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Introduction 

The growing eScience infrastructure is enabling scientists to generate scientific data on 
an industrial scale. Similarly, using the Web as the platform, the Linked Open Data 
(LOD) initiative has created a vast amount of information that can be leveraged by 
Semantic Web application in a variety of real world scenarios. The importance of 
managing various forms of metadata has long been recognized as critical in the 
Semantic Web. In this workshop we focus specifically on metadata that describes the 
origins of the data. The term provenance from the French word “provenir”, meaning 
“to come from", describes the lineage or origins of a data entity. Provenance metadata 
is essential to correctly interpret the results of a process execution, to validate data 
processing tools, to verify the quality of data, and to associate measures of trust to the 
data. The primary objective of this workshop is two-fold, (1) to explore the role of 
Semantic Web in addressing some of the critical challenges facing provenance 
management and (2) the role of provenance in real world Semantic Web applications. 
Specifically, 

• Efficiently capturing and propagating provenance information as data is processed, 
fragmented and recombined across multiple applications on a Web scale, for 
example in the LOD cloud.  

• A common representation model or vocabulary for provenance for processing and 
analysis by both agents and humans.  

• Interoperability of provenance information generated in distributed environments.  
• Tools leveraging the Semantic Web for visualization of provenance information.   
 
We thank the keynote speakers, all members of the program committee, authors, 
invited speakers, participants and local organizers for their efforts. 
 
We look forward to a successful workshop! 
 
Satya S. Sahoo, Jun Zhao, Paolo Missier, Jose Manuel Gómez-Pérez 
 



Annotation algebras for RDFS
Peter Buneman

University of Edinburgh
Email: opb@inf.ed.ac.uk

Egor V. Kostylev
University of Edinburgh

Email: ekostyle@inf.ed.ac.uk

Abstract—Provenance and annotation are intimately con-
nected. On the one hand provenance can be regarded as a
form of annotation, on the other hand, in order to understand
how to convey annotations from source data to derived data, we
need an account of how the data was derived – its provenance.
Following a successful line of database research in which elements
of a database are annotated with algebraic terms that describe
the provenance of those elements, we develop an algebra of
annotations for RDFS that differs from that developed for
relational databases. We show how such an annotation algebra
can be used for computing annotations on inferred triples that
provide information on belief, trust and temporal aspects of data
as well as providing a framework for default reasoning.

I. INTRODUCTION

With the increasing interest in provenance in both databases
and ontologies, there have been a number of proposals and
systems for annotation of the underlying data with information
concerning time, belief, and various aspects of provenance.
The question that has been repeatedly posed in databases [17],
[5], [2] is what happens to these annotations when a query
is applied? Are they ignored or are they somehow passed
through the query? In fact generic prototypes [4] and systems
that are specific to some domain [6] have been developed
for propagating annotations through queries. Suppose, for
example, we take two tables S and T in which the individual
tuples have been annotated. How should we annotate the tuples
in the join of S and T ? An obvious answer is to put on
any output tuple the union of the annotations on the two
contributing tuples. This does not always make sense; for
example if the input tuples are annotated with the set of people
who believe that this tuple is true or with the set of database
versions for which the tuple is actually in the database, it
might be more appropriate to annotate a join tuple with the
intersection of the relevant annotations.

This problem has resulted in a variety of proposals for
propagating annotations through queries. Notably, by using
a semiring model for annotations, in [8] a tuple is annotated
with a term in a semiring algebra that describes the provenance
of the tuple – how it was formed by the operations of the
relational query that constructed it. By suitable instatiatons
operations of the semiring, one can realize various extensions
to relational databases such as probabilistic databases, multi-
set semantics and certain kinds of constraint databases. The
semiring model also generalizes a number of other models for
provenance [5], [2].

Turning to ontologies, proposals have also been suggested
for the annotation of RDF [13]. Named graphs [3] and

temporal RDF [10] propose methods of adding annotations
to RDF triples to express belief, trust, or temporal properties.
Can we simply follow the work for relational databases in
developing a general model for such annotations? Here we
have to start by looking not at query languages for RDF,
but at the inference rules for the ontologies such as those
of RDFS [1]. Given annotations on the base triples, what
should be the annotations on an inferred triple? Indeed in [15],
[16], [12], with an initial goal applying fuzzy logic to RDFS
proposes an algebra similar in many respects to that of [8].
In this paper we propose a somewhat more general – and
possibly simpler – algebra to serve this purpose. Our proposals
differ from the semirings in [8] in two ways. First, there are
situations in which we do not want commutativity and second,
while the number of triples inferred in an RDFS graph is
always finite, the derivations can be unbounded. We therefore
need an extra condition to prevent “infinite annotations”. This
condition precludes the possibility of bag semantics, which is
useful for relational algbra but appears to be inapplicable to
ontologies. Also in [8] there is a compact representation – a
polynomial – of terms in the semiring algebra. In the algebra
we develop, the compact representation is somewhat different.

To introduce annotation algebras, we give two simple exam-
ples of annotating an RDF graph shown in Fig. 1(a) (a dashed
arrow represents a triple, which can be inferred from the rest
of the graph).

Example 1: A temporal extension of RDF was introduced
in [10], [9]. It consists of attaching to every RDF triple a set
intervals that represents the times at which the triple is valid.
An example of a temporal annotation of the graph is shown in
Fig. 1(b): Picasso worked as a cubist from 1908 to 1919, paints
are created by painters at least since engravings in Chauvet-
Pont-d’Arc cave from about 29,000BC, and so on. The point
here is that an annotation for the inferred triple was obtained
by an intuitive calculation ({1908−1919}∩{1906−1921})∪
({1937} ∩ {−29, 000−Now}) = {1908− 1919, 1937}.

Example 2: In [15] fuzzy annotations of RDF are used to
describe degree of trust. To every triple a real in the range
[0, 1] is attached. Such an annotation is shown in Fig. 1(c). The
annotation for the inferred triple was calculated as max(0.8 ∗
0.4, 0.3 ∗ 1) = 0.32.

There is an obvious similarity between these examples: the
calculations are both of the general form (a ⊗ b) ⊕ (c ⊗ d),
and the calculations for the inferred triple are performed by
suitably instantiating the operators ⊕ and ⊗. In fact [16],
both of the annotation domains form so-called BL-algebras
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Fig. 1. Standard and annotated RDF graphs

[11], which in general preserve the properties of the deductive
system [16].

Before describing these constructions in more detail we
should briefly connect this work with the general issue of
provenance. Our first observation is that an algebraic anno-
tation or a triple of the form we have described is a synopsis
of how that triple was derived – which is surely part of
its provenance. The second is that exogenous provenance
information such as who created a triple or when it was created
can be added following the proposals of [3]. We would also
like to compute such annotations for an inferred triple. Our
proposals provide a method for tranferring the provenance
annotations of explict triples to those that are derived.

Outline. This work has two aims. The first is to determine
what algebraic structure is necessary for an annotation domain
to keep the behavior of the deductive system the same as in
the standard case. The second is to find “the most general”
of such structures, which allows annotation of RDF graphs
by elements of the general structure, apply inference rules,
and then obtain annotations from specific domains on demand.
In the following sections we review RDFS, introduce a new
annotation algebra and provide some evidence that this is the
appropriate algebra for RDFS. We give a freeness result that
allows us to represent the terms of this annotation algebra and
give some examples of the use of the algebra.

II. PRELIMINARIES

Given a set of RDF URI references U1, let T be the set of
RDF triples of the form (s, p, o) ∈ U×U×U. Here s, p and
o are called subject, predicate and object correspondingly. An
RDF graph (or simply graph) is a finite set of triples G ⊆ T .

The RDF specification[13] includes RDF Schema
(RDFS) [1] which is a vocabulary of reserved words designed
to describe relationships between resources and properties.
In this work we use the ρdf = {sp, sc, type, dom, range}
fragment of RDFS [14]. The elements of ρdf represent
sub-property, sub-class, domain, and range properties
correspondingly. It is widely accepted that ρdf is a stable
core of RDFS.

An interpretation of an RDF graph is a tuple I =
(∆R,∆P ,∆C , P J·K, CJ·K, ·I) where

– ∆R is a nonempty set of resources,

1For the sake of simplicity we do not consider blank nodes and literals.
Their inclusion does not change the results of this work.

– ∆P is a set of property names (not necessarily disjoint
from ∆R),

– ∆C ⊆ ∆R is a set of classes,
– P J·K : ∆P → 2∆R×∆R is a property extension function,
– CJ·K : ∆C → 2∆R is a class extension function,
– ·I : U→ ∆R ∪∆P is an interpretation mapping.

The interpretation I is a model for a graph G over ρdf, denoted
by I |= G, iff the conditions in Tab. I hold2. A graph G entails
G′, denoted G |= G′, if every model of G is a model of G′.

A sound and complete deductive system for entailment [14]
is presented in Tab. II. An instantiation of an inference rule r
from the system is a replacement of the variables A,B, C,X ,
and Y , occurring in the rule, by references from U. If there
is an instantiation R

R′ of r such that R ⊆ G, then the graph
G′ = G ∪ R′ is the result of an application of r to G. A
graph G′ is inferred from G, denoted by G ` G′, iff G′ is
obtained from G by successively applying rules in Tab. II.
This entailment can be checked by computing the closure of
G, which is the maximal graph which can be inferred from
G. It can be done in quadratic time [14].

III. ANNOTATED RDFS

Definition 1: Given an algebra K with an elements set K
containing a distinguished element ⊥ a K-annotated RDF
graph (or simply an a-graph, if K is clear) is a function
G : T → 2K such that for each t ∈ T holds ⊥ ∈ G(t)
and the set Supp(G) = {t : v | v ∈ G(t), v 6= ⊥} is finite.

If v ∈ G(t) we write t : v ∈ G and call it an a-triple.
An a-graph G is schema-acyclic, if the subgraphs {(s, e, o) :
v | (s, e, o) : v ∈ Supp(G)}, e = sc, sp, do not contain
non-trivial loops. The semantics for a-graphs is given in the
following definitions.

Definition 2: A K-annotated interpretation is a tuple I =
(∆R,∆P ,∆C , P J·K, CJ·K, ·I) where ∆R,∆P ,∆C and ·I are
the same as for the standard interpretation and P J·K, CJ·K are
defined as follows:

– for each p ∈ ∆P holds P JpK : ∆R ×∆R → K,
– for each c ∈ ∆C holds CJcK : ∆R → K.
To define models for annotated RDFS we need more struc-

ture on the algebra K. Let ⊕ and ⊗ be binary operations on
K and ⊥, > be distinct constants in it. For every a, b ∈ K

2The form of conditions in our definition of model is slightly different
from that in [14], but they are equivalent per se. It is done to simplify the
comparison with notion of model for annotated RDFS given in Sect. III.



(1) Simple interpretation:
– for each (s, p, o) ∈ G holds pI ∈ ∆P and (sI , oI) ∈ P JpIK.

(2) Properties and classes:
– for each e ∈ ρdf holds eI ∈ ∆P ;
– if (x, y) ∈ P JspIK then x, y ∈ ∆P ;
– if (x, y) ∈ P JscIK then x, y ∈ ∆C ;
– if (x, y) ∈ P JtypeIK then y ∈ ∆C ;
– if (x, y) ∈ P JdomIK then x ∈ ∆C and y ∈ ∆P ;
– if (x, y) ∈ P JrangeIK then x ∈ ∆C and y ∈ ∆P .

(3) Sub-property:
– (p, p) ∈ P JspIK;

– if (p, q), (q, r) ∈ P JspIK then (p, r) ∈ P JspIK;
– if (x, y) ∈ P JpK and (p, q) ∈ P JspIK then (x, y) ∈ P JqK.

(4) Sub-class:
– (c, c) ∈ P JscIK;
– if (c, d), (d, e) ∈ P JscIK then (c, e) ∈ P JscIK;
– if x ∈ CJcK and (c, d) ∈ P JscIK then x ∈ CJdK.

(5) Typing:
– (x, c) ∈ P JtypeIK iff x ∈ CJcK;
– if (x, y) ∈ P JpK and (c, p) ∈ P JdomIK then x ∈ CJcK;
– if (x, y) ∈ P JpK and (c, p) ∈ P JrangeIK then y ∈ CJcK.

TABLE I
RDFS SEMANTICS

(1) Sub-property: (2) Sub-class: (3) Typing: (4) Sub-class Reflexivity:

(a)
(A, sp,B) (B, sp, C)

(A, sp, C)
; (a)

(A, sc,B) (B, sc, C)
(A, sc, C)

; (a)
(X ,A,Y) (A, dom,B)

(X , type,B)
; (a)

(A, sc,B)

(A, sc,A) (B, sc,B)
;

(b)
(X ,A,Y) (A, sp,B)

(X ,B,Y)
. (b)

(X , type,A) (A, sc,B)

(X , type,B)
. (b)

(X ,A,Y) (A, range,B)

(Y, type,B)
. (b)

(X , e,A)

(A, sc,A)
for e ∈ {dom, range, type}.

(5) Sub-property Reflexivity:

(a)
(X ,A,Y)

(A, sp,A)
; (b)

(e, sp, e)
for e ∈ ρdf ; (c)

(A, sp,B)

(A, sp,A) (B, sp,B)
; (d)

(A, e,X )

(A, sp,A)
for e ∈ {dom, range}.

TABLE II
RDFS DEDUCTIVE SYSTEM

we write a � b iff there exists c ∈ K such that a ⊕ c = b.
The addition operation ⊕ will be used to combine annotations
for the same triple and the ⊥ constant represents the fact, that
there is no information about a triple. The product operation
⊗ will be used to join annotations when applying inference
rules and > represents the maximal annotation.

Definition 3: Let K = 〈K,⊕,⊗,⊥,>〉 be an algebra of
type (2, 2, 0, 0). The K-annotated interpretation I is a model
for an a-graph G, denoted I |= G, iff the conditions in Tab. III
hold. An a-graph G entails H , denoted G |= H , if for every
I |= G holds I |= H .

By these definitions, each (non-annotated) RDF graph G
can be considered as an a-graph G′ = {t : > | t ∈ G} ∪ E,
if K = {⊥,>} and E = {t : ⊥ | t ∈ T}. In this case, the
definition of model for an a-graph coincides with the standard.

IV. A DEDUCTIVE SYSTEM FOR ANNOTATED RDFS AND
DIOIDS

Definition 4: An algebra K = 〈K,⊕,⊗,⊥,>〉 is a dioid
iff it is an idempotent semi-ring, i.e.
(1) 〈K,⊕,⊥〉 is a semilattice, i.e. for each a, b, and c hold:

(a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity), a⊕ b = b⊕ a,
(commutativity), a⊕⊥ = a (neutral element), a⊕ a = a
(idempotence);

(2) 〈K,⊗,>〉 is a monoid, i.e. for each a, b, and c hold:
(a⊗b)⊗c = a⊗(b⊗c) (associativity), a⊗> = a = >⊗a
(neutral element);

(3) ⊗ is left and right distributive over ⊕, i.e. for each a, b,
and c hold: a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c), (b⊕ c)⊗a =
(b⊗ a)⊕ (c⊗ a);

(4) ⊗ is ⊥-annihilating, i.e. for each a holds ⊥⊗ a = ⊥ =
a⊗⊥.

A dioid is >-dioid iff
(5) ⊕ is >-annihilating, i.e. for each a holds >⊕ a = >.

Note, that >-annihilation entails idempotence from (1).
An instantiation of a rule from the deductive system in

Tab. IV is a replacement of variables A,B, C,X , and Y by
elements of U, and variables v, v1, v2, and v3 by elements of
K, such that all relations for annotations hold. An application
of a rule to an a-graph G and a deduction of an a-graph G′

from G, denoted by G ` G′, is defined exactly the same way
as for the standard case.

Note, that the system in Tab. IV differs from the one in
Tab. II only by the presence of annotations and the generali-
sation rule (∗) which combines annotations for the same triple.
Thus, that is natural to expect the new system to behave the
same as the standard one. Particularly, they should coincide if
K = {⊥,>}. To obtain it we need some properties of K.

Definition 5: Let R be the set of all inference rules of the
form T1 T2

T from Tab. IV and Ins(r) the set of all instantiations
of a rule r ∈ R.
(1) A set of rules R′ ⊆ R is associative, iff for every r, r′ ∈
R′, τ1 τ2

τ4
,
τ1 τ

′
4

τ ′
5
∈ Ins(r), and τ4 τ3

τ5
, τ2 τ3τ ′

4
∈ Ins(r′)

holds τ5 = τ ′5.
(2) A rule r ∈ R is commutative, iff for every τ1 τ2

τ ∈ Ins(r)
holds τ2 τ1

τ ∈ Ins(r).
(3) A rule r ∈ R is idempotent, if τ τ

τ ∈ Ins(r) for every τ .
(4) A set of rules R′ ⊆ R is left distributive over r ∈ R

if for every r′ ∈ R′, τ2 τ3
τ4

,
τ ′
4 τ

′′
4

τ ′
5
∈ Ins(r), and



(1) Simple interpretation:
– for each (s, p, o) : v ∈ G holds pI ∈ ∆P and v � P JpIK(sI , oI).

(2) Properties and classes:
– for each e ∈ ρdf holds eI ∈ ∆P ;
– P JspIK(x, y) is defined only for x, y ∈ ∆P ;
– P JscIK(x, y) is defined only for x, y ∈ ∆C ;
– P JtypeIK(x, y) is defined only for y ∈ ∆C ;
– P JdomIK(x, y) is defined only for x ∈ ∆C and y ∈ ∆P ;
– P JrangeIK(x, y) is defined only for x ∈ ∆C and y ∈ ∆P .

(3) Sub-property:
– P JspIK(p, p) = >,

– P JspIK(p, q)⊗ P JspIK(q, r) � P JspIK(p, r);
– P JpK(x, y)⊗ P JspIK(p, q) � P JqK(x, y).

(4) Sub-class:
– P JscIK(c, c) = >,
– P JscIK(c, d)⊗ P JscIK(d, e) � P JscIK(c, e);
– CJcK(x)⊗ P JscIK(c, d) � CJdK(x).

(5) Typing:
– P JtypeIK(x, c) = CJcK(x);
– P JpK(x, y)⊗ P JdomIK(c, p) � CJcK(x);
– P JpK(x, y)⊗ P JrangeIK(c, p) � CJcK(y).

TABLE III
ANNOTATED RDFS SEMANTICS

(1) Sub-property: (2) Sub-class: (3) Typing:

(a)
(A, sp,B) : v1 (B, sp, C) : v2

(A, sp, C) : v1 ⊗ v2
; (a)

(A, sc,B) : v1 (B, sc, C) : v2

(A, sc, C) : v1 ⊗ v2
; (a)

(X ,A,Y) : v1 (A, dom,B) : v2

(X , type,B) : v1 ⊗ v2
;

(b)
(X ,A,Y) : v1 (A, sp,B) : v2

(X ,B,Y) : v1 ⊗ v2
. (b)

(X , type,A) : v1 (A, sc,B) : v2

(X , type,B) : v1 ⊗ v2
. (b)

(X ,A,Y) : v1 (A, range,B) : v2

(Y, type,B) : v1 ⊗ v2
.

(*) Generalisation: (4) Sub-class Reflexivity:
(X ,A,Y) : v1 (X ,A,Y) : v2

(X ,A,Y) : v1 ⊕ v2
. (a)

(A, sc,B) : v

(A, sc,A) : v (B, sc,B) : v
; (b)

(X , e,A)

(A, sc,A)
for e ∈ {dom, range, type}.

(5) Sub-property Reflexivity:

(a)
(X ,A,Y) : v

(A, sp,A) : v
; (b)

(e, sp, e) : >
for e ∈ ρdf ; (c)

(A, sp,B) : v

(A, sp,A) : v (B, sp,B) : v
; (d)

(A, e,X ) : v

(A, sp,A) : v
for e ∈ {dom, range}.

TABLE IV
ANNOTATED RDFS DEDUCTIVE SYSTEM

τ1 τ4
τ5

, τ1 τ2τ ′
4
, τ1 τ3τ ′′

4
∈ Ins(r′) holds τ5 = τ ′5.

(5) A set of rules R′ ⊆ R is right distributive over r ∈
R if for every r′ ∈ R′, τ1 τ2

τ4
,
τ ′
4 τ

′′
4

τ ′
5
∈ Ins(r), and

τ4 τ3
τ5

, τ1 τ3τ ′
4
, τ2 τ3τ ′′

4
∈ Ins(r′) holds τ5 = τ ′5.

(6) A rule r ∈ R is v-neutral, v ∈ K, if for every t1:v t2:v2
t3:v3

∈
Ins(r) holds v2 = v3 and for every t1:v1 t2:v

t3:v3
∈ Ins(r)

holds v1 = v3.
(7) A rule r ∈ R is v-annihilating, v ∈ K, if for every

t1:v t2:v2
t3:v3

∈ Ins(r) holds v3 = v and for every t1:v1 t2:v
t3:v3

∈
Ins(r) holds v3 = v.

Proposition 1: The set of inference rules R′ =
{(1a), (1b), (2a), (2b), (3a), (3b)} in Tab. IV is associative, the
set of rules {(8)} is associative, the rule (8) is commutative,
idempotent and ⊥-neutral, the set R′ is left and right
distributive over the rule (8), and each of the rules from R′
are >-neutral and ⊥-annihilating iff K is a dioid.

Theorem 1 (Soundness and completeness): Given a dioid
K and a-graphs G and H hold.
(1) If G ` H then G |= H .
(2) If G is schema-acyclic and G |= H then for every t : v ∈

H there exists v′ � v such that G ` t : v′.
(3) If K is >-annihilating and G |= H then for every t : v ∈

H there exists v′ � v such that G ` t : v′.
Hence, the deductive system behaves the same as the

standard one iff K is a dioid for schema-acyclic a-graphs and
a >-dioid in general case.

As in the standard case, the important notion is the closure
cl(G) = {τ | G ` {τ}} of an a-graph G. To compute it we
need a representation of an a-graph G, which is a finite set of
a-triples RG such that RG∪E = G, E = {t : ⊥ | t ∈ T}. The
set Supp(G) by the definition is a representation of G, but we
also want to have a possibility to work with representations
which contain an finite number of ⊥-annotated triples.

Proposition 2: Let G be an a-graph and K a >-dioid. For
every representation RG of G there exists an representation
Rcl(G) of cl(G) which can be computed in polynomial time in
the size of RG if the complexities of ⊕ and ⊗ are polynomial
bounded.

Let K and K′ be two algebras. For any function h : K → K′
and K-annotated graph G denote h(G) the set of K′-annotated
triples formed from G by applying h to each annotation.

Proposition 3: Let h : K → K′ and K,K′ be >-dioids. For
every K-annotated graph G the set h(G) is a K′-annotated
graph and holds cl(h(G)) = h(cl(G)) iff h is a dioid
homomorphism.

V. STRING DIOIDS FOR RDFS ANNOTATION

Prop. 3 enables us to obtain an a-graph from another one
without recomputing annotations for inferred triples. The next
step is to develop a “universal” annotation, i.e. an annotation
from which we can obtain any other one by applying a
corresponding dioid homomorphism.



Given an alphabet Σ define an subsequence order on the set
of words Σ∗: u ≤ u′ iff for some u1, . . . , un, w1, . . . wn−1 ∈
Σ∗ holds u = u1u2 . . . un and u′ = u1w1u2w2 . . . wn−1un. A
finite set m ⊆ Σ∗ is an antichain if for all u ≤ u′, u, u′ ∈ m,
holds u = u′. Let min(m) be the set of minimal elements
(w.r.t. ≤) of m. On the set of antichains M [Σ] we define:

m1 +m2 = min(m1 ∪m2),
m1 ×m2 = min({w1w2 | w1 ∈ m1, w2 ∈ m2}),

Call M[Σ] = 〈M [Σ],+,×, ∅, {ε}〉, where ε is the empty
string, a string dioid over generators Σ. Note, that a string
dioid is a >-dioid. The following proposition says, that it is
“the most general” of all >-dioids.

Proposition 4: (1) Given a set of generators Σ the string
dioid M[Σ] is the free >-dioid on Σ, i.e. for any >-dioid
Kf = 〈K,⊕,⊗,⊥,>〉 and a valuation φ : Σ → K there
exists a unique homomorphism Evalφ : M [Σ]→ K such that
for each a ∈ Σ holds Evalφ(a) = φ(a).
(2) The operations of the string dioid + and × can be
computed in polynomial time.

Hence, string dioids consititute an important and general
subclass of >-dioids. We now show how they can be applied
to annotate RDF graphs. Let G be a K-annotated graph and
X a set of triple ids of triples from Supp(G). We associate to
G an “abstract” version which is a (X∪∅)-annotated graph Ḡ
consisted of the same triples as G, but the annotation of each
of them is its id if it has one, and ∅ otherwise.

Theorem 2: For every K-annotated graph G holds cl(G) =
Evalφ ◦ cl(Ḡ), where φ : X → K is a valuation which
associates the annotation of an a-triple in G to its id.

This theorem gives rise to the following strategy for an-
notating RDF graphs. Given a graph G we are to annotate
it with elements from several domains. However, we would
like to infer triples and their annotations only once, without
recomputing the annotations for each annotation domain. In
this case we construct an “abstract” version Ḡ of G by
annotating triples with their ids. Then we can apply inference
rules and obtain an abstract annotation from the string dioid
over the set of ids for each triple. Finally, as soon as we need
to get annotations from a specific domain we need to make
sure that it is a >-dioid, define a homomorphism by attaching
specific annotations to triples in G and then apply it to abstract
annotations of previously inferred triples.

VI. APPLICATIONS TO SPECIFIC MODELS

In this section we introduce several annotation domains for
RDF graphs those are >-dioids.

Temporal RDF [16]. This model treats the Ex. 1. The
temporal domain KT = 〈KT ,⊕T ,⊗T ,⊥T ,>T 〉 is defined as
follows. Consider temporal intervals [α1, α2] where α1,2 ∈
P = Z ∪ {−∞,+∞}, α1 < α2. Two intervals [α1, α2]
and [α3, α4] are adjacent iff α2 + 1 = α3. The set KT

is the set of all pairwise disjoint and non-adjacent sets of
intervals. On KT a partial order is defined: γ1 � γ2 iff
for each I1 ∈ γ1 there exists I2 ∈ γ2 such that I1 ⊆ I2.
For KT we have: γ1 ⊕T γ2 = inf{γ | γ � γi, i = 1, 2},

γ1 ⊗T γ2 = sup{γ | γ � γi, i = 1, 2}, ⊥T = ∅ and >T = P.
The domain KT forms an BL-algebra and hence a >-dioid.

Fuzzy RDF [15] treats the Ex. 2. The domain here is KF =
〈[0, 1],max,⊗F , 0, 1〉, where ⊗F is any t-norm of BL-algebra.
If ⊗F is an ordinary multiplication as in Ex. 2, then the domain
becomes probabilistic. As KT domain, KF is a >-dioid.

Default RDF. In both of the previous domains the product
operation in the dioid is commutative. Next we introduce an
example of ⊗-noncommutative annotations.

Suppose we want to represent – in an RDF graph –
information about an attribute attached to resources modelled
by the graph. The straightforward way is to introduce a new
property to the vocabulary of the graph and handle it as usual.
Nevertheless, in some situations this way can be not optimal:
If we have a broad system of classes and values of the attribute
for subclasses and elements of a class are usually the same,
then it is natural to keep the default attribute value for the
class and the value for a resource only if it differs from usual
one of the class it belongs to.

For a substantiation, consider an RDF graph denoted in
Fig. 2 representing a (part of) botanical taxonomy3. The
triples of this graph have annotations which store values
of an attribute PublishedBy for every taxon in the graph.
The division Pinophyta was introduced by Carl Linnaeus,
so the triple (Plantae, sc, P inophyta) is annotated by
Linnaeus. The subsequent taxons down to family Arau-
cariaceae keep this attribute value, so we annotate all sc-
triples between Pinophyta and Araucariaceae with a special
value ? which means “derived from above”. The same value
keeps for genus Araucaria and species Araucaria Araucana.
But genus Wollemia was introduced by David Noble as
well as its only species Wollemia Nobilis, so the anno-
tations for the triples (Araucariaceae, sc,Wollemia) and
(Wollemia, sc,W.Nobilis) are Noble and ? correspond-
ingly. Thus, to find out from the graph who introduced a taxon
we need to go up from its node along the tree until we find an
edge with an annotation differs from ?. An annotation value
for a triple here represents not the value of the attribute by
itself, but its difference with the value of higher triple in the
tree. Hence, it is natural to phisically keep such annotations in
a memory only it they differ from ?. That is why if the value
of an attribute for a resource in most cases is determined by a
class it belongs to and the number of attributes are large, the
advantage in memory can be sufficient.

Before we define the default domain formally, note, that the
situation in general case can be more complicated than in the
latter example, because a ρdf subgraph of a graph does not
nesessarily have a tree structure. Therefore, in certain cases we
need to combine different annotations for a triple. To this effect
we require a set of attirbute values to have a union operation
and the lowest element, i.e. to be a semilattice. In many cases
(as in the taxonomy example) this set has no structure, but it is
possible to enrich it with the lowest element Unknown and the
greatest element Error. The latter is justified by situations

3This is just an example and the actual information may be incorrect.
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sc: ?

sc: ?

Fig. 2. The RDF graph representing botanical taxonomy

when from one source we get an attribute value for a resource,
but from another source we get a different value for the same
resource which contradicts with the first one. The union of this
information is inconsistent and requires a manual intervention,
which can be flagged by Error annotation.

Let A be an attribute with a domain 〈A,t, 0〉 which is a
semilattice with union t and the lowest element 0. Consider an
A-default domain KA = 〈A? ∪ {⊥?,>?},⊕A,⊗A,⊥?,>?〉,
where A? = (A×{True, False}) and ⊥?, >? are new special
symbols. Note, that the meanings of ⊥? and an annotation
with 0 are different: The first one says that a triple is not in
the support of a graph and the second says that the value of
the attribute is minimal according to t. The second boolean
component of A? corresponds to ? in the taxonomy example
above, i.e. it is True in an annotation for a triple iff the actual
value of the attribute is the union of the first component of the
annotation with values those can be derived from triples above,
and False overwise. The operations are defined as follows:

(a1, b1)⊕A (a2, b2) = (a1 t a2, b1 ∨ b2),

(a1, b1)⊗A (a2, b2) =

{
(a1 t a2, b2) iff b1 = True,
(a1, b1) iff b1 = False.

These operations extend to elements ⊥? and >? in a way to
keep the properties of ⊥ and > in the dioid. Next, we describe
the meaning of this operations. The addition ⊕A is applied
when we union annotations about the same triple. Hence, the
values a1 and a2 are joined by the semilattice operation t
and the possibility to derive values from a ρdf structure above
exists only if it exists in any of the considering annotations.
The product ⊗A is applied when we infer triples by transitivity
of sc or similar inference rule from Tab. IV. If b1 = True we
union the current value a1 with the derived value a2 and the
possibility of father deriving depends on b2. If b1 = False, we
just keep the annotation (a1, b1) which override any annotation
from a structure above. Finally, KA can be easily checked to
be ⊗-noncommutative >-dioid.

To use the A-default dioid KA for storing values of an
attribute A for resources we assume (0, T rue)-annotation for
a triple by default and do not keep it in a memory. As soon as
we need the real value of the attribute for a resource a we infer
a triple (a, type, r) and get the first component of annotation
for it. (Here r is the root of ρdf subgraph of the considered
graph; if it does not exist, we can always introduce it.)

VII. CONCLUSIONS

Although annotation algebras have been studied for database
query languages [8] and have also recently been investigated
for RDF query languages [7], we have suggested an alternative
and more natural algebra for the annotation of RDFS, and we

have given some examples of its use. There may be some
mileage to be gained by combining these two algebras. One of
the applications of the proposed algebra is a system for default
reasoning about certain annotations on RDF resources, which
may also prove to be a useful mechanism for physically storing
those annotations. We would like to find similar mechanisms
for efficiently storing default annotations on triples.

We are grateful to Marcelo Arenas, Boris Motik, Floris
Geerts and Alex Simpson for helpful discussions. This work
was supported by a grant from the UK Engineering and
Physical Sciences Research Council.
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Abstract—Understanding real world events often calls for
the integration of data from multiple often conflicting sources.
Trusting the description of an event requires not only determining
trust in the data sources but also in the integration process itself.
In this work, we propose a trust algorithm for event data based
on Subjective Logic that takes into account not only opinions
about data sources but also how those sources were integrated.
This algorithm is based on a mapping between a general event
ontology, the Simple Event Model, and a model for describing
provenance, the Open Provenance Model. We discuss the results
of applying the algorithm to a use case from the maritime domain.

I. INTRODUCTION

The hijacking of a freighter in the Gulf of Aden, a goal not
given in the semi-final of the World Cup and the sudden rise
of the stock market, understanding these events requires the
integration of data from multiple data sources using complex
data integration routines. For example, to build a description
of why a goal was not given there may be the report of the
referee, the comments of managers and players, and video
from different camera angles. The veracity of the resulting
description of the event is dependent not only upon the trust
one has in the original data sources (e.g. players, referees,
cameras) but also in trust one has in the process used to create
the event description.

Therefore, in this work, we investigate the generation of
trust ratings for event descriptions. These trust ratings are
calculated with respect to not only the original sources but
also to the data integration process itself. Thus, the trust
calculations consider the whole of an event description’s
provenance. The trust algorithms presented here rely on the
novel combination of two existing representations, the Simple
Event Model (SEM) for event representations and the Open
Provenance Model (OPM) for representing the data integration
process itself. Based on a mapping of these models, we
develop a trust algorithm using subjective logic. We apply our
trust algorithm to a use case from maritime shipping. The
contributions of this paper are twofold:

1) A mapping of SEM to OPM.
2) An algorithm for computing trust ratings for event

descriptions based on their provenance.
The rest of this paper is organized as follows. We begin

with a description of a use case for data integration for
event descriptions, which we use as a running example. This

is followed by a discussion of both OPM and SEM and a
presentation of the mapping between these models. Based on
this mapping, we then present an algorithm for producing trust
ratings for event descriptions. After this we present initial
results applied to the use case. We end with a discussion of
related work and a conclusion.

II. USE CASE

Our use case comes from the maritime domain. It is of
vital importance for the coast guard, harbors and ships to know
where ships are and their vicinity to one another. Being able to
track ships helps avoid collisions, manage traffic in crowded
harbors, respond to emergency, and facilitate navigation. To
enable this tracking, a common system has been developed
called The Automatic Identification System (AIS) has been
developed.1 The International Maritime Organization requires
that the system be installed on all ships over 300 tons. AIS
works by exchanging messages between local ships and radar
stations. This messages provide a range of information about
the ship including its geoposition, navigation status, speed, ra-
dio call sign, the ship’s unique registered id (MMSI - Maritime
Mobile Service Identity ), a permanent id (IMO - International
Maritime Organization Number) and the ship’s dimensions.
Such messages are subject to manipulation, corruption, and
errors impacting their reliability [1]. For example, the unique
registered id may be falsely programmed into the system, the
message may be corrupted during radio transmission, or users
may fail to update their navigation status.

An AIS message or series of AIS messages describe the
event of a ship’s movement or change in status. Often, one
would like to extract information about that event. Here, we
use a simple example of extracting what nation the ship is
registered to. This is known as the flag of the ship. This is
actually a difficult problem as both the MMSI number as well
as the IMO number report the country of origin and these
may disagree because the MMSI can change when the ship
is reregistered. Indeed, one report identified 26 vessels using
the same MMSI number [1]. In addition, country information
may be garbled or incorrectly entered. Thus, if part of the event
description is a flag then it is important to be able to determine
whether to trust that flag information based on the information
sources and how those sources were combined. SEM is already

1http://www.uais.org



being used to represent ship movement events based on AIS
messages [2]. However, we need to add additional information
to represent the provenance of the description. For this, we
turn to a model designed specifically for provenance, namely,
OPM.

III. MAPPING SEM AND OPM

In order to connect the description of an event to how that
description was created, we need to be able to interpret the
event description with respect to its provenance. To do so, we
provide a mapping from the model used for event descriptions
(SEM) to the model used for describing provenance (OPM).
To facilitate the explaination of this mapping, we first briefly
introduce both SEM and OPM.

A. SEM, the Simple Event Model

SEM [2], [3], [4] is a schema for the semantic represen-
tation of events. It does not deal with the way data about
events is stored, but only with the events themselves. SEM
focuses on modeling the most common facets of events: who,
what, where, and when. These are represented respectively
by the SEM core classes sem:Actor, sem:Place, sem:Object
and sem:Time. SEM is a model that takes into account the
inherent messiness of the Web by making as little semantic
commitment (e.g. disjointness statements, functional proper-
ties) as possible. Every instance of one of the core classes can
be assigned types from domain vocabularies. For example,
the sem:Event instance ex:world cup 2010 can be assigned
a sem:eventType dbpedia:FIFA Club World Cup. Any prop-
erty of SEM, including the type properties, is optional and
duplicable. SEM and Simple Knowledge Organization Sys-
tem (SKOS) [5] mappings to related models (DOLCE-Lite,
CIDOC-CRM, SUMO, LODE, F, Dublin Core, FOAF, and
the CultureSampo and Queen Mary’s event models) can be
accessed online.2. Additionally, through sem:View an event
can have multiple, perhaps conflicting, descriptions.

B. OPM, the Open Provenance Model

OPM is a community developed model for the exchange
of provenance information [6]. It stems from a series of in-
teroperability challenges (Provenance Challenges) held by the
provenance research community to understand and exchange
provenance information between systems. While not as com-
prehensive as some other provenance models such as ProPreO
[7] , OPM provides a common technology-agnostic layer of
agreement between systems. OPM was used by 15 teams
during the Third Provenance Challenge [6]. These teams used
a variety of provenance management systems ranging from
those focused on workflow systems to those concentrating on
operating systems. Thus, by using OPM, we aim to be able to
apply our trust algorithm to a variety of systems.

OPM represents the provenance of an object as a directed
acyclic graph with the possibility for annotations on the graph.
The graph is interpreted as being causal. An OPM graph

2http://semanticweb.cs.vu.nl/2009/11/sem/

SEM SKOS relation OPM
sem:Event skos:closeMatch opm:Process
sem:Actor skos:closeMatch opm:Artifact
sem:Actor skos:broadMatch opm:Agent
sem:Place skos:closeMatch opm:Artifact
sem:Place skos:broadMatch opm:Agent
sem:Role skos:closeMatch opm:Role
sem:View skos:closeMatch opm:Account

TABLE I
MAPPING BETWEEN OPM AND SEM

captures the past execution of a process. The graph consists
of three types of nodes:
• An opm:Artifact, which is an immutable piece of state,

for example, a file.
• An opm:Process, which is perform actions upon artifacts

and produce new artifacts. An example of a process
would be the execution of the Unix command cat on two
files to produce a new concatenated file.

• An opm:Agent, which controls or enables a process. An
example of an agent would be the operating system that
a process runs in or the person who started the process.

These nodes are linked by five kinds of edges repre-
senting dependency between nodes. An opm:Process used
and generated opm:Artifacts, represented by opm:used and
opm:wasGeneratedBy edges. These artifacts can be given an
opm:Role with respect to an opm:Process distinguishing it
from other artifacts. Note, an opm:Process can only produce
one opm:Artifact. Dependency between opm:Artifacts is repre-
sented using opm:wasDerivedFrom while dependency between
opm:Processes is represented using the opm:wasTriggeredBy
edge. Finally, the control of an opm:Process by an opm:Agent
is expressed using the opm:wasTriggeredBy edge.

Each part of an OPM graph can be labeled with an account,
which allows the same execution to be explained from different
perspectives. For example, one could describe the generation
of an event description with more or less detail.

C. Mapping

Given an event description in SEM, we would like to
determine how its facets should map to OPM so that we can
describe the facet’s provenance using OPM. For example, if an
event occurred at a sem:Place, we could consider that place an
opm:Artifact. This idea is in-line with the notion of sub-typing
within OPM [6]. We could say that a particular opm:Artifact
has a type of sem:Place. To represent the mapping, we use
SKOS, a W3C standard for describing and mapping vocab-
ularies (i.e. concept schemes). The use of SKOS follows the
practice of the W3C Provenance Incubator Group in defining
a set of Provenance Vocabulary Mappings [8]. We refer the
readers to [5] for the exact definitions of skos:closeMatch,
skos:relatedMatch and skos:broadMatch.

Our mapping focuses on the nodes within the OPM graph
and not the edges, because our aim is to describe the prove-
nance of both the event description and its facets. We now
discuss the mapping shown in Table I in more detail.



For sake of space, we report only a mapping at class level.
A more comprehensive mapping detailed with justifications is
available on the web.3

Each sem:Event is an action with some duration, this maps
very closely with the notion of an opm:Process. SEM has the
notion of an sem:Actor, the entities or people who take part or
are involved in an event. If an sem:Actor is directly a cause
or is vital for an event to take place, we would model this
as an opm:Artifact used by an opm:Process. For people who
were not directly involved but enabled the event to take place,
the sem:Actor would be mapped to an opm:Agent. By way
of example, the crew on board a ship would be modeled as
opm:Artifacts while the CEO of the shipping company can be
seen as an opm:Agent controlling the event of sending an AIS
message. Similar reasoning applies to mapping sem:Place to
OPM.

The sem:Role signifies the role a particular SEM facet plays
in an event, just as an opm:Role signifies the role a particular
opm:Artifact plays with respect to an opm:Process. Addition-
ally, an sem:View allows for multiple descriptions of the same
event, which maps naturally to an opm:Account describing
different descriptions of the same execution. Finally, the time
of an sem:Event can be easily mapped to the time annotations
present on OPM edges.

IV. TRUST RATING ALGORITHM

We now describe our trust rating algorithm. The algorithm
works upon OPM graphs. We assume that the provenance of
each facet of an event description is captured. Before applying
the algorithm, the above mapping is applied in order to view
the facets of the SEM event description in OPM.

A. Subjective Logic

Subjective logic [9] is a probabilistic logic that provides
the basis for the evidential reasoning part of our trust model.
Subjective logic’s probabilities are based on the Beta proba-
bility distribution [10]. These probabilities represent the level
of belief, disbelief and uncertainty about each proposition
we encounter, according to the evidence we own and are
represented by means of “opinions” about such propositions.

This logic provides also operators for combining such
opinions in order to handle the combination of opinions that
reflect the application of propositional logic operators to the
proposition which are objects of such opinions.

B. Opinions

The key concept of Subjective Logic logic is the concept of
“opinion”, which is the probability of correctness of a propo-
sition according to a certain source. An opinion according
to source x about proposition y is represented as ωx

y . More
precisely, opinions are depicted as follows:

ωy
x(b, d, u, a)

3http://bit.ly/c8A3A7

which is a representation equivalent to the Beta probability
distribution, where :

b =
positive evidence

total evidence+ n
d =

negative evidence

total evidence+ n

u =
n

total evidence+ n
a =

1

n

b,d,u are, respectively, belief, disbelief and uncertainty. a is the
a priori probability, that is the probability that the proposition
is correct, in absence of evidence. n is the cardinality of the
set of possible outcomes, so it may be equal to 2, in case of
a boolean outcome, or higher.

The expected value of the probability distribution repre-
sented by an opinion is given by:

E = b+ a× u

The expected value E will be used as trust value about
propositions. E is the “trust value”. Given the evidence that
we have collected about a certain proposition, E represents the
probability that the proposition is true. Therefore it numeri-
cally quantifies our trust in the proposition.

Consider the following example. There are 249 countries in
the world. Thus, the number of possible outcomes for a flag
is 249. For sake of simplicity, we consider the 35 most used
flags, which cover 99% of ships.

Here we consider three sources of information about the
flag. Two sources say the flag is Italy. One source says the
flag is the USA. Each of these opinions is secure according to
each source, therefore they assume the pattern ωx

y

(
1, 0, 0, 1

n

)
.

ωs1
italy

(
1, 0, 0,

1

35

)
ωs2
italy

(
1, 0, 0,

1

35

)
ωs3
usa

(
1, 0, 0,

1

35

)
These are the opinions about the three sources, where n = 2

because, unlike previous opinions that represent the probability
that a given value is correct (in a multivalued distribution),
these opinions represent the probability that the source is
reliable (therefore in this case the probability distribution is
binomial):

ωx
s1

(
8

12
,
2

12
,
2

12
,
1

2

)
ωx
s2

(
9

12
,
1

12
,
2

12
,
1

2

)
ωx
s3

(
5

12
,
5

12
,
2

12
,
1

2

)
Procedure opinion source(Ai) of Algorithm Fig. 1 (Lines

26 - 30) builds opinions for given Artifact Ai.

C. Weighting (discounting) operators

Subjective Logic allows to build networks of opinions. The
logic allows opinions to be transitive, but such opinions are
weighted on the reputation of the source when evaluated by
third parties. Given the opinion of z on y (ωz

y), and the opinion
of x on z (ωx

z ), the opinion that x derives from z about y is
represented by ωx:z

y . The operator for weighting opinions is:

ωx
z ⊗ ωz

y = ωx:z
y (bxzb

z
y, b

x
zd

z
y, d

x
z + uxz + bxzu

z
y, a

z
y)



Following the previous example, the weighted opinions
become:

ωx:s1
italy

(
8

12
, 0,

4

12
,
1

35

)
ωx:s2
italy

(
9

12
, 0,

3

12
,
1

35

)
ωx:s3
usa

(
5

12
, 0,

7

12
,
1

35

)
All the disbeliefs have value zero as consequence of starting

from secure opinions.
On line 31 of Algorithm of Figure 1, procedure opin-

ion sources(Ai) returns opinions about artifact Ai weighted
on reputation of the sources.

D. Fusion operator

Finally, the logic provides a range of operators which allow
us to combine opinions about the same proposition (fusion).
The fusion of n opinions given by sources x1, ..., xn about the
same proposition y is represented as ωx1�...�xn

y . The operator
works as follows:

ωsi
y ⊕ ωsj

y = ωsi�sj (
bsiy × uB + b

sj
y × usiy

usiy + u
sj
y − usiy × usjy

,

dsiy × u
sj
y + d

sj
y × usiy

usiy + u
sj
y − usiy × usjy

,
usiy × u

sj
y

usiy + u
sj
y − usiy × usjy

, asiy )

Since si’s and sj’s opinion have the same object, their a
priori probability is the same (asiy = a

sj
y ).

⊕ is an operator that returns cumulative fusion of opinions
[11] (since we assume that they are independent opinions,
evidence that these opinions resemble are cumulated).

Continuing our example, by merging the previous opinions
regarding the two outcomes (Italy and USA), we obtain:

ωx:s1�x:s2
italy (0.77, 0.14, 0.09, 0.5) ωx:s3

usa (0.42, 0.42, 0.16, 0.5)

Line 21 of algorithm of Figure 1 iteratively merges opinions
about the Artifact of interest.

E. Trust Rating Algorithm

Here we present an algorithm for calculating the trust value
of an event facet, represented by artifacts. However, because
of its recursive nature, the algorithm is directly applicable to
event descriptions.

Given an artifact to calculate the trust value of, our first step
is determine the opinion of any source that directly generates
the artifact’s value. The following steps are:
• take the amount of evidence given by each source about

each possible value for the artifact. Usually each source
gives one output, but if more are available, then the
resulting opinion is stronger (see subsect. IV.B).

• weight the opinions given by the sources according to the
opinion on the source itself (in turn, based on previous
evidence about its trustworthiness, see subsection IV.C)

• merge all the opinions (see subsection IV.D)
Generalizing, we can say that:
• given an artifact A;
• given a set of sources: s1, ... sn

(1) proc tv (Ai) ≡
(2) res := null
(3) for Pk : Ai opm : wasGeneratedBy Pk do
(4) for Aj : Pk opm : used Aj do
(5) if Ai opm : wasDerivedFrom Aj

(6) then
(7) if res = null
(8) then res := tv(Aj)
(9) else res := F (Pk)(res, tv(Aj))

(10) fi
(11) fi
(12) od
(13) od

(15) comment: res = ω
∀Aj

x:tv(Aj)

v(Ai)

(16) for si : ∃vsi(Ai) 6= ∅ do
(17) if res = null
(18) then res := opinion sources(Ai)
(19) else res := res⊕ opinion sources(Ai)
(20) fi
(21) od
(22) return res
(23) end
(24) proc opinion source(Ai)
(25) for si : vsi(Ai) 6= null do
(26) record evidence(vsi(Ai))
(27) od
(28) return ωx:si

v(Ai)

(29) end
(30) proc π(t, si, Ai)
(31) e : e ∈ domain ∧ dist(e, vsi(Ai) =
(32) = min∀e′∈domain(dist(e′, vsi(Ai))
(33) d := dist(e, vsi(Ai))
(34) record ωsi

vsi (Ai)=e(b
′
si ·

1
d , 0, (d

′
si + u′si) · (1−

1
d ), a

′
si)

(35) comment: b′si , d
′
si , u

′
si , a

′
si are the

(36) comment: projections of bsi , dsi , usi , asi
(37) end
(38) proc dist
(39) comment: distance between two points
(40) comment: (e.g. Euclidean).
(41) proc record evidence
(42) comment: stores evidence in memory .
(43) proc record
(44) comment: stores opinion in memory.
(45) proc ω
(46) comment: returns an opinion
(47) comment: based on stored evidence.
(48) comment: Possible values for F:
(49) F (concat) = ∧
(50) F (lookup(t)) = ∧ · π(t)

Fig. 1. Trust Rating Algorithm

• given a function v(si, A) = vsi(A)
• given opinions on the sources ωx

si(bsi , dsi , usi , asi)

We compute the opinion on a event facet from each source:
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Fig. 2. Provenance and Trust graphs about the flag value of a ship. The left graph reconstructs the provenance of the flag field. The graph on the right,
starting from the first ancestors of the flag field, collects all the evidence about all the artifacts involved in the provenance trail (of the left graph) and gradually
merges them.

ωx:si
vsi (A)(bsi , 0, dsi + usi , asi)

Once we have the opinions about the values from each
source, we merge them in order to obtain an opinion for each
value from all sources:⊕

vsi

ωx:si
vsi (A)(bsi , 0, dsi + usi , asi)

F. Integration process

We want to consider not only sources that directly provide
the artifact value but also which process is used during
integration to generate the artifact. Therefore, in case the
artifact is not a leaf node, then we need to merge the (eventual)
opinions computed taking into account the provenance of
the artifact. For example, considering the example of Fig. 2,
we see that the trust level of the root node depends on the
trust levels of the leaf nodes, combined according to how the
process manipulates them. Therefore, we should use a functor
that, allows us to apply proper functions to the trust values
of the input artifacts, according to the kind of process that
manipulates them.

Two examples are provided in Algorithm 1: in case of a
concatenation process (that takes as inputs two strings and
outputs their concatenation), then all the trust value equally
contribute to determining the outcome and therefore they are
merged by conjunction. In case of a lookup process (that takes
as inputs a key and a value table, and outputs the value in
the table corresponding to the key), then before calculating
the conjunction of the trust values, we project them into the
space of the possible values, possibly smaller than the space
of plausible ones. Moreover, in case the value we face does
not fall into the range of possible values, then we consider the
value or values closer to it and belonging to the sset of possible
values. Clearly, we weight these contributions according to the
distance to the given value.

V. APPLYING THE ALGORITHM

We now discuss how, by taking advantage of both prove-
nance and background knowledge, the trust algorithm can
produce more precise trust ratings.

One important feature of the algorithm is that, by means
of provenance, we encorporate in our algorithm also semantic
information.

This way, we restrict the domain of possible value for each
field to the range of real, meaningful values. For instance, if the
nationality field of a MMSI is a 3 digit code, then there are 103

possible values, since any cypher would be equally probable in
each of the 3 positions. By taking into account the meaning
(semantics) of the MMSI, the cardinality of the set of the
plausible values would restrict to 35 (considering the countries
which own 99% of the ships). This means that if we own 10
positive evidence and we restrict the plausibilty set from 1000
to 35, then the trust value rises from E = 10

1010+
1

1000×
1000
1010 =

0, 0189... to E = 10
45 + 1

35 ×
35
45 = 0, 3143..... Note that the

MMSI field is retrieved via traversing the provenance graph.
Another important feature of the algorithm is the usage

of provenance information. Because of this, we enlarge the
availability of evidence at disposal for calculating trust values.
In fact, we don’t limit to the use of direct evidence about
the facets we have to evaluate, but we consider also evidence
about elements used in the process that lead us to our facets.
Therefore, we check whether these initial elements were
correct and whether they were combined properly in order to
produce the facet we are analyzing. Once we have this result,
we can compare it with evidence directly referred to the facet
we are evaluating, obtaining an improvement of the precision
of the trust value.

Continuing the previous example, if we have also sources
that provide a value for the nation, knowing that the national
code is determined by looking it up into a trusted table, then by
applying the Trust Ranking Algorithm, we obtain the following
trust value: E = 20

45 + 1
35 ×

35
45 = 0, 4667.....

If we adopt a conservative approach and accept only facets
which trust value is above a certain threshold, then this change
reduces the amount of errors due to false negatives.

VI. RELATED WORK

Trust is a widely explored topic within a variety of areas
within computer science including security, intelligent agents,
software engineering and distributed systems. Here, we focus
on those works directly touching upon the junction of trust,
provenance and the Semantic Web. For a readable overview



of trust research in artificial intelligence, we refer readers to
Sabater and Sierra [12]. For a more specialized review of
trust research as it pertains to the Semantic Web see Artz and
Gil [13]. Finally, Golbeck provides a longer review of trust
research as it relates to the Web [14].

Our work is closest to the work on using provenance for
information quality assessment on the Semantic Web. In the
WIQA framework [15], policies can be expressed to determine
whether to trust a given information item based on both
provenance and background information expressed as Named
Graphs [16]. Hartig and Zhao follow a similar approach using
annotated provenance graphs for a given information item to
perform the quality assessment and thus generate a trust value
[17]. However, their work uses a more complex provenance
representation similar to OPM that captures not only the
data origins but also the processing steps involved. Similarly,
IWTrust generates trust values for answers produced by a
question answering system based on a combination of source
data, provenance information, and user ratings [18]. Our work
differs from these approaches in three respects: First, we
concentrate on event descriptions and not generic data items.
Second, our work takes advantage of a priori knowledge about
the likelihood of data items in order to correct for possible data
errors. Finally, we use Subjective Logic to allow for multiple
(possibly conflicting) opinions about data sources to be taken
into account, but unlike [19], we use it in combination with
provenance.

Recent work has focused on querying trust using SPARQL
[20]. We see our work as complementary in that it could
facilitate the population of the trust values to query over.
Finally, other work has considered using provenance and
ontologies to determine the trust in electronic contracts [21].
Our work differs, in that they use provenance as a source of
experience for calculating opinion values whereas we focus on
the combination of current opinion values to produce a final
trust value.

VII. CONCLUSION

Here, we presented a trust algorithm for determining trust
of event descriptions based on provenance. We provide a
novel mapping between an event ontology and a widely
used provenance ontology. Secondly, we show how Subjective
Logic can be used in combination with provenance to generate
improved trust values in a maritime data integration domain. In
the future, we will perform a comprehensive evaluation of the
model and extend Subjective Logic to handle a contextualiza-
tion of opinions and address some of its limitations (see [22]).
Additionally, we aim to expand our work applying it to the
problem of determining trust of event descriptions produced
from data integrated from the Web.
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Abstract—Provenance is a cornerstone element in the process of 

enabling quality assessment for the Web of Data. Applications 

consuming or generating Linked Data will need to become 

provenance-aware, i.e., being able to capture and consume 

provenance information associated with the data. This will bring 

provenance as a key requirement for a wide spectrum of 

applications. This work describes Prov4J, a framework which 

uses Semantic Web tools and standards to address the core 

challenges in the construction of a generic provenance 

management system. The work discusses key software 

engineering aspects for provenance capture and consumption and 

analyzes the suitability of the framework under the deployment 

of a real-world scenario.     

Keywords- provenance management; semantic web. 

I.  INTRODUCTION 

The Web is evolving into a complex information space 
where users have access to an unprecedent volume of 
information. The advent of Linked Data in the last years as the 
de-facto standard to publish data on the Web, and its uptake by 
early adopters

12
, defines a clear trend towards a Web where 

users will be able to easily aggregate, consume and republish 
data. With Linked Data, Web information can be repurposed 
with a new level of granularity and scale. In this scenario, 
tracking the provenance of an information artifact will play a 
fundamental role on the Web, enabling users to determine the 
suitability and quality of a piece of information.  

As a direct consequence, Linked Data applications will 
demand mechanisms to track and manage provenance 
information. This new common requirement is inherent to the 
level of data integration provided by Linked Data and it is not 
found in most systems consuming information from „data 
silos‟, where the relationship among data sources and 
applications is, in general, more rigid.  

Until now, provenance management has been a wide 
concern in the domain of scientific workflow systems [1, 2], 
enabling understandability and reproducibility in scientific 
experiments. Provenance on the Web introduces new and 
broader requirements for representing and managing 

                                                           
1
 http://data.gov.uk, UK Government Data  

2
 http://data.nytimes.com/, NYT Open Data 

provenance
3
, as different communities are represented under 

the same space.  

This work discusses provenance management from the 
perspective of this larger audience, describing Prov4J

4
, a 

general-purpose open source provenance management system. 
The framework uses Semantic Web standards and tools to 
deploy a generic and standards-based solution. The paper also 
discusses key software engineering aspects in the process of 
designing the framework. 

The central goal behind the design of the framework is to 
provide a set of core functionalities that enable users to develop 
provenance-aware applications, both from the consumption 
(discovery/query/access) and from the capture (logging/ 
publishing) perspectives.  

The paper is structured as follows: section II introduces a 
motivational scenario; sections III and IV describe general 
aspects of provenance management and the architecture behind 
Prov4J; sections V and VI cover the consumption and capture 
cycles of provenance management, discussing the application 
of Semantic Web standards and tools in the construction of the 
framework. Section VII provides a brief analysis of the 
framework using a real world scenario based on the 
motivational scenario; section VIII present related work and 
section IX conclusions and future work. 

This work concentrates its contributions: (1) in the 
description and analysis of a generic provenance framework for 
the Web using Semantic Web standards and tools; (2) in the 
analysis of the suitability of these standards and tools in the 
process of building this framework. 

II. MOTIVATIONAL SCENARIO  

Financial analysts in an investment company are using 
information from the Web to help make investment decisions. 
Business related data aggregated from different Web sources is 
filtered, curated and analyzed, and financial reports about 
companies or investment areas are generated. Each report is a 
data mash-up and the provenance of each statement in the 
report should be tracked to its sources. The ecosystem of Web 
applications used for aggregating, filtering, curating, analyzing 
and visualizing the data should be provenance-aware, i.e. the 

                                                           
3
 http://www.w3.org/2005/Incubator/prov/wiki/User_Requirements, W3C 

Provenance Incubator Group 
4
 http://prov4j.org 



historical trail of all the entities and processes behind the 
transformation of the original data need to be recorded and 
users should be able to access the provenance of data. 

III. A GENERIC PROVENANCE FRAMEWORK FOR THE WEB  

The core goal behind Prov4J is the provision of a 
provenance management mechanism for the large set of 
applications which will increasingly need to capture and 
consume provenance information. As a result, Prov4J is 
targeted towards an application developer which needs to build 
provenance-aware applications. 

According to Freire et al. [2], provenance management 
frameworks typically consist of three main components: a 
capture mechanism, a representational model and an 
infrastructure for storage, access and queries (provenance 
consumption). In Prov4J, the representational model is covered 
by the W3P provenance ontology

5
, the capture mechanism is 

covered by ProvLogger, the component which is responsible 
for logging and publishing, and the provenance consumption is 
done by the ProvClient component.  

W3P is a generic provenance ontology for tracking 
provenance on the Web. W3P is designed to be a lightweight 
provenance ontology, complementing and integrating 
vocabularies such as Dublin Core

6
, and the ChangeSet

7
 

vocabulary. Other key features of W3P include the coverage of 
social provenance [3] and the maximization of the 
compatibility with the Open Provenance Model (OPM). Prov4J 
uses W3P as its default provenance model. Sections V and VI 
approach the consumption and capture cycles in Prov4J. 

IV. ARCHITECTURE 

In most applications, provenance represents a cross-cutting 
concern where the functionalities to capture and consume 
provenance are a complementary requirement to the core 
functionalities of an application. A cross-cutting concern is a 
common feature that is typically spread across objects in the 
application, being difficult to decompose from other parts of 
the system. Prov4J adopts a provenance architecture which 
reflects the separation between the core concerns of the 
application and the cross-cutting concern of provenance. The 
architecture maximizes the encapsulation of provenance 
capture and consumption functionalities in a separate layer 
(figure 1). The architecture behind Prov4J contains many 
elements in common with the general architecture proposed by 
Groth [4].   

However, differently from classical examples of cross-
cutting concerns (e.g. message logging and user 
authentication/access control), provenance capture and 
consumption is typically more tightly coupled with the logic 
structure of the calling application (process documentation 
perspective [2]) or to the data used in the application (data 
provenance perspective [5]), bringing challenges and practical 
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limits to the isolation of the provenance concern inside the 
calling application. 

 

Figure 1: Generic provenance management architecture. 

A common provenance scenario is the association of the 
information present in a procedural or object-oriented 
application to a data artifact in a generic data store (e.g. 
relational databases, XML or RDF data). The strategy used in 
Prov4J is to use RDF to represent provenance data and URIs to 
associate the described information resource in the core 
application layer with its provenance descriptor. This allows 
Prov4J to cope with both data representation independency 
and separation of concerns, important requirements for a 
generic provenance framework. A <provURI> is a connection 
point between the core application layer and the provenance 
layer, being an entry point into the provenance store. This 
allows an abstraction over the artifact type, which can be a 
relational tuple, RDF triples, a named graph, a XML element, a 
HTML element, etc.  

The <provURI> mechanism also allows Prov4J to partially 
track data provenance. Data provenance is defined as the 
process of tracking the origins of data and its movement 
between databases [6]. Compared to the perspective of 
workflow provenance, data provenance approaches the 
problem under a database perspective, focusing on the 
relationships between data artifacts. A typical problem in this 
perspective is the representation of dependencies between data 
artifacts (i.e. on which artifacts a specific piece of data depends 
upon). Despite the fact that a complete data provenance 
tracking solution is highly dependent on the storage 
mechanism, Prov4J provides a basic functionality for mapping 
dependencies across data artifacts. This discussion is briefly 
detailed in section VI. 

Prov4J also allows the discovery and consumption of 
provenance descriptors associated with different types of 
resources, including HTML pages, SPARQL endpoints, and 
RDF published as Linked Data. This allows Prov4J to respond 
to an important use case where an application is consuming 
provenance from third-party Web resources. Prov4J consists of 
two core components: ProvClient and ProvLogger (figure 2). 
ProvClient is responsible for the consumption cycle of the 
application, while ProvLogger provides an interface for 
provenance capture. A third element, ProvServer, is introduced 
in order to allow high performance provenance capture.  

V. PROVENANCE CONSUMPTION 

A. Description 

The consumption cycle inside Prov4J starts with the 

specification of the information sources which will be 



consumed: users can specify the location (URIs) of 

information resources that have associated provenance 

descriptors or the URIs of provenance data sources. There are 

three types of supported provenance sources: provenance 

stores (which are SPARQL endpoints), linked provenance data 

(RDF published using the Linked Data principles
8

) and 

provenance descriptors (RDF data embedded in different 

formats). 

Each type of provenance data source has a different 

consumption approach. Data in provenance stores are 

consumed after a user query is defined over the API. Linked 

provenance data is consumed using a navigational approach 

[7], where provenance is queried by successive navigation 

over the provenance graph (de-referencing each of the 

provenance entities and loading the returned RDF into a 

memory model). Figure 2 shows the basic components inside 

the framework including the components for provenance 

discovery and RDF extraction under different publication 

protocols (Provenance Discovery and Parsers), the 

components for Linked Provenance Data navigation (Linked 

Data Navigator) and provenance store data consumption 

(Client).  

The provenance graphs collected from different sources are 

then loaded into a memory model. The framework uses two 

basic internal provenance structures: a provenance graph 

(ProvGraph) and a provenance view (ProvView). A 

ProvGraph represents the basic fragment of provenance 

information associated with a data source. One or more 

different ProvGraphs can be loaded into a single model by 

using a ProvView. The ProvView is the model where users 

have a consolidated provenance view over a set of different 

provenance data sources.  

 

Figure 2: Prov4J key components. 

After all provenance graphs are merged into provenance 

views, elements from different vocabularies are mapped into 

W3P entities using rules reasoning. Rules provide an 

expressive mechanism which allows complex mappings 

between different vocabularies which cannot be addressed by 

owl:equivalentClass or owl:equivalentProperty. Examples of 
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more complex mappings across different provenance 

representations can be found in Miles [8], which defines OPM 

Profiles for Dublin Core vocabulary elements. The use of rules 

for vocabulary mappings also allows the representation of the 

mappings in standardized representations such as SWRL
9
.  

Once the vocabularies are mapped into W3P elements, the 

framework applies RDFS/OWL reasoning over the 

provenance model. owl:TransitiveProperty and 

owl:InverseProperty are used in W3P to improve the number 

of provenance queries answered by the framework (subsection 

B in this section). The consumption process is dependent on 

the type of provenance data source: for provenance stores and 

linked provenance data, the reasoning is done at query time, 

while for descriptors the discovery-parsing-reasoning is done 

during the definition of data sources on the interface. Prov4J 

uses the Jena framework 
10

 in its core and Pellet [9] is used for 

both OWL and Rules reasoning. Users can disable both types 

of reasoning from the API. 

B. Provenance Queries 

The provenance consumption API (ProvClient) provides 
the core operations over the provenance views. The ProvClient 
API contains key interface methods for a set of provenance 
queries, minimizing the interaction from users with SPARQL. 
A SPARQL query interface is also exposed to allow non-
predefined types of queries over the model. The framework 
supports five query categories: 

SPARQL based queries: Provenance queries supported by the 
elements of the SPARQL specification

11
 are accessible by 

using the direct query over the provenance model or by using 
API methods for common queries. Prov4J SPARQL also 
includes syntactic extensions: GROUP BY, HAVING and 
aggregation. ARQ with syntactic extensions 

12
 is the core query 

engine behind Prov4J. 

Queries supported by reasoning: Some key provenance 
queries over W3P can be addressed by applying OWL 
reasoning over provenance data. Examples of queries of this 
type involve the determination of indirect 
relationships/dependencies in a workflow chain, such as “list 
all artifacts which were used directly or indirectly in artifact 
X”. Similarly, rules can be applied to improve query 
expressivity. 

Path queries: One important feature for provenance queries is 
the ability to query paths over provenance trails. A typical path 
query is “show all the processes between artifacts A and B” or 
more specifically “list all the trails containing a process which 
uses artifact C between artifacts A and B”. Regular expressions 
queries over RDF elements can be used for expressing 
provenance path patterns. Prov4J uses the Gleen SPARQL 
extension described in [10] for path queries. Prov4J users can 
launch their own path queries or can access some of the 
functionalities provided by Gleen through API methods. 

                                                           
9
 http://www.w3.org/Submission/SWRL/ 

10
 http://jena.sourceforge.net 

11
 http://www.w3.org/TR/rdf-sparql-query/ 

12
 http://jena.sourceforge.net/ARQ/extension.html 



Navigational queries: In some scenarios the primary way to 
consume provenance information is through RDF published as 
Linked Data. In this case Prov4J provides two interfaces: one 
for users browsing provenance data and the other for 
navigational queries. In the first case, the first level provenance 
descriptor of an artifact is available as a de-referentiable URI. 
The RDF provenance data can be consumed by the application 
and further de-referentiations are directed by user input (in this 
case Prov4J provides a simple interface for node de-
referentiations). A second type of navigation provided by the 
framework is through the provision of iterators to provenance 
nodes where provenance properties are used to determine 
which provenance nodes to de-reference. For example, the 
iterator defined by the property w3p:used can be used to 
navigate through a chain of artifact dependencies. The third 
functionality is defined by the idea of navigational queries, 
which are mechanisms to query Linked Data by launching a 
SPARQL query over a collection of RDF graphs collected from 
a de-referentiable URI entry point [7]. In the case of Prov4J, a 
simple de-referentiation algorithm follows the provenance links 
until it reaches a pre-configured limit.  

Similarity queries: One type of provenance query refers to the 
similarity analysis between two provenance graphs. This type 
of comparison can be used in the determination of similar 
workflow conditions and have potential applications in quality 
assessment scenarios. A user may trust a specific workflow and 
may want to query for similar or identical conditions. The 
matching process used in Prov4J is based on the approach 
described by Oldakowsky & Bizer [11] adapted to the W3P 
provenance model.  

C. Provenance Discovery 

       Provenance Discovery consists in automatically 

discovering the provenance given an information resource and 

it is an important requirement for a generic provenance 

management framework for consuming provenance data on 

the Web. Information resources can be HTML pages, elements 

inside the page, SPARQL endpoints, RDF files or de-

referentiable URIs. A provenance discovery mechanism 

should not rely on centralized crawled provenance 

repositories: it should always be possible to navigate from the 

artifact to its provenance descriptor. Prov4J supports four 

mechanisms to discover provenance on the Web: 

Semantic Sitemaps + robots.txt: Used to discover the 

provenance descriptor of a dataset having as a starting point a 

domain name. As covered in [12], the mechanism used by 

voiD [13], using robots.txt and the semantic sitemaps 

extension, can be used to discover dataset provenance 

descriptors.  

Linked Provenance Data: Provenance descriptors can be 

published as Linked Data in two ways: (1) the URI represents 

an artifact and links directly to other provenance properties, 

(2) a provenance property such as w3p:provenance links the 

URI to the starting point of a provenance descriptor (a mirror 

to the provenance layer representation of the artifact). 

Embedded RDFa: Provenance data can be embedded as 

RDFa in HTML pages.  

POWDER: POWDER (Protocol for Web Description 

Resources)
13

 is a W3C recommendation which provides a 

standard for describing general Web resources. Provenance 

descriptors can be embedded as RDF payloads in POWDER 

files. 

VI. PROVENANCE CAPTURE 

One key challenge in the process of building a generic 

provenance capture framework is the process of providing a 

simple yet expressive provenance interface. The ability to 

express provenance accurately and with the mimimum amount 

of intervention in the application is a fundamental feature in 

the process of introducing the provenance functionality in 

existing applications. In order to achieve this objective, the 

provenance capture engine was built using the following 

principles: 

Pushback capture: Provenance capture or logging can be 

implemented as pushback operation, where, from the capture 

interface perspective, new provenance information is inserted 

but never deleted or updated. This assumption is consistent 

with the fact that provenance maps to the actual temporal 

execution flow of the application. Instead of allowing a full 

interaction with the provenance store, the ProvLogger 

interface is primarily designed for pushing back fragmented 

provenance logs, which are reconstructed in the provenance 

store (concept present in [4] and [14]). 

Minimization of adaptations: Prov4J capture interface can be 

used to implement adaptations, a concept defined by Munroe 

[14], in a software engineering methodology designed for the 

development provenance-aware applications (PrIMe). 

Adaptations allow actors to record process documentation, 

adding the provenance functionality to the application. 

Relations among entities in the provenance model can be 

determined based on the execution scope of these elements. 

Temporal relations, order relations, relationships between 

agents, processes and artifacts in the same execution scope are 

examples of provenance data which can be determined without 

explicit adaptations. The ProvLogger component minimizes 

the user input in the construction of the provenance model, 

‘filling the gaps’ in the provenance model. Figure 3 shows 

examples of adaptations. 

Provenance URIs: In some cases, provenance entities can be 

interconnected with elements in different parts of the 

workflow (e.g. a process consuming an artifact that was 

generated by another process at a different time). The logger 

interface provides a mechanism to interconnect provenance 

entities in different execution scopes. Users can associate 

different provenance entities by using internally the concept of 

ApplicationId-URI mapping, which associates Ids inside the 

application to provenance URIs. These associations can also 

be done directly by referencing directly provenance URIs. To 
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