
Investigating different Methods for efficient Retrieval of
Generalized Cases

Rainer Maximini Alexander Tartakovski
Ralph Bergmann

University of Hildesheim, Data- and Knowledge Management Group
PO-Box 101363, D-31113 Hildesheim, Germany

fr maximijtartakovjbergmanng@dwm.uni-hildesheim.de

Abstract: Generalized cases are cases that cover a subspace rather than a point in the
space, spanned by the case’s attributes and can be represented by a set of constraints
between them. For such representations, the similarity assessment between a point
query and generalized cases is a difficult problem that is addressed in this paper. The
task is to determine the distance (or the related similarity) between the point query and
the closest point of each area covered by a generalized case. We present three ideas
how this problem can be solved: by using methods of mathematical optimization,
by a sampling conversion to point cases, and by using techniques from 3D real time
computer graphics.

1 Introduction

In CBR applications, the traditional concept of a case is that of a point in the space spanned
by the case’s attributes. This space is calledproblem–solution spacewhen the attributes
can unambiguously be related to the problem description or the solution description, re-
spectively. In other applications, each query fixes the current problem attributes and all
non-specified ones are automatically the solution attributes. In this case, like in the su-
perordinate one, the space is just calledattribute space. Irrespective, during case-based
problem solving, cases are retrieved from a case base using a similarity function, which
compares the case descriptions with the current query.

Driven by examinations of several new applications, we proposed the concept ofgener-
alized cases[BVW99, BV99, Ber02]. A generalized case covers not only one point of
the attribute space, but a whole subspace of it. A single generalized case immediately
provides solutions to a set of closely related problems rather than to one single problem
only. The solutions a generalized case represents are very close to each other; basically
they should be considered as (slight) variations of the same principle solution. In general,
a single generalized case can be seen as an implicit representation of a (possibly infinite)
set of traditional “point cases”. We assume, that the similarity to a generalized case is the
similarity to the most similar point of the case.

We also want to make clear, that the idea of generalizing cases is not a radically new con-



cept. It was already implicitly present since the very beginning of CBR and instance-based
learning research [Kol80, Bar89, Sal91]. However, in this paper we explore a more formal
and systematic view on generalized cases by using constraints to express the dependencies
between several attributes. This partially covers also the above mentioned related work.

1.1 An Application: Representing Electronic Design IPs

Increasingly, electronics companies integrateIntellectual Properties(IPs) from third par-
ties within their complex electronic systems. An IP is a design object whose major value
comes from the skill of its producer [Lew97], and a redesign of it would consume signifi-
cant time. However, a designer who wants to reuse designs from the past must have a lot
of experience and knowledge about existing designs, in order to be able to find candidates
that are suitable for reuse in his/her specific new situation. Currently, searching electronic
IP databases can be an extremely time consuming task because of two main reasons: On
the one hand, the public-domain documentation of IPs is very restricted and on the other
hand there are currently no intelligent tools to support the designer in deciding whether a
given IP from a database meets (or at least comes close to) the specification of his/her new
application. This is one objective of the current projectIPQ: IP Qualification for Efficient
Design Reuse1 funded by the German Ministry of Education and Research (BMBF) and
the related European Medea projectToolIP: Tools and Methods for IP2.

IPs usually span a design space because they are descriptions of flexible designs that have
to be synthesized to hardware before they actually can be used. The behavior of the final
hardware depends on a number ofparametersof the original design description. The valid
value combinations for these parameters are constrained by different criteria for each IP.

1.2 The Research Problem: Similarity Assessment and Retrieval

The important basic research issues involved when using generalized cases are related to
representation formalisms, similarity assessment, and retrieval. One serious complication
when studying these issues is that they are strongly connected with each other. Depending
on the expressiveness of the representation formalism used for generalized cases, similar-
ity assessment is getting computationally more difficult, which also impacts the overall
computational effort for retrieval from a large case base.

In this paper we do not want to restrict the sets of constraints used to represent general-
ized cases; the only limitation is that they must be computable. We will present retrieval
ideas which have not been researched or evaluated so far and probably may have special
restrictions.

1IPQ Project (12/2000 - 11/2003). Partners: AMD, Fraunhofer Institute for Integrated Circuits, FZI Karl-
sruhe, Infineon Technologies, Siemens, Sciworx, Empolis, Thomson Multi Media, TU Chemnitz, University of
Hildesheim, University of Kaiserslautern, and University of Paderborn. See www.ip-qualifikation.de

2See toolip.fzi.de for partners and further information.



Nevertheless, the main problem is the computational complexity of such restrictionless
methods why it is important to develop procedures that distinguish between an offline
and an online phase. During the offline phase all computations should be done which are
independent from the query. Unlike, the online phase is query dependent and should be
very fast to reduce the response time to the user. Consequently, the more calculations can
be moved to the offline phase, the faster will be the online online phase.

1.3 Retrieval Ideas

In [MB02] and [BVW99], Mouguoie, Bergmann, and Vollrath have analyzed methods
from optimization theory to solve the similarity problem for generalized cases. However,
there are several alternative approaches to solve this problem. This paper points out three
radically different approaches to similarity assessment and retrieval. Briefly, the methods
discussed are:

Mathematically Optimization: The idea is to rank only the generalized cases to find the
most similar ones. Therefore, the upper and lower bound of each case are deter-
mined, compared and if necessary refined. This refinement process can be solved
with mathematical optimization techniques.

Sampling: This technique bases on the idea to transform the generalized cases into point
cases by using further information like the similarity measures or user preferences.
On the point cases a well known traditional retrieval method can be applied with
only limited modifications.

Computer Graphics: Illustrating the case base graphically (e.g. for three attributes), it
seems to be possible to adapt methods from the real time 3D calculations of current
computer games for the retrieval of generalized cases.

It has to be expected that each idea has its own advantages and disadvantages, dependent
on the kind of attributes and constraints. Our goal is to examine each idea and to combine
the methods to a general one which hopefully handles each kind of attribute and constraint.

The following three sections present each idea, as far as we have elaborated them. They
should not be understood as complete descriptions of evaluated methods, but more as a
survey that points to important issues of future research.

2 Methods of Mathematical Optimization

The idea is instead of calculating the exact similarity between a query and each generalized
case to only rank the cases and find the most similar ones. Therefor, the upper and lower
bound for each case have to be calculated in relation to the query, so that they can be
compared afterwards (see figure 1). This idea is similar to the fish and shrink algorithm
proposed in [Sch96].



gc3

q lb

lb ub

lb
ub

ub

gc1

gc2

(a) define

gc2

gc3

q

gc1

(b) compare

Figure 1: Lower and Upper Bounds

A case can be ignored, if the lower bound of the case is higher than the upper bound of
another case, e.g. in figure 1 the upper bound ofgc2 is lower than the lower bound ofgc3
why gc3 can be removed. Until now, no statement can be made aboutgc1 andgc2, so their
bounds have to be refined. The following algorithm presents the idea:

function findMostSimilarCases(caseBase, query)
remainingCases = caseBase
while(isRefinementOfBoundsPossible())

refineBoundsForEachCase()
removePossibleCases(remainingCases)

return remainingCases

This similarity assessment problem can now be formulated as an optimization problem:

max sim(q; x) s.t.h(x) � 0;

whereh is a set ofm functionsh1; h2; : : : that represent the generalized casegc byh(x) �
0, i.e.,x 2 gc () 8i hi(x) � 0. In this optimization problem,max is theobjective
functionto be maximized.

Thereby, the main problem is the refinement of the bounds. In [MB02], Mougouic and
Bergmann analyze this idea for generalized cases that are represented through constraints
over an n-dimensional Real-valued vector space. It is shown that the difficulty depends on
whether the generalized case is convex or nonconvex which is defined by the constraints.
For convex constraints and by usage of convex similarity measure, the Topkis-Veinott
method can be easily applied to determine exactly the similarity between a query (point
case) and generalized cases. If the similarity measure is nonconvex or the generalized case
contains also nonconvex constraints, the problem is more difficult. For this situation an
algorithm is proposed that allows to incrementally compute sequences of upper and lower
bounds for the similarity and assures the convergence of the algorithm. It allows to rank
generalized cases without the exact computation of all similarity measures.

The presented algorithm has two main disadvantages. Firstly, it is only analyzed for real



valued attributes and secondly, the calculation of the bounds is complex and query depen-
dent, that means, it has to be done in the online phase.

3 Sampling

The idea of the sampling method is to convert the generalized cases to point cases, because
for them a lot of efficient retrieval techniques exist and can be used. The core idea of this
method is the hypothesis that a retrieval on a case base of point cases is faster than a
retrieval on a case base with generalized cases, even if the point case base is larger. Of
course, this hypothesis is over general and must be refined.

This is of course an approximative technique and the resulting quality mainly depends
on the sampling quality and the number of result cases. The method has a big offline
phase where the generalized cases are converted in an intelligent way into point cases;
section 3.1 and 3.2 describe this intelligent way. The online phase is nearly the same as
for retrieval with traditional cases (see figure 2). It has only to be granted that all retrieved
cases originally belonged to different generalized or point cases, which is described in
section 3.3.

Case Base
with point and

generalized cases
Converter

Case Base
with point cases

Retrieval Engine

Figure 2: Basic Concept of the Sampling Method

3.1 Scanning the space

The domains of the cases’ attributes span the attribute space which is an infinite space, even
if only one attribute is defined as real. So the idea is to discretise this space by selecting
n attribute values from each attribute domain and check if the resulting scan point (the
value combination of all attributes) lies within a case. For example, in figure 3 attribute p2
is scanned first and then p1 for each selected value of p2. If the resulting scan point lies
within a generalized case, a point case is created at this impact point.

This scan can easily be done by a function sampleCB which converts a generalized case
base, including generalized cases, into a point case base, only including point cases. The
function is called with an empty point case base:

function sampleCB(generalizedCaseBase, pointCaseBase){
calculateScanPoints()
while(isScanPointLeft())

point = getNextScanPoint()
foreach case in generalizedCaseBase



p2

p1

(a) scanning

p2

p1

(b) points

Figure 3: Scanning of the two Dimensional Attribute Space

if(case.includes(point))
pointCaseBase.add(createPointCaseOf(case,point))

This function has several disadvantages:

1. For each scan point all cases have to be checked. This can be very time consuming
in large case bases.

2. If the scan points are selected unskillfully many generalized cases could be missed
or too many point cases may be build.

3. There is no influence to the number of generated point cases.

A lot of possible improvements are imaginable and some of them will now be presented.

3.1.1 Individual scan for each generalized case

To address problems 2 and 3 the calculation of the scan point should not only depend on the
domain of the attributes. A better result can be achieved by using additional information
about the cases. Therefore, the body of function sampleCB is changed to an individual
scan for each generalized case.

foreach case in generalizedCaseBase
calculateScanPoints(case);
while(isScanPointLeft())

point = getNextScanPoint();
if(case.includes(point))

pointCaseBase.add(createPointCaseOf(case,point))

Of course, this method is more complex because the attribute space has to be checked
for each generalized case. Most of the knowledge and intelligence is placed in the sub-
function calulateScanPoints(case), which reduces the number of possible scan
points, e.g. only the attributes for which constraints exist must be scanned, the other at-
tributes have always fixed values. The realization of this function has major impact on
the conversion quality and can offer the case base administrator further influence to the
process.



3.2 Calculate Scan Points

In this section several techniques are presented to improve the sampling process. The idea
of most of the techniques is based on numerical attributes, but can probably be adapted to
other kinds of attribute, e.g. taxonomies. To illustrate them, a complex two dimensional
case is taken. The case is defined by two attributes p1 and p2 with a constraint set which
is not defined any further.

3.2.1 Bounding Box

A big improvement would be if only the region around the generalized case would have
to be scanned. Therefor, for each attribute the maximum and minimum values can be
calculated which defines the bounding box around the case. The calculation of the scan
points are then based on the bounding box and not on the domain of the attributes any
more.

3.2.2 Number of Scan Points

The number of scan points for each attribute influences the number of point cases which
are built. Three strategies to determine this number are imaginable:

Manual: The user specifies the number of scan points. This can be done by specifying
the number for all cases by one global parameter or for each case individually, e.g.
by a special case attribute.

Automatic: The converter calculates the number of scan points itself by using additional
knowledge like the similarity measures. For example, the information about the
global similarity can be used to specify the number of scan points. An attribute with
a global similarity weight of zero can be ignored, one with a value of one should be
scanned very exact.

Semi-Automatic: The user specifies the maximum and/or minimum number of resulting
point cases for each generalized case. With this information the converter can es-
timate the number of scan points. However, if too many or to less point cases are
created, the estimation has to be revised and the sampling must be performed again,
until an appropriate number is created.

3.2.3 Size of the Scan Points’ Intervals

If too few scan points are choosen a generalized case can be missed. If too many are
choosen, too many point cases are build. This problem is not necessarily related to the
previous one, only if a fixed interval size between the scan points is assumed. But sev-
eral other techniques are possible which can be realized by the createScanPoints
function:



linear: The attributes domains are sampeled in intervals of equal size.

logarithmic: The intervals are small in the region of zero and grow to the borders. By
this function the center of a generalized case would be scanned very exact and the
borders very poor. For the retrieval we expect, that the opposite could offer a better
result. That means, the borders are checked very exact and the center only less.
Nevertheless, this function only works with a bounding box for each case and is not
useable for the whole attribute space.

random: Each scan point has a random position like typical for probabilistic methods.
On average a good scan can be anticipated.

p2

p1

(a) linear

p2

p1

(b) logarithmic

p2

p1

(c) random

Figure 4: Three interval kinds

To conclude, independent from the scan technique several parameters to control the con-
version can be identified, among them the maximum number of scan points to create, the
maximum number of point cases in the point case base, and the minimum number of point
cases for each generalized case.

3.3 Retrieval Modifications

After the conversion a case base only including point cases is available where well known
retrieval methods can be applied. But one problem still exists: if the user defines a query
and wants to retrieve the best five cases, he or she probably retrieves five point cases
generated from the same generalized case (see figure 5).

query

Figure 5: Retrieval Problem

To solve this problem two modifications have to be done:

1. Each point case needs an identifier which either defines the case as an original point
case or defines to which generalized case it belongs.



2. If a case is added to the retrieval result is must be checked if another case, which
also belongs to the same generalized case, is already in the result list. In this case,
the retrieved case with the highest similarity must be placed in the result.

4 Computer Graphics based Retrieval Techniques

The idea is to use methods and algorithms from computer graphics for the retrieval of
generealized cases. Interesting are methods from the area of 3D real time calculating that
are applied in 3D games. The known techniques for space dividing, removing of hidden
surfaces or others can probably be useable for the retrieval of generalized cases.

Realtime 3D applications demand very high requirements on the efficiency of the used
techniques. The amount of items grows continuously and requires more powerful hard-
and software. Even if not all of the used techniques can be adapted to CBR purposes,
there could be some methods which possible can be used or are able to improve existing
retrieval techniques.

4.1 Problems and Challenges

� Most of the 3D calculations work only in three dimensions, but in CBR, the attribute
space is usually n-dimensional. It has to be examined if the algorithms are adaptable
(see [Ban90]).

� The space in 3D games is an Euclidean space. This is usually not the case in CBR
applications; here the similarity measures deform the space. But probably, a defor-
mation matrix can be used.

� The player in a game looks always through a predefined window (see figure 6 a)
which is screened. For each raster element a ray is sent from the player through the
raster element into the virtual world. This view has to be enlarged like pictured in
figure 6 b. Additionally, it has to be checked if it is necessary to modify the ray to a
pyramid to catch all generalized cases.

Player

Window

World

(a) Games

Query

Window

Generalized
Case

(b) CBR

Figure 6: Different kind of ray tracing

� Objects which are completely invisible because they are placed behind other objects



are removed in computer graphics. But this is not the case in CBR: an object behind
another object has in general a smaller similarity value, but should also be retrieved.

4.2 Techniques from Computer Graphics for CBR Retrieval

This section shortly presents some well known techniques from Computer Graphics and
assesses their abilities to improve the retrieval of generalized cases. A complete list and
detailed description can be found at [3DE], [Ban90] and [Kel99].

4.2.1 World Conversion in Polygons

The world (in CBR the attribute space) is converted in an offline phase into polygons,
e.g. each object is transformed into a set of smaller objects which represent its surface.
With these smaller and well known objects the real time calculations are much easier.
Additionally, the normal vector of each polygon represents the information whether the
viewpoint is placed inside or outside the original object.

If this technique is also possible for n-dimensional spaces it provides a great performance
improvement for the retrieval of generalized cases.

4.2.2 Data Reduction

Depending on the structure of the generalized cases the amount of resulting polygons could
be very high. Therefor, it may be necessary to reduce this amount of data. In computer
graphics this is done during the online phase with several techniques:

� Removing of invisible polygons with visible surface determination (VSD) and hid-
den surface removal (HSR). Of course, this techniques can not directly be used in
CBR, because also a case which is placed behind another case could be one of the
most similar cases. But the technique is possible for the polygons of the same gen-
eralized case.

� Reduction of number of polygons for objects which are far away from the view point
with level of detail (LOD) techniques. Therefor, for each object several more or less
complex sets of polygons are created and in relation to the view point a more exact
or rougher one is taken. Probably, this technique can directly be adapted to CBR.

4.2.3 Data Structure

To improve the access to the data, an efficient data structure is necessary. For static scenes
(a case base can be understood like that) exist two very interesting structures which are
presented in the following:



Oct-trees and Quad-trees: A tree structure which is only taken for static scenes to im-
prove ray tracing tests.

BSP-Tree: A Binary Space Partition Tree is a well balanced tree which is capable to
handle also n-dimensional spaces. The creation of the tree is very complex, but the
tree provides in the online phase a very good performance.

4.2.4 Further Algorithms

A lot of other algorithms from computer graphics may be helpful and their applicability in
the domain of CBR has to be analyzed in future. The most promising approaches are:

Back-face Culling: Removing of polygons where the normal vector shows away from
the view point. For example, independent from the view point only three sides of a
cube are visible, thus the other ones can be ignored.

Z-Buffer: For each pixel of a polygon the distance to the view point is saved in the Z-
buffer. A new pixel is only taken, if it has a smaller value, i.e., is nearer to the view
point.

Hierarchical Z-Buffer: A very interesting extension which orders objects in a hierarchy
and uses for each hierarchy a separate Z-buffer.

Warnock Algorithm: A removing algorithm with a conservative strategy of data reduc-
tion: polygons are only removed, if they are invisible without doubt.

5 Conclusion and Future Work

All the different ideas have their own pro and cons depending on the kind of attributes and
constraints. Possibly, a combination of the different methods can be implemented to built
the core of a general retriever for all kinds of attribute and computable constraint.

In future, the techniques have to be evaluated and tested to receive more information about
their quality and strength. Especially the area of 3D computer graphics provides a big
pool of efficient algorithms which have to be analyzed whether they are adaptable to n-
dimensional spaces.

The first tests have shown, that the retrieval complexity for generalized cases is much
higher than for point cases. Therefore, it is even more important to move as much effort as
possible to the offline phase. This will be one of the great challenges we will have to face
during our future research.

References

[3DE] 3D Engines Lis. http://cg.cs.tu-berlin.de/simki/engines.html.



[Ban90] Thomas F. Banchoff. Beyond the Third Dimension. Scientific American Library, New
York NY, 1990.

[Bar89] Ray Bareiss. Exemplar-Based Knowledge Acquisition: A unified Approach to Concept
Representation, Classification and Learning. Academic Press, 1989.

[Ber02] R. Bergmann. Experience Management: Foundations, Development Methodology, and
Internet-based Applications. Springer, forthcomming, 2002.

[BV99] R. Bergmann and I. Vollrath. Generalized Cases: Representation and Steps Towards
Efficient Similarity Assessment. In W. Burgard, Th. Christaller, and A. B. Cremers,
editors, KI-99: Advances in Artificial Intelligence., LNAI 1701. Springer, 1999.

[BVW99] R. Bergmann, I. Vollrath, and T. Wahlmann. Generalized Cases and their Application to
Electronic Designs. In E. Melis, editor, 7. German Workshop on Case-Based Reasoning
(GWCBR’99)., 1999.

[Kel99] A. Keller. Quasi-Monte Carlo Methods for Photorealistic Image Synthesis. Shaker Ver-
lag, Aachen, 1999.

[Kol80] Janet L Kolodner. Retrieval and Organizational Strategies in Conceptual Memory. PhD
thesis, Yale University, 1980.

[Lew97] Jeff Lewis. Intellectual Property (IP) Components. Artisan Components, Inc., [web
page], http://www.artisan.com/ip.html, 1997. [Accessed 28 Oct 1998].

[MB02] B. Mougouie and R. Bergmann. Similarity Assessment for Generalizied Cases by Opti-
mization Methods. In Proceedings of the European Conference on Case-Based Reason-
ing (ECCBR-02). Springer., 2002.

[Sal91] S Salzberg. A nearest hyperrectangle learning method. Machine Learning, 6:277–309,
1991.

[Sch96] Jörg W. Schaaf. Fish and Shrink: a next step towards efficient case retrieval in large scaled
case bases. In Ian Smith and Boi Faltings, editors, Advances in Case-Based Reasoning,
Lecture Notes in Artificial Intelligence, 1186, pages 362–376. Springer Verlag, 1996.


