994.

[Ch99] Chan, P.: The Java Developers Almanac 1999, Addison-Wesley, 1999

[De91] Devanbu, P., Brachman, R.J., Selfridge, P.G. & Ballard, B.W.: LaSSIE: A Knowledge-
Based Software Information System, Communications of the ACM, vol.34(5), pp.34–49,
1991.

[Fe96] Fernández-Chamizo, C., González-Calero, P.A., Gómez-Albarrán, M. & Hernández-
Yáñez, L.: Supporting Object Reuse Through Case-Based Reasoning, in I.Smith &
B.Faltings (eds.), Procs. of the Third European Workshop on Case-Based Reasoning,
LNAI 1168, Springer, pp.135–149, 1996.

[GB99] Gomes, P. & Bento, C.: Automatic Conversion of VHDL Programs into Cases, in
S.Schmitt & I.Vollrath (eds.), Procs. of the Workshop Programme at the Third Inter-
national Conference on Case-Based Reasoning, 1999.

[GB00] Gomes, P. & Bento, C: Learning User Preferences in Case-Based Reuse, in E.Blanzieri
& L.Portinale (eds.), Procs. of the European Workshop on Case-Based Reasoning,
LNAI 1898, Springer, pp.112–123, 2000.

[Go01] Gomes, P., Pereira, F.C., Bento, C. & Ferriera, J.L.: Using Analogical Reasoning to Pro-
mote Creativity in Software Reuse, in R.Weber & C.G.von Wangenheim (eds.), Procs.
of the Workshop Programme of the Fourth International Conference on Case-Based
Reasoning, pp.152–158, 2001.

[Go02a] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferriera, J.L. & Bento, C.:
Case Retrieval of Software Designs using WordNet, in F.van Harmelen (ed.), Procs. of
the 15th European Conference on Artificial Intelligence, pp.245–249, 2002.

[Go02b] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferriera, J.L. & Bento,
C.: Using CBR for Automation of Software Design Patterns, in S.Craw & A.Preece
(eds.), Procs. of the Sixth European Workshop on Case-Based Reasoning, LNAI 2416,
Springer, pp.534–548, 2002.

[Je01] Jedlitschka, A., Althoff, K.-D., Decker, B., Hartkopf, S. & Nick, M.: Corporate In-
formation Network (COIN): The Fraunhofer IESE Experience Factory, in R.Weber &
C.G.von Wangenheim (eds.), Procs. of the Workshop Programme of the Fourth Interna-
tional Conference on Case-Based Reasoning, pp.9–12, 2001.

[Ko93] Kolodner, J.: Case-Based Reasoning, Morgan-Kaufmann, 1993.

[MBK94] Maarek, Y., Berry, D.M. & Kaiser, G.E.: GURU: Information Retrieval for Reuse, in
P.Hall (ed.), Landmark Contributions in Software Reuse and Reverse Engineering, Uni-
com Seminars, 1994

[Os92] Ostertag, E., Hendler, J., Prieto-Dı́az, R. & Braun, C.: Computing Similarity in a Reuse
Library System: An AI-Based Approach, ACM Transactions of Software Engineering
and Methodology, vol.1(3), pp.205–228, 1992.

[PF87] Prieto-Dı́az, R. & Freeman, P.: Classifying Software for Reusability, IEEE Software,
vol.4(1), pp.6–16, 1987.

[TA97] Tautz, C. & Althoff, K.-D.: Using Case-Based Reasoning for Reusing Software Knowl-
edge, in D.B.Leake & E.Plaza (eds.), Procs. of the Second International Conference in
Case-Based Reasoning, LNAI 1266, Springer, pp.156–165, 1997.

[Te98] Tessem, B., Whitehurst, A. & Powell, C.L.: Retrieval of Java Classes for Case-Based
Reuse, in B.Smyth & P.Cunningham (eds.), Procs. of the Fourth European Workshop
on Case-Based Reasoning, LNAI 1488, pp.148–159, Springer, 1998.

