
Prov4J: A Semantic Web Framework for Generic

Provenance Management

André Freitas, Arnaud Legendre, Seán O‟Riain, Edward Curry

Digital Enterprise Research Institute (DERI)

National University of Ireland, Galway

Galway, Ireland

Abstract—Provenance is a cornerstone element in the process of

enabling quality assessment for the Web of Data. Applications

consuming or generating Linked Data will need to become

provenance-aware, i.e., being able to capture and consume

provenance information associated with the data. This will bring

provenance as a key requirement for a wide spectrum of

applications. This work describes Prov4J, a framework which

uses Semantic Web tools and standards to address the core

challenges in the construction of a generic provenance

management system. The work discusses key software

engineering aspects for provenance capture and consumption and

analyzes the suitability of the framework under the deployment

of a real-world scenario.

Keywords- provenance management; semantic web.

I. INTRODUCTION

The Web is evolving into a complex information space
where users have access to an unprecedent volume of
information. The advent of Linked Data in the last years as the
de-facto standard to publish data on the Web, and its uptake by
early adopters

12
, defines a clear trend towards a Web where

users will be able to easily aggregate, consume and republish
data. With Linked Data, Web information can be repurposed
with a new level of granularity and scale. In this scenario,
tracking the provenance of an information artifact will play a
fundamental role on the Web, enabling users to determine the
suitability and quality of a piece of information.

As a direct consequence, Linked Data applications will
demand mechanisms to track and manage provenance
information. This new common requirement is inherent to the
level of data integration provided by Linked Data and it is not
found in most systems consuming information from „data
silos‟, where the relationship among data sources and
applications is, in general, more rigid.

Until now, provenance management has been a wide
concern in the domain of scientific workflow systems [1, 2],
enabling understandability and reproducibility in scientific
experiments. Provenance on the Web introduces new and
broader requirements for representing and managing

1
 http://data.gov.uk, UK Government Data

2
 http://data.nytimes.com/, NYT Open Data

provenance
3
, as different communities are represented under

the same space.

This work discusses provenance management from the
perspective of this larger audience, describing Prov4J

4
, a

general-purpose open source provenance management system.
The framework uses Semantic Web standards and tools to
deploy a generic and standards-based solution. The paper also
discusses key software engineering aspects in the process of
designing the framework.

The central goal behind the design of the framework is to
provide a set of core functionalities that enable users to develop
provenance-aware applications, both from the consumption
(discovery/query/access) and from the capture (logging/
publishing) perspectives.

The paper is structured as follows: section II introduces a
motivational scenario; sections III and IV describe general
aspects of provenance management and the architecture behind
Prov4J; sections V and VI cover the consumption and capture
cycles of provenance management, discussing the application
of Semantic Web standards and tools in the construction of the
framework. Section VII provides a brief analysis of the
framework using a real world scenario based on the
motivational scenario; section VIII present related work and
section IX conclusions and future work.

This work concentrates its contributions: (1) in the
description and analysis of a generic provenance framework for
the Web using Semantic Web standards and tools; (2) in the
analysis of the suitability of these standards and tools in the
process of building this framework.

II. MOTIVATIONAL SCENARIO

Financial analysts in an investment company are using
information from the Web to help make investment decisions.
Business related data aggregated from different Web sources is
filtered, curated and analyzed, and financial reports about
companies or investment areas are generated. Each report is a
data mash-up and the provenance of each statement in the
report should be tracked to its sources. The ecosystem of Web
applications used for aggregating, filtering, curating, analyzing
and visualizing the data should be provenance-aware, i.e. the

3
 http://www.w3.org/2005/Incubator/prov/wiki/User_Requirements, W3C

Provenance Incubator Group
4
 http://prov4j.org

historical trail of all the entities and processes behind the
transformation of the original data need to be recorded and
users should be able to access the provenance of data.

III. A GENERIC PROVENANCE FRAMEWORK FOR THE WEB

The core goal behind Prov4J is the provision of a
provenance management mechanism for the large set of
applications which will increasingly need to capture and
consume provenance information. As a result, Prov4J is
targeted towards an application developer which needs to build
provenance-aware applications.

According to Freire et al. [2], provenance management
frameworks typically consist of three main components: a
capture mechanism, a representational model and an
infrastructure for storage, access and queries (provenance
consumption). In Prov4J, the representational model is covered
by the W3P provenance ontology

5
, the capture mechanism is

covered by ProvLogger, the component which is responsible
for logging and publishing, and the provenance consumption is
done by the ProvClient component.

W3P is a generic provenance ontology for tracking
provenance on the Web. W3P is designed to be a lightweight
provenance ontology, complementing and integrating
vocabularies such as Dublin Core

6
, and the ChangeSet

7

vocabulary. Other key features of W3P include the coverage of
social provenance [3] and the maximization of the
compatibility with the Open Provenance Model (OPM). Prov4J
uses W3P as its default provenance model. Sections V and VI
approach the consumption and capture cycles in Prov4J.

IV. ARCHITECTURE

In most applications, provenance represents a cross-cutting
concern where the functionalities to capture and consume
provenance are a complementary requirement to the core
functionalities of an application. A cross-cutting concern is a
common feature that is typically spread across objects in the
application, being difficult to decompose from other parts of
the system. Prov4J adopts a provenance architecture which
reflects the separation between the core concerns of the
application and the cross-cutting concern of provenance. The
architecture maximizes the encapsulation of provenance
capture and consumption functionalities in a separate layer
(figure 1). The architecture behind Prov4J contains many
elements in common with the general architecture proposed by
Groth [4].

However, differently from classical examples of cross-
cutting concerns (e.g. message logging and user
authentication/access control), provenance capture and
consumption is typically more tightly coupled with the logic
structure of the calling application (process documentation
perspective [2]) or to the data used in the application (data
provenance perspective [5]), bringing challenges and practical

5
 http://prov4j.org/w3p/schema#

6
 http://dublincore.org

7
 http://vocab.org/changeset/schema.html

limits to the isolation of the provenance concern inside the
calling application.

Figure 1: Generic provenance management architecture.

A common provenance scenario is the association of the
information present in a procedural or object-oriented
application to a data artifact in a generic data store (e.g.
relational databases, XML or RDF data). The strategy used in
Prov4J is to use RDF to represent provenance data and URIs to
associate the described information resource in the core
application layer with its provenance descriptor. This allows
Prov4J to cope with both data representation independency
and separation of concerns, important requirements for a
generic provenance framework. A <provURI> is a connection
point between the core application layer and the provenance
layer, being an entry point into the provenance store. This
allows an abstraction over the artifact type, which can be a
relational tuple, RDF triples, a named graph, a XML element, a
HTML element, etc.

The <provURI> mechanism also allows Prov4J to partially
track data provenance. Data provenance is defined as the
process of tracking the origins of data and its movement
between databases [6]. Compared to the perspective of
workflow provenance, data provenance approaches the
problem under a database perspective, focusing on the
relationships between data artifacts. A typical problem in this
perspective is the representation of dependencies between data
artifacts (i.e. on which artifacts a specific piece of data depends
upon). Despite the fact that a complete data provenance
tracking solution is highly dependent on the storage
mechanism, Prov4J provides a basic functionality for mapping
dependencies across data artifacts. This discussion is briefly
detailed in section VI.

Prov4J also allows the discovery and consumption of
provenance descriptors associated with different types of
resources, including HTML pages, SPARQL endpoints, and
RDF published as Linked Data. This allows Prov4J to respond
to an important use case where an application is consuming
provenance from third-party Web resources. Prov4J consists of
two core components: ProvClient and ProvLogger (figure 2).
ProvClient is responsible for the consumption cycle of the
application, while ProvLogger provides an interface for
provenance capture. A third element, ProvServer, is introduced
in order to allow high performance provenance capture.

V. PROVENANCE CONSUMPTION

A. Description

The consumption cycle inside Prov4J starts with the

specification of the information sources which will be

consumed: users can specify the location (URIs) of

information resources that have associated provenance

descriptors or the URIs of provenance data sources. There are

three types of supported provenance sources: provenance

stores (which are SPARQL endpoints), linked provenance data

(RDF published using the Linked Data principles
8

) and

provenance descriptors (RDF data embedded in different

formats).

Each type of provenance data source has a different

consumption approach. Data in provenance stores are

consumed after a user query is defined over the API. Linked

provenance data is consumed using a navigational approach

[7], where provenance is queried by successive navigation

over the provenance graph (de-referencing each of the

provenance entities and loading the returned RDF into a

memory model). Figure 2 shows the basic components inside

the framework including the components for provenance

discovery and RDF extraction under different publication

protocols (Provenance Discovery and Parsers), the

components for Linked Provenance Data navigation (Linked

Data Navigator) and provenance store data consumption

(Client).

The provenance graphs collected from different sources are

then loaded into a memory model. The framework uses two

basic internal provenance structures: a provenance graph

(ProvGraph) and a provenance view (ProvView). A

ProvGraph represents the basic fragment of provenance

information associated with a data source. One or more

different ProvGraphs can be loaded into a single model by

using a ProvView. The ProvView is the model where users

have a consolidated provenance view over a set of different

provenance data sources.

Figure 2: Prov4J key components.

After all provenance graphs are merged into provenance

views, elements from different vocabularies are mapped into

W3P entities using rules reasoning. Rules provide an

expressive mechanism which allows complex mappings

between different vocabularies which cannot be addressed by

owl:equivalentClass or owl:equivalentProperty. Examples of

8
 http://www.w3.org/DesignIssues/LinkedData.html

more complex mappings across different provenance

representations can be found in Miles [8], which defines OPM

Profiles for Dublin Core vocabulary elements. The use of rules

for vocabulary mappings also allows the representation of the

mappings in standardized representations such as SWRL
9
.

Once the vocabularies are mapped into W3P elements, the

framework applies RDFS/OWL reasoning over the

provenance model. owl:TransitiveProperty and

owl:InverseProperty are used in W3P to improve the number

of provenance queries answered by the framework (subsection

B in this section). The consumption process is dependent on

the type of provenance data source: for provenance stores and

linked provenance data, the reasoning is done at query time,

while for descriptors the discovery-parsing-reasoning is done

during the definition of data sources on the interface. Prov4J

uses the Jena framework
10

 in its core and Pellet [9] is used for

both OWL and Rules reasoning. Users can disable both types

of reasoning from the API.

B. Provenance Queries

The provenance consumption API (ProvClient) provides
the core operations over the provenance views. The ProvClient
API contains key interface methods for a set of provenance
queries, minimizing the interaction from users with SPARQL.
A SPARQL query interface is also exposed to allow non-
predefined types of queries over the model. The framework
supports five query categories:

SPARQL based queries: Provenance queries supported by the
elements of the SPARQL specification

11
 are accessible by

using the direct query over the provenance model or by using
API methods for common queries. Prov4J SPARQL also
includes syntactic extensions: GROUP BY, HAVING and
aggregation. ARQ with syntactic extensions

12
 is the core query

engine behind Prov4J.

Queries supported by reasoning: Some key provenance
queries over W3P can be addressed by applying OWL
reasoning over provenance data. Examples of queries of this
type involve the determination of indirect
relationships/dependencies in a workflow chain, such as “list
all artifacts which were used directly or indirectly in artifact
X”. Similarly, rules can be applied to improve query
expressivity.

Path queries: One important feature for provenance queries is
the ability to query paths over provenance trails. A typical path
query is “show all the processes between artifacts A and B” or
more specifically “list all the trails containing a process which
uses artifact C between artifacts A and B”. Regular expressions
queries over RDF elements can be used for expressing
provenance path patterns. Prov4J uses the Gleen SPARQL
extension described in [10] for path queries. Prov4J users can
launch their own path queries or can access some of the
functionalities provided by Gleen through API methods.

9
 http://www.w3.org/Submission/SWRL/

10
 http://jena.sourceforge.net

11
 http://www.w3.org/TR/rdf-sparql-query/

12
 http://jena.sourceforge.net/ARQ/extension.html

Navigational queries: In some scenarios the primary way to
consume provenance information is through RDF published as
Linked Data. In this case Prov4J provides two interfaces: one
for users browsing provenance data and the other for
navigational queries. In the first case, the first level provenance
descriptor of an artifact is available as a de-referentiable URI.
The RDF provenance data can be consumed by the application
and further de-referentiations are directed by user input (in this
case Prov4J provides a simple interface for node de-
referentiations). A second type of navigation provided by the
framework is through the provision of iterators to provenance
nodes where provenance properties are used to determine
which provenance nodes to de-reference. For example, the
iterator defined by the property w3p:used can be used to
navigate through a chain of artifact dependencies. The third
functionality is defined by the idea of navigational queries,
which are mechanisms to query Linked Data by launching a
SPARQL query over a collection of RDF graphs collected from
a de-referentiable URI entry point [7]. In the case of Prov4J, a
simple de-referentiation algorithm follows the provenance links
until it reaches a pre-configured limit.

Similarity queries: One type of provenance query refers to the
similarity analysis between two provenance graphs. This type
of comparison can be used in the determination of similar
workflow conditions and have potential applications in quality
assessment scenarios. A user may trust a specific workflow and
may want to query for similar or identical conditions. The
matching process used in Prov4J is based on the approach
described by Oldakowsky & Bizer [11] adapted to the W3P
provenance model.

C. Provenance Discovery

 Provenance Discovery consists in automatically

discovering the provenance given an information resource and

it is an important requirement for a generic provenance

management framework for consuming provenance data on

the Web. Information resources can be HTML pages, elements

inside the page, SPARQL endpoints, RDF files or de-

referentiable URIs. A provenance discovery mechanism

should not rely on centralized crawled provenance

repositories: it should always be possible to navigate from the

artifact to its provenance descriptor. Prov4J supports four

mechanisms to discover provenance on the Web:

Semantic Sitemaps + robots.txt: Used to discover the

provenance descriptor of a dataset having as a starting point a

domain name. As covered in [12], the mechanism used by

voiD [13], using robots.txt and the semantic sitemaps

extension, can be used to discover dataset provenance

descriptors.

Linked Provenance Data: Provenance descriptors can be

published as Linked Data in two ways: (1) the URI represents

an artifact and links directly to other provenance properties,

(2) a provenance property such as w3p:provenance links the

URI to the starting point of a provenance descriptor (a mirror

to the provenance layer representation of the artifact).

Embedded RDFa: Provenance data can be embedded as

RDFa in HTML pages.

POWDER: POWDER (Protocol for Web Description

Resources)
13

 is a W3C recommendation which provides a

standard for describing general Web resources. Provenance

descriptors can be embedded as RDF payloads in POWDER

files.

VI. PROVENANCE CAPTURE

One key challenge in the process of building a generic

provenance capture framework is the process of providing a

simple yet expressive provenance interface. The ability to

express provenance accurately and with the mimimum amount

of intervention in the application is a fundamental feature in

the process of introducing the provenance functionality in

existing applications. In order to achieve this objective, the

provenance capture engine was built using the following

principles:

Pushback capture: Provenance capture or logging can be

implemented as pushback operation, where, from the capture

interface perspective, new provenance information is inserted

but never deleted or updated. This assumption is consistent

with the fact that provenance maps to the actual temporal

execution flow of the application. Instead of allowing a full

interaction with the provenance store, the ProvLogger

interface is primarily designed for pushing back fragmented

provenance logs, which are reconstructed in the provenance

store (concept present in [4] and [14]).

Minimization of adaptations: Prov4J capture interface can be

used to implement adaptations, a concept defined by Munroe

[14], in a software engineering methodology designed for the

development provenance-aware applications (PrIMe).

Adaptations allow actors to record process documentation,

adding the provenance functionality to the application.

Relations among entities in the provenance model can be

determined based on the execution scope of these elements.

Temporal relations, order relations, relationships between

agents, processes and artifacts in the same execution scope are

examples of provenance data which can be determined without

explicit adaptations. The ProvLogger component minimizes

the user input in the construction of the provenance model,

‘filling the gaps’ in the provenance model. Figure 3 shows

examples of adaptations.

Provenance URIs: In some cases, provenance entities can be

interconnected with elements in different parts of the

workflow (e.g. a process consuming an artifact that was

generated by another process at a different time). The logger

interface provides a mechanism to interconnect provenance

entities in different execution scopes. Users can associate

different provenance entities by using internally the concept of

ApplicationId-URI mapping, which associates Ids inside the

application to provenance URIs. These associations can also

be done directly by referencing directly provenance URIs. To

13

 http://www.w3.org/TR/powder-dr/

minimize the performance impact, this mechanism relies in the

construction of a provenance URI cache in the capture

mechanism.

Annotations: Java Annotations provide a mechanism to map

the structure of an application to provenance elements.

Annotations also allow users to provide provenance

relationships valid in a specific scope. Provenance entities

inside the scope of a method may be directly associated with

an entity represented in the annotation, depending upon their

relationship (figure 3). The design of ProvLogger allows users

to express provenance information by maximizing the

mapping between the application object structure and the

provenance elements. In this case, classes, methods and

member variables can directly map to provenance artifacts,

processes and agents by using annotations.

The ProvLogger interface uses the concepts of aspect oriented

programming (AOP) and Java annotations to maximize the

isolation between cross-cutting concerns, allowing users to

separate distinct functionalities of a software. AOP combined

with Java Annotations can provide a powerful mechanism to

implement the separation of concerns in provenance capture.

 Figure 3: Examples of adaptations using the capture interface.

After the information is collected in the capture interface,

the provenance log information is sent to the ProvServer and

translated into a SPARQL/Update query to the provenance

store. Prov4J relies on Scribe
14

, a high-performance logging

mechanism for the communication and distribution of

provenance logs.

VII. FRAMEWORK ANALYSIS

The framework was analyzed using the scenario described
in section II. A provenance dataset was generated using real
financial data aggregated from multiple data sources, which
focused on news and opinions about businesses collected from
the Web. These data elements defined the ground artifacts
which were further aggregated, curated and analyzed in a
financial analysis workflow simulator. The output of the
workflow is a report for a specific company, which is a mash-
up of business data

15
. The provenance of the final report and

14

 http://sourceforge.net/projects/scribeserver/
15

 http://prov4j.org/w3p/scenario/financial.html

each of its artifacts is tracked down to their original sources. In
the experiment, business reports were generated with data
collected for 100/500/1000 companies with up to 100/500/1000
news respectively for each company. Details about the
experiment are outlined in table I. The experiment sought to
determine the performance of the framework in a realistic
scenario.

Data

set

Reasoning level # triples

min

query

(ms)

max

query

(ms)

Reasoning

(ms)

1000 voc 674.786 1,2 680,6 2.717,9

voc+owl+rules 686.829 2,4 > 90.000 314.846,2

500 voc 231.217 1,2 246,1 959,8

voc+owl+rules 234.572 1,1 22.445,4 44.536,9

100 voc 84.520 1,2 217,9 602,9

voc+owl+rules 87.204 1,4 5.180,7 16.246,9

Table I: Prov4J performance metrics.

The experiment was run in a 2.53 GHz Intel Core 2 Duo

computer with 4 GB of memory. The minimum level of

reasoning enabled was vocabulary rules mapping (voc) and the

maximum added OWL features and 5 additional rules

(voc+owl+rules). The input provenance data was consumed

from 2 RDF files which were merged inside the framework. In

the experiment path-based queries showed the highest

execution time (max query), being highly sensitive to

reasoning. SPARQL queries over basic elements of the

ontology accounted for the lowest execution time (min query).

Most of the queries (aggregate included) showed low

execution time increase after the reasoning was enabled.

Navigational and similarity queries were not tested. The

1000/1000 dataset counted 53.844 processes, 20.179 artifacts

and 30 agents. The framework was able to do reasoning and

answer the majority of provenance queries present in the API

with acceptable runtime latencies. The scalability of reasoning

could, however, represent a problem for larger provenance

datasets.

VIII. RELATED WORK

Different approaches for provenance management have
been described in the literature. Pegasus [15] is a workflow-
based system that uses both OWL and relational databases to
represent provenance. ES3 [16] is an OS-based provenance
system that represents provenance data in XML and provides
query support through XQuery. PReServ [17] is a process-
based provenance recorder that allows the integration of
provenance into third-party applications. PReServ uses XML to
persist provenance data; queries are provided through a Java
query API and XQuery. In [18] Bochner et al. describe a
python client library for provenance recording and querying in
a PReServ store. Taverna [19] is a workflow-based system
which represents provenance in both Scufl Model and
prospective provenance in RDF. SPARQL is used as a query
language. In [20], Sahoo et al. present PrOM, a Semantic Web
provenance management framework focused on scalable
querying for eScience. The reader is referred to [1, 2] for
comprehensive surveys and analysis of existing provenance
management systems.

Compared to existing works, Prov4J stands out as most
heavily leveraging Semantic Web standards and tools, using
RDF as its core provenance representation and both OWL and
rules reasoning over provenance data. In addition, Prov4J
extends existing SPARQL query capabilities: a Java API,
SPARQL aggregate functions, regular expression path queries
and similarity queries together with reasoning provide
additional query expressivity. Prov4J also incorporates
important requirements for the Web: provenance discovery and
Linked Data navigation. Compared to PrOM, which is targeted
towards the provision of a scalable query mechanism for an
eScience scenario, Prov4J focuses on generic provenance
management for the Web including both provenance capture
and discovery. Similarly to the combination PreServ + Python
Provenance Client Library, Prov4J is designed as an
independent provenance layer, being designed for the provision
provenance-awareness to generic applications.

In [12], Hartig and Zhao covers the main aspects of
publishing and consuming provenance in the Web of Data
using the Provenance Vocabulary. The provenance discovery
mechanism behind Prov4J shares common aspects with the
publication methodology described in their work. Additionally,
the mapping mechanism behind Prov4J allows the framework
to consume and query Provenance Vocabulary descriptors.

IX. CONCLUSION & FUTURE WORK

This work described Prov4J, a generic provenance
management framework. The design of the framework focused
on the following features: (1) the provision of expressive
provenance queries; (2) the maximization of the use of
Semantic Web standards to address the challenges of managing
provenance data; (3) software engineering aspects for
provenance capture; (4) discovery mechanisms for provenance
descriptors on the Web. The use of Semantic Web tools and
standards to address these challenges played a fundamental role
in the construction of the framework. Prov4J benefited largely
from: the use SWRL-like rules to map and align different
provenance vocabularies; OWL reasoning to address a subset
of provenance queries; use of different publishing protocols
(POWDER, semantic sitemaps, etc) for provenance discovery
on the Web; SWRL-like rules applied to the enrichment of the
provenance structure; RDF to represent the bulk of provenance
data, SPARQL as a query mechanism and Linked Data as a
publication mechanism for the Web. The use of non-
standardized extensions over existing standards such as
aggregate SPARQL queries, SPARQL/Update and path queries
provided important features for the framework. The ensemble
of these technologies proved to achieve a good performance
under a realistic provenance scenario.

From the software engineering perspective, Prov4J
orchestrates different strategies to maximize the separation
between provenance aspects and core concerns and to reduce
the number of application adaptations for provenance capture.

Future work will include a detailed analysis of the query
expressivity and query performance of the framework. A
mapping mechanism from W3P to OPM profiles using rules is
planned. One current limitation of the framework is related to
the deployment of security and integrity mechanisms. In

addition, an in-depth comparative study across existing
provenance management systems is planned. Improvements
over the framework to transform Prov4J from an experimental
to a robust provenance solution are set as a priority.

ACKNOWLEDGMENT

The work presented in this article has been funded
substantially by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2). The authors want to express their
gratitude to Tomas Knap and Micah Herstand for their support
in the elaboration of this work.

REFERENCES

[1] Y. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in

e-science,” SIGMOD Record, vol. 34, 2005, pp. 31-36.

[2] J. Freire, D. Koop, E. Santos, and C.T. Silva, “Provenance for

Computational Tasks: A Survey,” Computing in Science Engineering, vol.

10, no. 3, 2008, pp. 11 -21.
[3] A. Harth, A. Polleres, and S. Decker, “Towards A Social Provenance

Model for the Web,”, 2007.

[4] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L.
Moreau, “ An Architecture for Provenance Systems,”, ECS, University of

Southampton., 2006.

[5] P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A
Characterization of Data Provenance,” ICDT, pp. 316-330.

[6] P. Buneman, and W.C. Tan, “Provenance in databases,” SIGMOD

Conference, pp. 1171-1173.
[7] P. Bouquet, C. Ghidini, and L. Serafini, “A Formal Model of Queries on

Interlinked RDF Graphs,” AAAI Spring Symposium Series.

[8] S. Miles, L. Moreau, and J. Futrelle, “OPM Profile for Dublin Core
Terms,” Book OPM Profile for Dublin Core Terms, Series OPM Profile for

Dublin Core Terms, 2009.
[9] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A

practical OWL-DL reasoner,” Web Semantics: Science, Services and Agents

on the World Wide Web, vol. 5, no. 2, 2007, pp. 51-53.
[10] L.T. Detwiler, D. Suciu, and J.F. Brinkley, “Regular paths in SparQL:

querying the NCI Thesaurus,” AMIA Annual Symposium proceedings / AMIA

Symposium. AMIA Symposium, 2008, pp. 161-165.
[11] R. Oldakowski, and C. Bizer, “SemMF: A Framework for Calculating

Semantic Similarity of Objects Represented as RDF Graphs (Poster).”, 2005.

[12] O. Hartig, and J. Zhao, “Publishing and Consuming Provenance
Metadata on the Web of Linked Data,” Book Publishing and Consuming

Provenance Metadata on the Web of Linked Data, Series Publishing and

Consuming Provenance Metadata on the Web of Linked Data, 2010.
[13] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, “Describing

Linked Datasets,” Proceedings of the Linked Data on the Web Workshop

LDOW 2009.
[14] S. Munroe, S. Miles, L. Moreau, and J. Vazquez-Salceda, “PrIMe:A

software engineering methodology for developing provenance-aware

applications,” Foundations of Software Engineering, 2006, pp. 39-39.

[15] J. Kim, E. Deelman, A. Gil, G. Mehta, and V. Ratnakar, “Provenance

Trails in the Wings/Pegasus System”.

[16] J. Freire, D. Koop, L. Moreau, J. Frew, and P. Slaughter, “ES3: A
Demonstration of Transparent Provenance for Scientific Computation,”

Provenance and Annotation of Data and Processes, Lecture Notes in

Computer Science 5272, Springer Berlin / Heidelberg, 2008, pp. 200-207.
[17] P. Groth, S. Miles, and L. Moreau, “PReServ: Provenance Recording for

Service,”, 2005.

[18] J. Freire, D. Koop, L. Moreau, C. Bochner, R. Gude, and A. Schreiber,
“A Python Library for Provenance Recording and Querying,” Provenance and

Annotation of Data and Processes, Lecture Notes in Computer Science 5272,

Springer Berlin / Heidelberg, 2008, pp. 229-240.
[19] T. Oinn et al., “Taverna: lessons in creating a workflow environment for

the life sciences:Â Research Articles,” Concurrency and Computation:

Practice & Experience, vol. 18, no. 10, 2006, pp. 1067-1067.
[20] S.S. Sahoo, R. Barga, A. Sheth, K. Thirunarayan, and P. Hitzler, “PrOM:

A Semantic Web Framework for Provenance Management in Science,”, 2009.

