
Developing maintainable
Case–Based Reasoning Systems:
Applying SIAM to empolis orenge

Thomas R. Roth–Berghofer

German Research Center for Artificial Intelligence DFKI GmbH,
Knowledge Management Department,

Erwin–Schrödinger–Straße 57, 67655 Kaiserslautern, Germany
thomas.roth-berghofer@dfki.de

Abstract: Developing industrial Case–Based Reasoning (CBR) applications has be-
come much easier since the advent of the INRECA methodology which employs soft-
ware process modelling techniques to describe the development tasks, and which uses
the experience factory approach to store the experience gained during the implementa-
tion of CBR projects. But the INRECA methodology does not describe how to maintain
the developed systems in detail. This paper describes how to develop maintainable
CBR systems by applying the six step CBR process model of the SIAM methodology
to CBR applications using empolis orenge.

1 Introduction

Developing industrial Case–Based Reasoning (CBR) applications has become much eas-
ier since the advent of the INRECA methodology [BBG+99]. The INRECA methodology
provides a data analysis framework for developing CBR solutions for successful applica-
tions in real–world industrial contexts. It employs software process modelling techniques
to describe the development tasks [VR95], and it uses the experience factory approach
[BCR94] to store the experience gained in the realization of CBR projects.

empolis developed many applications using the INRECA methodology, and those appli-
cations are running for several years now, making structured maintenance processes like
the SIAM methodology [RB02] and the maintenance manual MAMA [RBR01] a neces-
sity. But structured maintenance processes are not enough. The maintained system must
be maintainable by design. empolis orenge [Sch02a] provides such a maintainable system
core, not only for commercial use but also for academic research.

This paper is structured as follows: After introducing maintenance in the next section, and
a look at related work, the six step process model and the broader context of the SIAM
methodology is revisited in section 4. Section 5, then, relates empolis orenge to the six
step process model and maps the terminology of empolis orenge to that of SIAM. The
paper closes with some concluding remarks.



2 Maintenance

The control loop is the essential metaphor for the maintenance of any system (Figure 1).
An ideal system becomes faulty because of defects. In software systems, the defects are
not caused by parts wearing out but by the ever changing environment. And knowledge–
based systems are especially sensitive to those changes.

Ideal
system

Faulty
system

repair defect

Figure 1: The control loop of system maintenance

Obviously, changes must be discovered before one can react to them. As soon as changes
are recognized, especially those changes that have negative effects on the system, the faulty
system can be repaired. It can be brought back to a desired state of functionality. Figure 2
shows just one possible sequence of CBR system states, where defects and repairs are
following each other. As soon as the quality level of the system drops beyond some limit,
repair operations are executed until the system reaches some satisfactory quality level.

t

+

-

st1

st2

st3

st4

st5

defect(s)

repair

defect(s)
repair

defect(s)

?

Figure 2: The changing quality level (+/−) of a system s over time t

The CBR system very well may stay unchanged during the time its quality drops, be-
cause the states are system states in relation to the environment. The repair operations
change the CBR system (and, normally, not the environment). For example, in electronic
commerce scenarios similarity measures often model user preferences (i.e., the more a



customer prefers a product, the more similar is the product to the customer’s query).

Over time, the customers may change their minds on the products (i.e., their preference
relation, which is part of the environment of the CBR system, may change). Assumed,
there are no maintenance actions in the meantime and the similarity model also stays the
same. When those customers return to the CBR system and ask the same questions they
will get the same answer. But this time, they may be unsatisfied with the results and reject
the answers because they do not match their preference models anymore.

3 Related Work

Many single maintenance methods have been developed over the years, but a comprehen-
sive process model was missing. A first comprehensive work was provided by Wilson
[Wil01]. In his dissertation, he focuses on the overall case base maintenance problem in
CBR and describes new maintenance techniques within that paradigm. He presented a
framework for describing case base maintenance techniques and classified existing sys-
tems according to this schema. The theoretical work is supported by new methods and
experiments. Wilson generalized the framework to cover all knowledge containers, and
provided an example of similarity maintenance.

The framework is analytical in nature and does not directly support one in developing
better maintainable CBR systems. It is based on existing CBR process models. It also
does not directly help in developing maintenance policies for particular CBR applications.

Another field, where research is conducted, is the field of experience base maintenance
[NA00a]. The experience base is a storage facility for experience packages in an organi-
zational unit called experience factory [BCR94]. An experience base is also the basis of
the INRECA methodology.

Experience packages are cases with a complex structure. Therefore, maintenance efforts
focus on maintaining and improving the value of single experience packages and, fol-
lowing from that, maintaining and improving the value of the experience base. This
is done based on the Goal–Question–Metric paradigm for goal–oriented software en-
gineering measurement [BCR94]. The Corporate Information Network (COIN) which
is the Fraunhofer IESE experience factory is used to validate the maintenance efforts
[JAD+01] and to develop guidelines for evaluation and improvement of experience bases
[NF00, NA00b] as well as for support for acquiring new cases using already gained main-
tenance knowledge [NA01].

Maintaining an experience base, is maintenance of a class of CBR applications. Therefore,
experience base maintenance, in principle, can be described using the SIAM methodology
within a particular context.



4 SIAM — A Broader Perspective on Case–Based Reasoning

Looking at maintenance, in general, and having the control loop metaphor in mind, one
discovers that the traditional CBR process models (i.e., the CBR flowchart according to
Riesbeck and Bain [RB87], the CBR cycle of Kolodner [Kol93], and the four steps process
model according to Aamodt and Plaza [AP94]) cannot sufficiently describe maintenance
issues. Therefore, the most influential and widely acknowledged process model of Aamodt
and Plaza was enhanced by the two additional steps Review and Restore [RIRB01]. This
six step process model, then, was embedded into the SIAM methodology for knowledge
maintenance of CBR systems.

4.1 The six step process model

The process model of Aamodt and Plaza [AP94] comprises the four steps Retrieve, Reuse,
Revise, and Retain, with the first three steps grouped as problem solving phase and Retain
as learning phase. The two phases are the basis for the six step process model with the
two phases renamed to application phase and maintenance phase in the context of SIAM
[RBI01, RIRB01].

Review

Restore

Reuse

Revise

Retain Retrieve

Application PhaseMaintenance Phase

ProblemKnowledge

knowledge
containers'
Knowledge
containers'

Knowledge
containers

Figure 3: The six RE cycle (adapted from [RIRB01])

Figure 3 illustrates the six steps cycle. During the application phase, the knowledge of
the system is not changed. But learning (i.e., retaining new cases) introduces change into
the system. Of course, that is the intended behavior, but it is a behavior that must be
responded to accordingly. And change is not only introduced by Retain, there is also a
changing environment that demands continuous attention.

To collect information useful for maintenance, the existing steps were enhanced because
each step provides opportunities to gather information as how often a case was retrieved,
automatically adapted, or revised by users.



But the minor enhancement of the existing steps was not enough. There was no possibility
to describe the necessary operations on how to assess the quality of the current system
state, and to express necessary repair operations. Thus, the two new steps Review and
Restore were added to the maintenance phase.

defect(s)repair

CBR system at time t

Retain Reuse

Revise

Retrieve

CBR system at time t´

Retain Reuse

Revise

Retrieve

ReviewRestore =

Knowledge
containers

Knowledge
containers

Figure 4: The control loop and the six step process model

The Review step considers the current state of a CBR system (cf. Figure 4, which shows
just one possible flow of control in SIAM). It assesses its quality, and invokes Restore
within the maintenance phase if necessary. The Restore step, then, changes the contents of
the CBR system to bring it back to a desired level of quality. If there is no need to go to the
Restore step, since the quality values are still in good shape, this step is simply skipped.

But the enhanced steps and the extended process model were only a first step. The six
steps needed to be part of a broader context.

4.2 The SIAM methodology

The development of CBR systems and applications has to be part of every maintenance
effort. The SIAM methodology provides this broader context, comprising Setup, Initializa-
tion, Application and Maintenance of a CBR project [RBR01]. SIAM drew concepts from



two already existing methodologies: the INRECA methodology [BBG+99] and the CRoss
Industry Standard Process for Data Mining CRISP–DM [CCK+00]. Both methodologies
describe, how to develop software projects, but, of course, regarding two different fields.

INRECA

SIAM

SETUP INITIALIZATION MAINTENANCEAPPLICATION

Figure 5: Coverage of INRECA and SIAM

Figure 5 shows the four phases of SIAM and the coverage in relation to INRECA. The
phases Setup, Initialization, and Application are well covered by the recipes of the INRECA
methodology. But SIAM covers more. SIAM enhances INRECA regarding the maintenance
of CBR systems, including enhancements for building better maintainable CBR systems
by also enhancing the Setup, Initialization, and Application phase [RB02].

Each of the phases is decomposed into tasks that are described on three levels of abstrac-
tion (see [RBR01] for examples): generic, specific, and instance. The specific level is
identified with a maintenance manual that, in principle, describes all the necessary tasks
to perform maintenance. It describes when to do what. The ’when’ is decomposed into an
event and a condition. An event is easy to recognize and can be a time running out, a new
document coming in, or some user feedback. The event, then, triggers the evaluation of
some (usually more complex or time consuming) condition such as a check for all outdated
or incorrect cases of the case base. As soon as a condition is satisfied the action, described
in the manual, is performed.

The generic level describes each task in an, of course, generic way. To make use of the
generic task, the notion of the SIAM context was introduced that maps the generic to
the specific level. The SIAM context specifies the type of CBR system, the type of CBR
application, the CBR tool used, and the most affected knowledge container. These are
regarded the most important dimensions for the description of the specific level.

The instance level further specializes the specific level. It is an instantiation of the specific
maintenance policies. This level is identified with particular projects where parameters of
the specific level are set to concrete values.

4.3 Operationalizing SIAM

Obviously, the SIAM methodology would be useless without operationalizing it, but the
utilization of SIAM is already contained in the structure of the methodology. SIAM is
operational by design. A major driving force for the development of SIAM always was
to have an immediately applicable methodology. The construction of SIAM with its three
levels of abstraction was a result of reusing practical experiences with methodologies,
experiences both with developing and using the INRECA methodology in CBR projects as



well as with developing and using CRISP–DM in data mining projects.

SIAM fully describes maintenance policies on a generic level. As soon as a mainte-
nance manual is described on the specific level every project developed using the INRECA
methodology and performed in that particular SIAM context can be maintained easily. Ad-
ditionally, computer–based maintenance support can be provided by a management sys-
tem that implements SIAM (an example system is described in [Max01]). But, in general,
maintenance is organized and performed by humans rather than computers.

The INRECA methodology already is used at empolis to develop CBR applications and
to constantly improve the quality of the CBR application development process. Conse-
quently, the SIAM methodology (which enhances the INRECA methodology) is also being
used, supporting the Total Quality Management efforts of empolis by maintaining the
quality of running CBR applications.

5 empolis orenge — A maintainable CBR platform

empolis orenge [Sch02b] is a Structural and Textual Case–Based Reasoner.1 It imple-
ments all four steps of the traditional Case–Based Reasoning cycle [AP94]. The orenge:
Controller provides the steps Retrieve, Reuse, and Revise (of the problem solving or ap-
plication phase) in form of the orenge:Services Retrieval (for Retrieve and Reuse), and
Adaptation (for Revise). The orenge: Controller also implements the Retain step (the
only step of the learning or maintenance phase of the traditional CBR cycle). This allows
for online integration of cases. But most of the time, cases are integrated offline using the
orenge: CaseBaseBuilder. The resulting new case base then replaces the older version in
the productive system.

5.1 Six steps with empolis orenge

Additionally to the orenge: Controller with its fixed flow of control, a new configurable
reasoner has been developed. Since empolis orenge Release 3.2, this reasoner, called
orenge: ProcessManager, allows to build complex reasoning pipelines. The reasoning
pipelines are a sequence of pipelets. Each pipelet provides one of the existing orenge:Ser-
vices such as Retrieval and Adaptation. A uniform programming interface allows for
an easy addition of customized pipelets. For instance, after retrieving cases similar to a
query, the results could be checked if there are enough cases retrieved. A second retrieval
(or as many retrievals as needed) can be started until enough cases are available. The
cases can be adapted, altered algorithmically, or tested if they conform to any constraints.
In an electronic commerce scenario, the stock could be checked if the retrieved products
are available, before presenting the retrieval results to the customer. There are as many
possibilities as can be programmed.

1A description of CBR approaches can be found in, e.g., [Len99] or [BBG+99]



Furthermore, with the orenge: ProcessManager, empolis orenge is capable to implement
appropriate support for the two steps Review and Restore. The enhancements of the orig-
inal four steps, as described in [RBI01], could be implemented easily as pipelets, and
according to the needs of the respective CBR project. If performance requirements do
not allow for jointly collecting maintenance information and executing assessment tasks
during problem solving, the queries could be sent to a second instance of the orenge:
ProcessManager that is running in parallel. This reasoner could be reserved for collect-
ing maintenance information such as performance measures or the amount of unknown
concepts in queries, whereas the other instance is used for problem solving. The load
balancing, in this scenario, would be handled by the orenge: RequestBroker.

Review and Restore are, then, covered by the specific level of the SIAM methodology.

5.2 Terminology

In 1995, Richter [Ric95] introduced the notion of the knowledge containers that contain
and structure the knowledge of a case–based reasoner. A knowledge container is a collec-
tion of knowledge that is relevant to many tasks rather than to one. Prominent knowledge
containers in rule–based systems, for instance, are facts and rules. Richter identified the
following four knowledge containers of Case–Based Reasoning systems: The vocabulary
(attributes, predicates etc.) comprises the domain model. The similarity measures are used
to compare cases with queries. The adaptation knowledge accommodates past solutions
to current problems. The case base stores the cases.

Case base

Vocabulary

Similarity
measures

Adaptation
knowledge VocabularyVo

ca
bu

la
ry



Figure 6: The four knowledge containers and their relation to each other

The knowledge for the first three containers is described and used during development of
a CBR system (i.e., at compile time), while the knowledge in the cases is utilized only
during actual problem solving (i.e., at runtime).



The four knowledge containers and their relation to each other are shown in Figure 6.
The arrows depict that knowledge can be transferred from one knowledge container to
the other. The vocabulary knowledge obviously is the foundation of all of the other three
containers.

In empolis orenge, the knowledge containers could be identified quite easily. The knowl-
edge containers are mapped onto empolis orenge’s XML–based languages as shown in
Table 1. The acronyms are explained in the following.

Table 1: Mapping of SIAM and empolis orenge notions
SIAM empolis orenge
Vocabulary Classes and concepts (OMML)

Keys (OAML)
Similarity measures Orderings, similarity tables, and

taxonomies (OVML)
Completion rules (ORML)

Adaptation knowledge Adaptation rules (ORML)
Case base OOML case base

Index
SQL database

Textual CBR Service orenge: Textminer used during
case base building

Structural CBR Service orenge: Textminer not used during
case base building

The vocabulary consists of classes and concepts. They comprise the data model and are
defined using the orenge model markup language (OMML). As soon as the textmining2

capabilities of empolis orenge are used, keys as synonyms to corresponding concepts must
be defined. The keys are used to identify the concepts in queries given as free texts or
during case base building. The keys comprise the analysis model and are defined using the
orenge analysis markup language (OAML).

The case base exists in three flavors: as a list of cases, as an index, or as an SQL database.

• The list of cases is described in the orenge object markup language (OOML). This
type of case base is used by the retrieval component orenge: KnowledgeServer/Li-
near. This retriever is the most capable one. There are no limitations on the similar-
ity measures. Complex calculations are possible, but, then, the performance of this
retriever can be a problem if the number of cases is too big.

• The index basically is a Case Retrieval Net (CRN) [Len99]. It is used by the orenge:
KnowledgeServer/Index. This kind of retriever is limited regarding the similarity
calculations to some degree (For more details, please, refer to the empolis orenge
documentation). The index as well as the linear case base usually are created using
the orenge: CaseBaseBuilder. It transforms text documents or structured data, such
as data from a database or XML repository, into the appropriate representation, i.e.,

2The orenge: Textminer provides information extraction capabilities for Textual CBR.



into a CRN representation or into an OOML file (where the orenge: CaseBaseBuil-
der is an implementation of the Retain step). In the following the terms index and
case base are used interchangeably.

• Whereas the first two kinds of case bases require a transformation step to get the
cases, the original data of an SQL database is used directly. Here, CBR is performed
on top of the relational database [SB00b, SB00a]. This kind of retrieval is used by
the orenge: KnowledgeServer/SQL.

The similarity measures (for all of the three kinds of case bases) are described by the
valuation model. It is defined using the orenge valuation markup language (OVML). The
valuation model is extended with general knowledge provided by completion rules that
are defined using the orenge rule markup language (ORML). Completion rules are used
to modify the query, to infer additional information from that given by the user. They also
could be used during the case base building process.3

empolis orenge uses adaptation rules for the execution of the Revise step. The adaptation
rules also are defined using ORML. Usually, the completion rules and the adaptation rules
are different, but in principle they could be used for both purposes, for the completion of
queries and for adapting retrieved cases because cases and queries share the same structure.

6 Concluding remarks

This paper presented the SIAM methodology for knowledge maintenance of Case–Based
Reasoning systems [RB02]. The paper shortly revisited the six step process model in the
broader context of SIAM. It showed the relation between INRECA and SIAM, and applied
the concepts of SIAM to empolis orenge.

The SIAM methodology is the basis for strong industrial Case–Based Reasoning appli-
cations at empolis, because it not only supports in developing such applications but also
in maintaining them. empolis orenge is an advanced product coming from research and
providing many of the features developed by the CBR community over the years. Its
flexibility also makes it a good starting point for further research.

References

[AP94] Agnar Aamodt and Enric Plaza. Case–Based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches. AI Communications, 7(1):39–59, 1994.

[BBG+99] Ralph Bergmann, Sean Breen, Mehmet Göker, Michel Manago, and Stefan Wess.
Developing Industrial Case–Based Resoning Applications: The INRECA Methodol-
ogy. Lecture Notes in Artificial Intelligence, State–of–the–Art–Survey, LNAI 1612.
Springer–Verlag, Berlin, 1999.

3Additional information about the completion of cases and queries using rules can be found in [Wes95].



[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Experience Factory.
In J. Marciniak, editor, Encyclopedia of Software Engineering, pages 469–476. Wiley,
New York, 1994.

[CCK+00] Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz,
Colin Shearer, and Rüdiger Wirth. CRISP-DM 1.0: Step–by–Step Data Mining Guide.
CRISP-DM consortium: NCR Systems Engineering Copenhagen (USA and Denmark)
DaimlerChrysler AG (Germany), SPSS Inc. (USA) and OHRA Verzekeringen en Bank
Groep B.V (The Netherlands), 2000.

[JAD+01] Andreas Jedlitschka, Klaus-Dieter Althoff, Björn Decker, Susanne Hartkopf, and
Markus Nick. Corporate Information Network (COIN): The Fraunhofer IESE Expe-
rience Factory. In Rosina Weber and Christiane Gresse von Wangenheim, editors, Pro-
ceedings of the Workshop Program at the Fourth International Conference on Case–
Based Reasoning, ICCBR 2001, Vancouver, Canada, pages 9–20, Washington, DC,
2001. Navy Center for Applied Research in Artificial Intelligence, Naval Research Lab-
oratory, Code 5510.

[Kol93] Janet Kolodner. Case–Based Reasoning. Morgan Kaufmann Publishers, Inc., 2929
Campus Drive, Suite 260, 1993.

[Len99] Mario Lenz. Case Retrieval Nets as a Model for Building Flexible Information Sys-
tems. Dissertation, Mathematisch–Naturwissenschaftliche Fakultät II der Humboldt–
Universität zu Berlin, Humboldt University, Berlin, 1999.

[Max01] Rainer Maximini. Base system for Maintenance of a Case–Based Reasoning System.
Diploma thesis, University of Kaiserslautern, 2001.

[NA00a] Markus Nick and Klaus-Dieter Althoff. The Challenge of Supporting Repository-Based
Continuous Learning with Systematic Evaluation and Maintenance. IESE Report No.
017.00/E, 2000.

[NA00b] Markus Nick and Klaus-Dieter Althoff. Systematic Evaluation and Maintenance of Ex-
perience Bases. In Mirjam Minor, editor, ECAI Workshop Notes – Flexible Strategies for
Maintaining Knowledge Containers, pages 14–21, Berlin, 2000. Humboldt University.

[NA01] Markus Nick and Klaus-Dieter Althoff. Acquiring and Using Maintenance Knowledge
to Support Authoring for Experience Bases. In Rosina Weber and Christiane Gresse von
Wangenheim, editors, Proceedings of the Workshop Program at the Fourth International
Conference on Case–Based Reasoning, ICCBR 2001, Vancouver, Canada, pages 38–
41, Washington, DC, 2001. Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory, Code 5510.

[NF00] Markus M. Nick and Raimund L. Feldmann. Guidelines for Evaluation and Improve-
ment of Reuse and Experience Repository Systems Through Measurement Programs. In
Proceedings of the 3rd European Software Measurement Conference (FESMA-AEMES
2000), 2000.

[RB87] C. Riesbeck and W. Bain. A Methodology for Implementing Case–Based Reasoning
Systems. Technical report, Lockheed, 1987.

[RB02] Thomas R. Roth-Berghofer. Knowledge Maintenance of Case–Based Reasoning Sys-
tems — The SIAM Methodology. Dissertation, University of Kaiserslautern, Kaisers-
lautern, Germany, 2002. Submitted.



[RBI01] Thomas Roth-Berghofer and Ioannis Iglezakis. Six Steps in Case–Based Reasoning:
Towards a Maintenance Methodology for Case–Based Reasoning Systems. In Hans-
Peter Schnurr, Steffen Staab, Rudi Studer, Gerd Stumme, and York Sure, editors, Pro-
fessionelles Wissensmanagement — Erfahrungen und Visionen (Includes Proceedings of
the 9th German Workshop on Case–Based Reasoning, GWCBR 2001), Baden–Baden,
Germany, pages 198–208, Aachen, 2001. Shaker–Verlag.

[RBR01] Thomas Roth-Berghofer and Thomas Reinartz. MaMa: A Maintenance Manual for
Case–Based Reasoning Systems. In David W. Aha and Ian Watson, editors, Case–
Based Reasoning Research and Development: Proceedings of the Fourth International
Conference on Case–Based Reasoning, ICCBR 2001, Vancouver, Canada, pages 452–
466, Berlin, 2001. Springer–Verlag.

[Ric95] Michael M. Richter. The Knowledge Contained in Similarity Measures. Invited Talk
at the First International Conference on Case–Based Reasoning, ICCBR’95, Sesim-
bra, Portugal, 1995. http://wwwagr.informatik.uni-kl.de/˜lsa/CBR/
Richtericcbr95remarks.html [Last access: 2002-10-18].

[RIRB01] Thomas Reinartz, Ioannis Iglezakis, and Thomas Roth-Berghofer. Review and Restore
for Case Base Maintenance. Computational Intelligence: Special Issue on Maintaining
Case–Based Reasoning Systems, 17(2):214–234, 2001.

[SB00a] Jürgen Schumacher and Ralph Bergmann. An Efficient Approach to Similarity–Based
Retrieval on Top of Relational Databases. In Enrico Blanzieri and Luigi Portinale, ed-
itors, Advances in Case–Based Reasoning, Proceedings of the 5th European Workshop
on Case–Based Reasoning, EWCBR 2000, Trento, Italy, pages 273–284, Berlin, 2000.
Springer–Verlag.

[SB00b] Jürgen Schumacher and Ralph Bergmann. Similarity–Based Retrieval on Top of Rela-
tional Databases. In Mehmet H. Göker, editor, Proceedings of the 8th German Work-
shop on Case–Based Reasoning, GWCBR 2000, Lämmerbuckel, Germany, pages 75–
86, Ulm, Germany, 2000. DaimlerChrysler, Research and Technology, FT3/KL.

[Sch02a] Jürgen Schumacher. empolis orenge — an Open Platform for Knowledge Management
Applications. In Mirjam Minor and Steffen Staab, editors, 1st German Workshop on Ex-
perience Management: Sharing Experiences About the Sharing of Experience, Berlin,
March 7-8, 2002, Proceedings, pages 61–62. Gesellschaft für Informatik GI, 2002.

[Sch02b] Jürgen Schumacher. Whitepaper: empolis orenge — an Open Platform for Knowledge
Management Applications, 2002. Available on request from orenge@empolis.com.

[VR95] Martin Verlage and H. Dieter Rombach. Directions in Software Process Research. Ad-
vances in Computers, 41:1–61, 1995.

[Wes95] Stefan Wess. Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entschei-
dungsunterstützung und Diagnostik. Dissertation, Universität Kaiserslautern, Kaisers-
lautern, Germany, 1995. [In German].

[Wil01] David C. Wilson. Case–Base Maintenance: The Husbandry of Experience. Disserta-
tion, Faculty of the University Graduate School in the Department of Computer Science
Indiana University, 2001.


