

A Decision-making Format for the Semantic Web

[Position Paper]

Eva Blomqvist
STLab, ISTC-CNR

eva.blomqvist@istc.cnr.it

Marion Ceruti
Jeff Waters

Space and Naval Warfare
Systems Center Pacific

marion.ceruti@navy.mil;
jeff.waters@navy.mil

Don McGarry
MITRE Corporation

dmcgarry@mitre.org

ABSTRACT
This paper describes the work of the W3C Decisions and
Decision-making Incubator1, with the goal to identify re-
quirements for a standard decision format, through a set
of use cases, and to develop a first version of a potential
standard format for representing decisions, fulfilling the re-
quirements of the use cases and exploiting semantic web
standards. Ongoing efforts include the identification and
modelling of ‘decision patterns’ and development of proof-of-
concept applications to validate assumptions and patterns.

Keywords
Decision Making, Decision Format, Ontology Pattern

1. INTRODUCTION
The time and effort we spend converting our decisions into

work products, such as briefs, proposals, and communication
of decisions in meetings, conversations, and emails, could be
reduced if we had a standard format for representing and
sharing decisions. Our tools could be instrumented to gen-
erate our decisions in a format that could be shared and also
track the state of decisions within the decision-making pro-
cess. Instrumentation could support the development of a
metric of information flow and help us optimize our decision
processes across our organization or enterprise [7]. Visibil-
ity of the decisions in their formation and evolution would
enable proactive management and assistance from others [8].

1.1 Usage Scenarios
Sharing decisions across a broad and diverse set of users

and systems is an important aspect of situational awareness
in many domains, for instance, in emergency management2.
During an emergency, decisions must be shared among emer-
gency managers and first responders from multiple organi-
zations, jurisdictions, and functional capabilities. For exam-
ple, decisions to route patients must be shared among first
responders in the field who are sending the patients, those
who are doing the transport, the medical facilities receiving
the patients, and the patient’s families and relatives.

1
For more information, or to participate in the Decisions Incubator,

please review the charter at http://www.w3.org/2005/Incubator/de
cision/charter and visit the wiki at http://www.w3.org /2005/Incu-
bator/decision/wiki/Main Page.
2
For more information on emergency and incident management, see

for example the National Incident Management System, December
2008, published by the U.S. Department of Homeland Security at
http://www.fema.gov/pdf/emergency/nims/NIMS core.pdf.

First responders and emergency managers work under dif-
ficult conditions using current mechanisms for information
sharing; they need improved solutions. For example, paper-
based Incident Command forms provide an initial standard-
ization of emergency information3. An Incident Command
Structure (ICS) can organize responders into a hierarchical
structure of sections (e.g. Operations, Planning, Logistics,
Finance) and roles (e.g. Incident Commander, Public In-
formation Officer, Safety Officer)4. XML-based standards
are being developed to improve sharing of emergency infor-
mation. The Organization for the Advancement of Struc-
tured Information Systems (OASIS) has a family of stan-
dards known as the Emergency Data Exchange Language
(EDXL)5. The Emergency Data Exchange Language Com-
mon Alerting Protocol (EDXL-CAP) exemplifies simple, use-
ful, and understandable information-exchange formats. What
EDXL-CAP did for alerts, a Common Decision Exchange
Protocol (CDEP) could do for decisions [6].

An important next step is to utilize the semantic web stan-
dards, including RDF, SPARQL, OWL and GRDDL to in-
tegrate information for dynamic queries across datasets, and
for inferencing using the underlying ontologies (e.g. indicat-
ing that the emergency equipment named X in one jurisdic-
tion is the same as the type named Y in another jurisdic-
tion). Initial steps in this direction are already being taken,
e.g., through the OASIS Distribution Element (DE) sup-
porting packaging and addressing of emergency management
information for purposes such as routing. The standard
has links to externally-managed ‘lists’ representing concepts
such as ‘senderRole’, ‘receiverRole’ and ‘keywords’. Ontolo-
gies should encapsulate, in a machine-understandable man-
ner, such information sharing policies. Implicitly present
is the underlying decision-making process, continuing at all
levels through an emergency. The decision format advocated
in this paper will support the move toward the use of linked
data [1], and the recognition of the significance of informa-
tion sharing policies utilizing semantic standards.

The need for representing, sharing and managing deci-
sions in a machine-understandable format is not exclusive
to emergency management. One example of another critical

3
For examples of incident command forms, see http://training.

fema.gov/EMIWeb/IS/ICSResource/ICSResCntr Forms.htm.
4
For more information on ICS, see the online training provided

by the U.S. Federal Emergency Management Agency, Lesson 3, at
http://emilms.fema.gov/IS100A/indexMenu.htm.
5
For a good overview of EDXL, see http://en.wikipedia.org

/wiki/EDXL. The EDXL family of standards is available at the OA-
SIS website: http://www.oasis-open.org/home/index.php.

domain of interest is organizational innovation. Each per-
son is a ‘decision-maker’ at some level in the organization.
The decisions a person makes are critical to the success of
an organization, so aspects of decision-making and objective
measures of the decision-making process become significant.
Decisions involve weighing reasonable options based on met-
rics in order to take an action. If we granulize the decision-
making process by considering each member of our organi-
zation as a decision-maker, then we can support the repre-
sentation and sharing of individual innovative actions. Most
organizations attempt to solve this problem through direct
or indirect person-to-person communication (e.g., meetings,
telecons) or unstructured collaborative tools (email, chat,
wiki). XML formats can support notice-type publishing of
activities, e.g, RSS or ATOM feeds; however, there remains
an opportunity to showcase semantic standards to capture
decision-making to improve the querying, inferencing, and
integration with underlying ontology support.

The focus of this paper is on the information sharing as-
pects of a decision, which is fostered by a format which is
concise, generic, i.e., domain independent, and tiered. The
more concise the format, the more quickly it can be under-
stood and accepted by developers and users alike.

1.2 Project Goals
The work performed by this incubator activity is designed

to help organizations improve integration of human decisions
into computer systems, to track and manage digitally the
decision-making process, to enable improved information-
flow metrics, to maintain an archive of the decisions and
the decision-making process, to enable semi-automation of
certain decision-making processes, to improve information
sharing, and ultimately, to support better, rapid, and agile
decision making [7]. The potential standard format should
provide concise, generic, structured assessments and deci-
sions that allow ‘drill down’, support pedigree and confi-
dence, enable approvals and vetting, define options consid-
ered, including decision criteria with weighting, links to pre-
vious decisions and sub-decisions, and support flexible struc-
turing of complex decisions [7]. However, to reach its full
potential, the proposed decision format must be compatible
with semantic web tools and standards, to provide semantic
interoperability and to provide a basis for reasoning that can
ease development of advanced applications.

In summary the main goals of the incubator are:

• To discover a set of requirements for a standard deci-
sion format, through a set of use cases.

• To develop a draft of a potential standard format for
representing decisions, fulfilling the requirements of
the use case and exploiting semantic web standards.

2. METHODOLOGY BACKGROUND
Creating a vocabulary for expressing decisions that ex-

ploits semantic web standards means, in practice, creating
a set of ontology modules that can be linked in a network,
to be used independently or together in different combina-
tions. The main tools we use for this practical task is the
eXtreme Design ontology engineering methodology and the
notion of Ontology Design Patterns (ODPs), supported by
the ontology development environment NeOn Toolkit6.

6
http://www.neon-toolkit.org

Figure 1: The AgentRole Content ODP’s graphical
representation in UML.

2.1 Ontology Design Patterns
Under the assumption that classes of problems in ontology

design can be solved by applying common solutions (as expe-
rienced in software engineering), ODPs can support design
reusability. ODPs can be of several types [3], e.g, focusing
on logical language constructs, architectural issues, naming,
or on the efficient provision of reasoning services. In this
paper we focus on Content ODPs (CPs), which are small or
cleverly modularized ontologies with explicit documentation
of design rationales. CPs can be used as building blocks in
ontology design [2]. As an example we describe a CP called
AgentRole. It represents the relation between agents, e.g.,
people, and the roles they play, e.g., manager and meet-
ing chair. Figure 1 shows the UML diagram7 of the OWL8

building block representing this CP.
CPs are collected in different catalogues, such as the ODP

portal9. In addition to their diagrammatic representation,
CPs are described using catalogue-entry fields (c.f. software
pattern templates), such as name, intent, covered require-
ments, consequences, and building block, linking to an OWL
realization of the pattern. The requirements an ODP covers
are expressed using Competency Questions (CQs) [4], i.e.,
typical natural-language queries.

2.2 eXtreme Design
With the name ‘eXtreme Design’ (XD) we identify an ag-

ile approach to ontology engineering [5]. In this paper we
focus on XD for CP reuse in ontology design. In XD a devel-
opment project is characterized by two sets: (i) the problem
space, composed of the actual modeling issues (local prob-
lems), e.g., to model steps in a decision making process; (ii)
the solution space, made up of reusable modeling solutions,
e.g., a piece of an ontology that models sequences of events
(a CP). Each CP, as well as the local problem, is related to
ontology requirements expressed as CQs or sentences. If a
local problem can be described in terms of the CQs of a CP
then that CP can be reused for building the solution. XD
does not prescribe a specific method for matching the local
problem to patterns, and at the moment the only tool sup-
port available are search functionalities utilizing the textual
descriptions of the patterns.

XD is a test-driven and task-focused approach that re-
sults in highly modular ontologies. The main principles of
XD include the intensive use of CPs, and extensive collabo-
ration [5]. The iterative workflow of XD contains 12 steps.
The project is initiated in the first four steps, which in-

7
For notation details, see: http://www.topquadrant.com/products/

TB Composer.html
8
http://www.w3.org/2004/OWL/

9
http://www.ontologydesignpatterns.org

54

clude, scoping, and requirements engineering (e.g., deriving
the CQs from user stories). In steps five through nine the
CQs are divided into into small, coherent sets and ontology
modules produced realize those sets of CQs. These steps
include unit tests on each module before its release. The
three final steps integrate modules into a coherent solution,
focusing on collaboration and integration.

3. ONGOING WORK
In this section we describe our ongoing efforts and how

we apply the XD methodology to support these efforts. We
proceed in a bottom-up fashion, starting from the use cases
and deriving requirements for a representation format that
can be realized as ontology modules based on ODPs. How-
ever, we have also encountered a number of cases where this
leads to the development of general ODPs themselves.

3.1 Use Cases
Use cases are in our context general scenarios, horizon-

tal with respect to application domains (i.e., they are rep-
resented in multiple domains), where the envisioned deci-
sion format can give some substantial benefit. So far, five
use cases have been identified (the list is continuously ex-
tended). The use cases are intended to be general and not
domain specific, in terms of industry domain. Their detailed
description, including resulting requirements in the form of
CQs can be found in the Incubator wiki10. Background and
related work for two of the use cases are described more in
depth in Sections 3.1.1 and 3.1.2.

• Measuring Information Flow - Where a decision
process representation can help answering questions
such as ‘When did a certain process begin and end?’,
‘How much time was spent on a certain step in the
process?’, and ‘What is the average time for making a
certain type of decision?’.

• Linked Data Supporting Decisions - Where linked
data [1] supports decision making, and a decision rep-
resentation format could help answer questions such
as ‘What data support this decision?’, ‘What were the
options and the criteria used for this decision?’, and
‘How were the options assessed?’

• Automatic Assessment of Options - Where a de-
cision format is intended to support semi-automatic
decision making by automatic assessment of options
through some metric. In this case questions are for
instance ‘What are the metrics for this decision and to
what options do they apply?’, ‘What are the relative
weights of different metrics?’, and ‘How will the met-
rics be combined to generate an overall assessment?’

• Interoperability - For example, a shared decision
representation can support interoperation between dif-
ferent command and control units and between deci-
sion makers and people implementing decisions.

• Situational Awareness - A representation of de-
cisions and the decision-making process can support
systems and/or organizations to be aware of the de-
cision status, to identify situations, such as the situ-
ation when important information is missing, and to

10
http://www.w3.org/2005/Incubator/decision/wiki/Final Report

Use Cases

base new decisions on the collected knowledge in the
recorded decisions of the organization.

3.1.1 Measuring Information Flow
Research shows that an analytical solution of information

velocity is intractable but metrics that support the under-
standing of information flow can be useful [8]. An agent-
based model for information flow can be used to character-
ize physical analogs to causal measures [6]. In this use case,
interactions and exchanges can be modeled as physical prop-
erties. Information, its suppliers, and consumers are then
treated as agents. The behavior of the agents and system as
a whole can be discussed and infodynamic analogs of ther-
modynamic and other physical quantities associated with
these processes could be explored [8]. The use of concep-
tual analogs from the physical domain implies the viability
of future ontologies to characterize information flow.

3.1.2 Automatic Assessment of Options
Design considerations have been described and exempli-

fied for implementing a decision-acquisition system based on
a CDEP [7]. CDEP is an XML- and REST-based protocol
for representing generic human decisions in a simple, inter-
operable format. The characteristics of decisions can be ex-
pressed using CDEP and its proposed XML format [7]. The
CDEP concepts will be considered, and enhanced, within
the currently envisioned decision format, and a conversion
XSLT stylesheet will enable interoperability across these for-
mats as needed. The use case ontology would allow for the
consideration of multiple data sources, multiple decision op-
tions, and the tracking of decision confidence throughout the
decision-making process.

3.2 Decision Patterns
The decision patterns include concrete decision format

components, as well as generic patterns, hence, both:

• The ontology modules that we propose as a starting
point for creating a standard in this field,

• and the more general ODPs that we discover and de-
velop as a result of this effort.

The first module draft that was produced corresponds to the
use case of ‘Measuring Information Flow’ listed above. This
ontology module is a specialization of the Transition ODP11.
In this case we found an ODP already available that we could
specialize and create a specific decision-process pattern. In
other cases, such as when viewing a decision as a past event,
no ‘event-pattern’ was available in the ODP portal. There-
fore, we are creating general ODPs to be specialized in the
decision ontology modules. By treating general (rather than
domain-specific) use cases of decision-making, we make sure
that the developed modules are actually reusable patterns,
rather than a solution tailored to one specific application.
All decision patterns will be implemented in RDF/OWL.
Eight patterns are identified so far, but need to be created.
Four examples are described below:

• A ‘Statement with variable’-pattern, to describe queries,
such as the question underlying a decision.

• ‘Filter’ and ‘Aggregation’-patterns, where a filter would
represent criteria applicable to some data, e.g., a set

11
http://ontologydesignpatterns.org/wiki/Submissions:Transition

55

of options, and an aggregation would represent a way
to combine data, e.g., grouping options.

• A ‘Normalization’-pattern that models transformations
of values into a common scale, for comparing options.

• A ‘Weighting’-pattern to express the relative impor-
tance of data, e.g., weighting of assessment criteria.

3.3 Proof-of-concept Application
To verify the requirements and the ontology modules, and

to demonstrate the usefulness of such a format, a demonstra-
tion system is being developed at the Space and Naval War-
fare Systems Center Pacific. Initially, the system will focus
on enabling decision making using open linked data sets [1].
The user has four modules, or screens. In the Topic screen,
the user enters the key question of the decision, keywords,
and where the decision result will appear. The keywords
will drive a search for relevant open-linked data sets. Next,
the user selects a data set from which the entries provide a
named set of options. From the Options screen, the user se-
lects the properties to use as metrics. On the Metrics screen,
the user selects filtering criteria to reduce the options. The
user can additionally assign weights to the metrics. When
a similar decision is encountered, users can efficiently select
a named set of Options or Metrics to aid reuse of decision
components. A semi-automatic learning process will be con-
sidered for future releases, proposing named sets of options
or metrics found useful to other users, based on similar-
ity of questions and keywords. On the Assessment screen,
the filtered options appear in an ordered list based on the
weighted metrics. The user selects one or more options as
the answer to the decision question. The user is returned
to the Topic screen where the answer(s) is/are recorded and
visible. Throughout the process, the time spent in the vari-
ous stages is tracked to assess information flow. Future ver-
sions of this system will support manual entry of decisions,
a more robust set of filtering criteria, integration of multiple
datasets, and mobile applications for efficiency in the field.
The decision format discussed here will be used to manage
the decision as a whole, and its modular components.

3.4 Experiences
An important outcome, apart from the requirements and a

proposed decision representation, will be experiences related
to the XD methodology and ODPs. XD has been used in the
project both as a framework for the modelling but also as a
means for teaching ontology engineering to participants less
familiar with semantic technologies. So far we found that
the level of detail of the XD methodology is highly benefi-
cial for teaching ontology engineering to novice modelers. It
introduces an intuitive way of scoping the problem, through
modularization, and it allows the modeler to draw on previ-
ous experiences of others through ODPs. We envision that
the project will benefit the further development of XD, and
XD will be validated through valuable experiences.

4. OUTLOOK
In September 2010, the project reached its half-way point

and should be completed by the end of March 2011. By
that time the project will have a set of requirements for a
potential decision-representation standard, i.e., the use cases
(initial set in Section 3.1), and a first draft of such a repre-
sentation, i.e., the decision patterns (initial ideas in Section

3.2). We intend to submit any patterns developed (both
general and specific to decision-making) to the ODP portal.
We expect to present a set of proof-of-concept applications
(see Section 3.3). These applications will show the poten-
tial of our draft patterns. The applications will be used to
validate our results against current practices in different do-
mains, e.g., to validate the hypothesis that linked data are
suitable to support decision making and that automatic as-
sessment of options is possible in certain use cases. During
the project, we will make the problems and possible solu-
tions visible in different communities, e.g., the semantic web
community, domain specific interest groups, and standards
organizations. We envision that at the end of the project
we can propose a standardization effort in the context of
W3C. We can pursue several use cases and application ideas
as separate research projects.

5. ACKNOWLEDGMENTS
The authors thank the Office of Naval Research for their

support of this work. This paper is the work of U.S. Govern-
ment employees performed in the course of their employment
and no copyright subsists therein.

6. REFERENCES
[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -

The Story So Far. International Journal on Semantic
Web and Information Systems, 5(3):1–22, 2009.

[2] E. Blomqvist. OntoCase-Automatic Ontology
Enrichment Based on Ontology Design Patterns. In
ISWC 2009, 8th International Semantic Web
Conference, volume 5823 of LNCS, pages 65–80,
Washington, DC, November 2009. Springer.

[3] A. Gangemi and V. Presutti. Ontology Design Patterns.
In Handbook on Ontologies, 2nd Ed., International
Handbooks on Information Systems. Springer, 2009.

[4] M. Gruninger and M. S. Fox. The role of competency
questions in enterprise engineering. In Proceedings of
the IFIP WG5.7 Workshop on Benchmarking - Theory
and Practice, 1994.

[5] V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist.
eXtreme Design with Content Ontology Design
Patterns. In Proc. of WOP 2009, collocated with
ISWC-2009, volume 516. CEUR Workshop
Proceedings, November 2009.

[6] J. Waters and M. Ceruti. Modeling and simulation of
information flow: A study of infodynamic quantities. In
Proc. of the 15th International Command and Control
Research and Technology Symposium (ICCRTS 2010),
Santa Monica, CA, June 2010.

[7] J. Waters, M. Ceruti, R. Patel, and J. Eitelberg.
Decision-acquisition system based on a common
decision-exchange protocol. In Proc. of the 15th
International Command and Control Research and
Technology Symposium (ICCRTS 2010), Santa Monica,
CA, June 2010.

[8] J. Waters, R. Patel, J. Eitelberg, and M. Ceruti.
Information velocity metric for the flow of information
through an organization: Application to decision
support. In Proc. of the 14th ICCRTS (ICCRTS 2009),
Washington, DC, June 2009.

56

Pattern Abstracts

57

58

Context Slices: Representing Contexts in OWL
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices

Chris Welty

IBM Watson Research
Hawthorne, NY 12540, USA

cawelty@gmail.com

ABSTRACT
This ontology pattern can be used to represent and reason about
contextualized statements using standard OWL dialects. The
simple idea is to bundle the notion of context into certain nodes in
the graph, rather than the more typical treatment of contexts as a
property of the statements themselves.

Keywords
Semantic Web, OWL, RDF, Contexts.

1. INTRODUCTION
Most information on the web is contextualized somehow, for
example information may be believed by a person or organization,
it may hold only for some time period, it may have been
reported/observed by an individual, etc. There are myriad
proposals and logics for context, but none are standards and few
have even prototype implementations.
In RDF and other binary relation languages (like object oriented
languages and description logics), one typical way to represent
that a binary relation holds in some context is to "reify" the
relation-holding in the context as an object with a binary relation
between the obtainment and each the two relation arguments and a
third binary relation between the obtainment and an object
representing the context itself. The downside to this approach is
the expressive ability of the language to describe the binary
relation, especially in the case of description logics, is lost. One
can of course use RDF reification, however this is not supported
in OWL, either.
The motivation for context slices is to provide a logical pattern for
encoding context information in standard RDF graphs that allows
some of the expressiveness of OWL to be used in describing the
relations that hold in contexts.
This is a generalization of the four dimensional ontology for
fluents published in [1].

2. PATTERN DESCRIPTION
The idea of the context slices pattern is, rather than reifying the
statement itself, to create a projection of the ''relation arguments''
in each context for which some binary relation holds between
them.

Take for example the statement "Chris believes Sam is CEO of
IBM". Say we already have nodes in some graph representing
Sam, Chris and IBM. We create, as shown in Figure 1, the
context c1 corresponding to Chris' belief, and two nodes
representing Chris' belief about Sam and Chris' belief about IBM
(shown as Sam@c1 and IBM@c1).

This allows us to represent ceoOf as a binary relation, which
seems more natural, and it allows us to use the expressivity of
OWL in more ways. We can say of the ceoOf relation that it has
an inverse, hasCeo. We can express cardinality, e.g., a company
may have only one CEO within a context. We can say that a
relation is transitive or symmetric. We can express relation
taxonomies in the usual way.

While clearly OWL does not support RDF reification, and so none
of this is possible if statement reification is used. As mentioned
above a more standard way of representing this kind of
information (including time, belief, knowledge, etc.) is to create
an OWL class that represents the relation holding, with properties
for the arguments. This approach makes it possible to express
global but not local range and domain constraints, global but not
local cardinality, and symmetry.

Note that the ContextualProjection class should be considered
disjoint with any of the classes in an ontology that have
projections.

Figure 1: Graphical illustration of an example using the pattern.

3. IMPLEMENTATION
In OWL functional syntax:

 Ontology(<http://example.org/ContextSlices>
 Annotation(owl:versionInfo "1.0"@en)
 Annotation(rdfs:label "Context slices ontology logical

pattern"@en)

59

 Declaration(Class(cs:Context))
 DisjointClasses(cs:Context cs:ContextualProjection)
 Declaration(Class(cs:ContextualProjection))
 SubClassOf(cs:ContextualProjection

ObjectAllValuesFrom(cs:hasContext cs:Context))
 SubClassOf(cs:ContextualProjection

ObjectExactCardinality(1 cs:hasContext))
 SubClassOf(cs:ContextualProjection

ObjectExactCardinality(1 cs:projectionOf))
 DisjointClasses(cs:ContextualProjection cs:Context)
 Declaration(ObjectProperty(cs:contextualProperty))
 ObjectPropertyDomain(cs:contextualProperty

cs:ContextualProjection)
 ObjectPropertyRange(cs:contextualProperty

cs:ContextualProjection)
 Declaration(ObjectProperty(cs:hasContext))
 FunctionalObjectProperty(cs:hasContext)

 ObjectPropertyDomain(cs:hasContext
cs:ContextualProjection)

 Declaration(ObjectProperty(cs:projectionOf))
 FunctionalObjectProperty(cs:projectionOf)
 ObjectPropertyDomain(cs:projectionOf

cs:ContextualProjection))

4. REFERENCES
[1] Welty, Chris and Richard E. Fikes. 2006. A Reusable

Ontology for Fluents in OWL. In Bennet and Fellbaum, eds.,
Proceedings of the Fourth International Conference on
Formal Ontology in Information Systems. IOS Press. See
http://www.booksonline.iospress.nl/Content/View.aspx?piid
=2209.

60

Faceted Classification Scheme ODP
http://ontologydesignpatterns.org/wiki/Submissions:Faceted Classification Scheme

Bene Rodriguez-Castro
School of Electronics and

Computer Science
University of Southampton

Southampton, UK
b.rodriguez@ecs.soton.ac.uk

Hugh Glaser
School of Electronics and

Computer Science
University of Southampton

Southampton, UK
hg@ecs.soton.ac.uk

Les Carr
School of Electronics and

Computer Science
University of Southampton

Southampton, UK
lac@ecs.soton.ac.uk

Keywords
Faceted Classification, Normalisation, Multiple Classifica-
tion Criteria

1. INTRODUCTION
The Faceted Classification Scheme (FCS) ODP is a Reengi-

neering ODP that transforms a non-ontological resource from
the field of Library and Information Science, also known as
Faceted Classification Scheme, into an ontological resource.
The ontological resource corresponds to an OWL DL model
that results from a specific application of the Normalisation
ODP [4] [2] based on a series of (a) alignments between the
two conceptual models; and (b) transformation guidelines.

The FCS ODP targets a specific, very recurrent modeling
issue in ontology development, subject to the vulnerabil-
ity of ad-hoc modeling practices that could potentially lead
to unexpected or undesirable results in ontology artifacts.
The scenario consists of domain-specific concepts that can
be represented according to multiple alternative classifica-
tion criteria. To the best of our knowledge, guidelines for
the conceptualization and representation of domain-specific
concepts prone to be described based on multiple (poten-
tially alternative) classification criteria, has not been explic-
itly considered in the context of ontology modeling for the
Semantic Web.

An extended and detailed version of all the sections that
follow and the rationale behind the FCS ODP is presented
at length in [5].

2. PATTERN DESCRIPTION
A FCS is defined as: “a set of mutually exclusive and

jointly exhaustive categories, each made by isolating one
perspective on the items (a facet), that combine to com-
pletely describe all the objects in question, and which users
can use, by searching and browsing, to find what they need”
[1].

The Norm. ODP is classified as a“Good Practice”pattern
in the catalog of ODPs introduced in [2]. It can be applied
to any OWL DL ontology that consists of a polyhierarchy
where some semantic axes can be pointed. Each of those
axes will be a module.

The key similarity between these two conceptual models,
lies in the notion of (a) facet in FCSs; and (b) module (or
semantic axis) in the Norm. ODP. Both elements repre-
sent one perspective of the domain being modelled, a single
characteristic of division, a single criterion of classification
in their respective paradigm.

Library Sc. Ontology Modeling
FCS FCS ODP OWL Impl.
TDC :TDC owl:Class (primitive)

Faceti
:Faceti owl:Class (primitive)
:hasFaceti owl:ObjectProperty

FiTermj
:FiTermj owl:Class (primitive)
:FiTermjTDC owl:Class (def.) (≡)

Itemx :SpecificTDCx owl:Class (primitive)

Table 1: Alignment of a FCS to the Norm. ODP

owl:Thing
|-- :Faceti

|-- :FiTermj

|-- :TargetDomainConcept (or :TDC)
|-- (≡) :FiTermjTDC
|-- :SpecificTDCx

owl:topObjectProperty
|-- :hasFaceti

(≡) denotes a defined owl:Class.

Figure 1: FCS elements placed into the Norm. ODP

The main principle is to represent each facet as an inde-
pendent module or semantic axis. Following this principle
makes the application of the Norm. ODP almost straight-
forward. Moreover, the resultant ontology includes the rep-
resentation of the multiple alternative classification criteria
that were considered in the original FCS for the target do-
main concept.

Table 1 summarizes the alignment of the elements in the
generic structure of both conceptual models. This alignment
enables the conversion of a FCS into an OWL DL ontology
by applying the Norm. ODP, where:

• TDC denotes the target domain concept (or domain
of discourse) of the FCS.

• Faceti denotes one of the facets of the FCS.

• FiTermj denotes one of the terms of Faceti.

• Itemx denotes one the items from the domain of dis-
course to be classified.

Figure 1 depicts the placement of the elements of a generic
FCS into the generic structure of the Norm. ODP based on
the corresponding mappings from Table 1.

61

Agent: dishwasher, person

Form: gel, gelpac, liquid, powder, tablet

Brand Name: Cascade, Electrasol, Ivory, No Name,
Palmolive, President’s Choice, Sunlight

Scent: green apple, green tea, lavender, lemon,
mandarin, ocean breeze, [...]

Effect on Agent: aroma therapy (subdivisions:
invigorating, relaxing)

Special Property: antibacterial

Figure 2: Example of“Dishwashing Detergent”FCS.

3. PATTERN USAGE EXAMPLE
Figure 2 presents the facets and terms of a FCS example

in the domain of “Dishwashing Detergent” from [1].
To apply the FCS ODP, the elements in the generic on-

tology structure (derived from the Norm. ODP) in Fig. 1
are populated with the facets and terms of the “Dishwashing
Detergent” FCS example in Fig. 2, according to the align-
ments specified in Table 1. The overall normalised ontology
model obtained as a result is presented in Fig. 3. A version
of the complete normalised ontology model for the “Dish-
washing Detergent” FCS example in [1] is available online1

in RDF/XML format.

4. RELATED WORK
The FCS ODP considered previous work that defined map-

pings between different semantic models and OWL ontolo-
gies such as the Resource Space Model (RSM) [6] and the
concept of Faceted Lightweight Classification Ontology [3].
A detailed discussion is available in [5].

5. CONCLUSIONS
The FCS ODP has presented an initial set of basic design

guidelines to develop an OWL DL ontology model that sup-
ports the representation of multiple alternative classification
criteria of a specific domain concept. These guidelines pro-
vides a partial solution to potentially hazardous ad-hoc prac-
tices in the development of such ontology models, putting
forward a systematic and fit-for-purpose approach.

6. REFERENCES
[1] W. Denton. How to make a faceted classification and

put it on the web. Online, November 2003.
http://www.miskatonic.org/library/facet-web-
howto.html.

[2] M. Egana-Aranguren. Role and Application of Ontology
Design Patterns in Bio-ontologies. PhD thesis, School
of Computer Science, University of Manchester, 2009.

[3] F. Giunchiglia, B. Dutta, and V. Maltese. Faceted
lightweight ontologies. In A. Borgida, V. K. Chaudhri,
P. Giorgini, and E. S. K. Yu, editors, Conceptual
Modeling: Foundations and Applications, volume 5600
of Lecture Notes in Computer Science, pages 36–51.
Springer, 2009.

1
http://purl.org/net/project/enakting/ontology/detergent fcs norm

owl:Thing
|-- :Agent

|-- :Person
|-- :Dishwasher

|-- :Form
|-- :Gel
|-- :Gelpac
|-- (... rest of terms in the facet "Form")

|-- :BrandName
|-- :Cascade
|-- :Electrasol
|-- (... rest of terms in the facet "Brand Name")

|-- :Scent
|-- :GreenApple
|-- :GreenTea
|-- (... rest of terms in the facet "Scent")

|-- :EffectOnAgent
|-- :AromaTherapy

|-- :Invigorating
|-- :Relaxing

|-- :SpecialProperty
|-- :Antibacterial

|-- :DishwashingDetergent (:TDC)
|-- (≡) :ManualDishDetergent
|-- (≡) :DishwasherDishDetergent
|-- (≡) :GelDishDetergent
|-- (≡) :GelpacDishDetergent
|-- (≡) (... rest of subclasses for each term

in the facet "Form")
|-- (≡) :CascaseDishDetergent
|-- (≡) :ElectrasolDishDetergent
|-- (≡) (... rest of subclasses for each term

in the facet "Brand Name")
|-- (≡) :GreenAppleDishDetergent
|-- (≡) :GreenTeaDishDetergent
|-- (≡) (... rest of subclasses for each term

in the facet "Scent")
|-- (≡) :AromaTherapyDishDetergent

|-- (≡) :InvigoratingDishDetergent
|-- (≡) :RelaxingDishDetergent

|-- (≡) :AntibacterialDishDetergent
|-- :PresidentsPersonLiquidAntibacterial
|-- :PalmoliveAromaTherapyLavenderYlangYlang
|-- :SpecificDishDetergent3
|-- (... rest of specific dish detergent classes

:SpecificDishDetergentx to classify)

owl:topObjectProperty
|-- :hasAgent
|-- :hasForm
|-- :hasBrand
|-- :hasScent
|-- :hasEffectOnAgent
|-- :hasSpecialProperty

(≡) denotes a defined owl:Class.

Figure 3: Normalised ontology structure of the
“Dishwashing Detergent” FCS.

[4] A. L. Rector. Modularisation of domain ontologies
implemented in description logics and related
formalisms including owl. In K-CAP ’03: Proceedings of
the 2nd international conference on Knowledge capture,
pages 121–128, New York, NY, USA, 2003. ACM.

[5] B. Rodriguez-Castro, H. Glaser, and L. Carr. How to
reuse a faceted classification and put it on the semantic
web. In The 9th International Semantic Web
Conference (ISWC), June 2010.

[6] H. Zhuge, Y. Xing, and P. Shi. Resource space model,
owl and database: Mapping and integration. ACM
Trans. Internet Technol., 8(4):1–31, 2008.

62

Summarization of an inverse n-ary relation
http://ontologydesignpatterns.org/wiki/Submissions:Summarization_of_an_inverse_n-ary_relation

María Poveda Villalón
Ontology Engineering Group (OEG)

Departamento de Inteligencia Artificial. Facultad de
Informática. Universidad Politécnica de Madrid (UPM)

Campus de Montegancedo, s/n

28660 Boadilla del Monte, Spain
+34 913363670

mpoveda@delicias.dia.fi.upm.es

Mari Carmen Suárez-Figueroa
Ontology Engineering Group (OEG)

Departamento de Inteligencia Artificial. Facultad de
Informática. Universidad Politécnica de Madrid (UPM)

Campus de Montegancedo, s/n

28660 Boadilla del Monte, Spain
+34 913363672

mcsuarez@fi.upm.es

ABSTRACT

In this paper, we describe a logical ontology design pattern that

summarizes a relationship and its inverse between two

distinguished members of an n-ary relationship.

Keywords

Ontology design pattern, N-ary relation, inverse relation.

1. INTRODUCTION
In Semantic Web languages such as RDF and OWL, a property

is a binary relation. This binary relation is used to link two

individuals or an individual and a value. In some cases,

however, the natural and convenient way to represent certain

situations is to use relations and to link an individual to more

than just one individual or value. These relations are called n-

ary relations1.

The n-ary relations become even more complex if we pretend to

represent inverse relationships2 between all the participants in

the n-ary relation. However, we might have special interest in

the links between two of the participants involved in the

relationship, and not have interest in all of them. For this reason,

we propose a pattern to speed up both the modelling and the

queries of a relationship between two distinguished participants

in an n-ary relation, and its inverse relationship.

2. PATTERN DESCRIPTION

2.1 Motivation
It is well known that an n-ary relationship should be used to

address any of the following situations [1]:

a) A binary relationship that really needs a further argument.

For example, to represent the distance between two places.

b) Two binary relationships that always go together and

should be represented as one n-ary relation. For example,

to represent the value of an observation (e.g. temperature

in a patient) and its trend.

1 http://www.w3.org/TR/swbp-n-aryRelations/

2 http://www.w3.org/TR/swbp-n-

aryRelations/#choosingPattern1or2

c) A relationship that is really amongst several things. For

example, to represent the spatial location of a person in a

given point of time.

On the one hand, the motivation of this pattern is to express the

inverse relationship of an n-ary relation in which there are two

distinguished participants. This means that the relationship

exists mainly between two entities and the rest of entities

involved in the relationship can be considered as additional

arguments. This situation can also mean that there is a single

individual standing out as the subject or the "owner" of the

relation.

On the other hand, the motivation is to provide a shortcut for

queries that involve two distinguished participants in the n-ary

relationship.

This pattern is inspired on the third consideration shown in the

description of n-ary relations3 from the W3C Semantic Web

Best Practices Group (SWBP Group). The difference in our case

is that there are two distinguished participants in the

relationship. Therefore, this pattern could be considered as an

extension of the third consideration shown by the SWBP Group

applied to the use case of additional attributes describing a

relation4.

2.2 Aim
The aim of this pattern is to allow asking for n-ary relationships

and their inverse relations between two distinguished

participants without a complex query. Such a complex query

would involve the class created to support the n-ary relation

between the origin and destination classes of the n-ary

relationship.

2.3 Solution description
As it can be observed in Figure 1 the class "NAryRelationClass"

is the class created to support the n-ary relationship5 and its

further relations or attributes. The relationship

"mainRelationship" and its inverse relation have been created to

3 http://www.w3.org/TR/swbp-n-

aryRelations/#choosingPattern1or2

4 http://www.w3.org/TR/swbp-n-aryRelations/#useCase1

5 This structure is created like in [1] and

http://www.w3.org/TR/swbp-n-aryRelations/#useCase1

63

mailto:mcsuarez@fi.upm.es

short-circuit the relation between the distinguished participants

in the n-ary relationship.

NAryRelationOriginClass NAryDestinationClasshasNAryRelationship nAryRelationhip

mainRelationship

inverseMainRelationship

InvolvedClass1 InvolvedClassN

relationship1

relationshipN

<<owl::inverseOf>>

-attribute1

-attributeM

NAryRelationClass

Figure 1. Graphical representation of the “Summarization of

an inverse n-ary relation” pattern.

3. Example

3.1 Problem example
We might want to represent that a service provider provides a

service at a place in a given period of time with a particular

price. The model should also represent that a service is offered

by a provider.

In this scenario, we have also observed that the queries executed

by our applications often ask for the relationship between

providers and their services and rarely ask for the relationships

about the services and where they are provided.

Figure 2 depicts the result of applying the “Summarization of an

inverse n-ary relation” pattern to represent the abovementioned

problem.

ServiceProvider ServiceoffersServiceAtPlaceInTimeWithPrice offersService

serviceProvidedBy

providesService

Time SpatialThing

offersServiceInTime

offersServiceAtLocation

<<owl::inverseOf>>

-hasServicePrice

NAryRelationOffersServiceAtPlaceInTimeWithPrice

Figure 2. “Summarization of an inverse n-ary relation”

pattern applied to service providers.

3.2 Consequences
The main advantage of this pattern is that allows asking for

those services that are provided by a service provider and vice-

versa without a complex query. This complex query would

involve the class created to support the n-ary relation between

service providers and services.

4. Related Work
The origin of this pattern is the Logical Pattern for Modelling

N-ary Relation: Introducing a New Class for the Relation

pattern6 and the third consideration shown in the description of

n-ary relations from the W3C SWBP Group. Therefore, this

pattern is related to and can be used in combination with the

Logical Pattern for Modelling N-ary Relation: Introducing a

New Class for the Relation.

5. Summary and Outlook
The Summarization of an inverse n-ary relation pattern allows

us to speed up the queries involving relationships between two

distinguished participants in an n-ary relation.

Future lines of work will address the problem of summarizing

the relationships and their inverse between a set of distinguished

member (at least three) into an n-ary relationship.

In addition, the elaboration of guidelines that explain in detail

how to identify the distinguished members in an n-ary

relationship would be very useful to extend the pattern

description and to facilitate its use.

6. ACKNOWLEDGMENTS
This work has been partially supported by the Spanish project

mIO! (CENIT-2008-1019).

7. REFERENCES
[1] Suárez-Figueroa, M.C., Brockmans, S., Gangemi, A.,

Gómez-Pérez, A., Lehmann, J., Lewen, H., Presutti, V.,

Sabou, M.. NeOn D5.1.1: NeOn Modelling Components.

NeOn project. http://www.neon-project.org. March 2007

6 http://www.w3.org/TR/swbp-n-aryRelations/#pattern1

64

Literal Reification

http://ontologydesignpatterns.org/wiki/Submissions:Literal_Reification

Aldo Gangemi
ISTC-CNR

aldo.gangemi@cnr.it

Silvio Peroni
University of Bologna

speroni@cs.unibo.it

Fabio Vitali
University of Bologna
fabio@cs.unibo.it

ABSTRACT

In this paper we introduce the pattern literal reification, a
modelling technique to address scenarios, in which we need
to bless particular literals, usually when applying data prop-
erties, in order to use them as subjects and/or full-fledged
objects of semantic assertions.

Keywords

OWL, SWRL, literal reification

1. INTRODUCTION

Recently within the Semantic Web community a new topic
has been actively discussed: whether and how to allow lit-
erals to be subjects of RDF statements1. This discussions
failed to provide a unique and clear indication of how to
proceed in that regard.

Although one of the suggestions coming out of the dis-
cussion was to explicitly include the proposal in a (future)
specification of RDF, this topic is not actually new, partic-
ularly in ontology modelling. The needs to describe “typi-
cal” literals (specially strings) as individuals of a particular
class has been addressed by a lot of models in past, such as
Common Tag2 (through the class Tag), SIOC3 (through the
classes Category and Tag), SKOS-XL4 (through the class
Label), and LMM5 (through the class Expression). After
considering the above-mentioned models and other related
and inspiring ones, we have developed a pattern called literal

reification to address this issue. It allows to express literal
values as proper ontological individuals so as to use them as
subject/object of any assertion within OWL models.

The rest of the paper follows this structure: in Section 2
and Section 3 we respectively introduce a high level and de-
tailed description of the pattern; in Section 4 we discuss two
particular application scenarios that we use to demonstrate
all the capabilities of the pattern.

2. GENERAL DESCRIPTION

Extending the pattern region
6, the pattern literal reifica-

tion promotes any literal as “first class object” in OWL by

1http://www.w3.org/2001/sw/wiki/Literals as Subjects.
2http://www.commontag.org
3http://rdfs.org/sioc/spec
4http://www.w3.org/TR/skos-reference/#xl
5http://www.ontologydesignpatterns.org/ont/lmm/LMM L1.owl
6http://ontologydesignpatterns.org/wiki/Submissions:Region

reifying it as a proper individual of the class litre:Literal. In-
dividuals of this class express literal values through the func-
tional data property litre:hasLiteralValue and can be con-
nected to other individuals that share the same literal value
by using the property litre:hasSameLiteralValueAs. More-
over, a literal may refer to, and may be referred by any
OWL individual through litre:isLiteralOf and litre:hasLiteral

respectively.
Note that the pattern defines also a SWRL rule that al-

lows to infer the (not explicitly asserted) literal value of a
particular literal individual when it is connected to another
literal individual via litre:hasSameLiteralValueAs:

litre:hasSameLiteralValueAs(x,y) ,
litre:hasLiteralValue(y,v)

-> litre:hasLiteralValue(x,v)

This pattern allows to use each reified literal as subject or
object of any assertion, and it is able to address scenarios
described, for example, by the following competency ques-
tions:

• What is the context in which entities refer to a partic-
ular literal value?

• What is the meaning of a particular value considering
the context in which it is used?

Plausible scenarios of its application include:

• modelling domains concerning descriptive tags, in which
each tag may have more than one meaning depending
on the context in which it is used;

• extending quickly the capabilities of a model by adding
the possibility to make assertions on values, previously
referred through data properties, without modifying it.

3. ELEMENTS

As shown in Fig. 1, the pattern literal reification is com-
posed by a class, a data property and three object properties,
described as follows:

• Class litre:Literal. It describes reified literals, where
the literal value they represent is speficied through the
property litre:hasLiteralValue. Each individual of this
class must always have a specified value.

• Data property litre:hasLiteralValue. It is used to spec-
ify the literal value that an individual of litre:Literal
represents.

65

• Object property litre:hasSameLiteralValueAs. It re-
lates the reified literal to another one that has the same
literal value.

• Object property litre:hasLiteral. It connects individu-
als of any class to a reified literal.

• Object property litre:isLiteralOf. It connects the rei-
fied literal to the individuals that are using it.

Figure 1: A figure summarizing the pattern.

4. SCENARIOS

4.1 Same tag, different meanings

Used frequently in the Web 2.0, descriptive tags such as
the ones used in folksonomies are keywords (e.g., strings)
assigned to a particular resource, such as a web document,
with the intent to describe it. Just like words in any natural
language, tags may have different meanings depending on
the context in which they are used.

For instance, the word “Paris” may be either a name of a
city or a first name of a person. Here, it is clear that the
act of tagging with “Paris” both the Wikipedia pages about
the Eiffel Tower and the one about Paris Hilton hides two
different intents: in the former case, “Paris” denotes the city
in which the tower stands; in the latter case, “Paris” denotes
a particular person, i.e., Paris Hilton.

Using the literal reification pattern it is possible to express
descriptive tags as first class objects in OWL, by considering
them as proper individuals of the class litre:Literal. Different
individuals may thus represent different meanings even if
their literal values are identical7:

7http://www.essepuntato.it/2010/06/sc1.ttl

<http ://en.wikipedia.org/wiki/Eiffel_Tower >
a foaf:Document
; prism:keyword :parisTag1 .

<http ://en.wikipedia.org/wiki/Paris_Hilton >
a foaf:Document
; prism:keyword :parisTag2 .

:parisTag1 a litre:Literal
, [a skos:Concept

; skos:definition "A name associated
to a city"@en]

; litre:hasLiteralValue "Paris"
; lmm:denotes dbpedia:Paris .

:parisTag2 a litre:Literal
, [a skos:Concept

; skos:definition "A first name of
a person"@en]

; litre:hasSameLiteralValueOf :parisTag1
; lmm:denotes dbpedia:Paris_Hilton .

4.2 Keeping track of name changes

NameHistory3.0 is a (fictional) institution that keeps track
of all the names of people, and stores them as an ABox of the
FOAF ontology. In particular, each person is stored as an
individual of the class foaf:Person with a specific first name
(data property foaf:givenName) and family name (data prop-
erty foaf:familyName).

On 24/09/2010, Bruce Wayne formally applied for chang-
ing his first name to Jack. Since NameHistory3.0 has to keep
track of everything concerning names of people, on that date
“Jack” was added as Mr. Wayne’s first name. It was then
that NameHistory3.0 noticed that, without any additional
information, it is not possible to know which of the two first
names are legally valid at any given point in time.

A solution to that scenario, which avoids any modifica-
tion of the ontology model and consequently of the entire
triple store (operation that is obviously time-consuming and
error-prone), is to use the literal reification pattern in com-
bination with the new expressivity for punning in OWL 2.
Through them, it is possible to define a literal individual as
also belonging to the class foaf:givenName – that is actually
defined as a data property, but may be additionally be meta-
modelled as a class. We can now associate a particular time
interval to each literal, so as to represent when the literal
itself, i.e., the given name, is legally valid8:

:mr_wayne a foaf:Person
; foaf:familyName "Wayne"
; litre:hasLiteral

[a litre:Literal , foaf:givenName
; litre:hasLiteralValue "Bruce"
; dcterms:valid

[a ti:TimeInterval
; ti:hasIntervalStartDate

"1983 -01 -15"
; ti:hasIntervalEndDate

"2010 -09 -24"]]
; litre:hasLiteral

[a litre:Literal , foaf:givenName
; litre:hasLiteralValue "Jack"
; dcterms:valid

[a ti:TimeInterval
; ti:hasIntervalStartDate

"2010 -09 -24"]] .

8http://www.essepuntato.it/2010/06/sc2.ttl

66

SimpleOrAggregated
http://ontologydesignpatterns.org/wiki/Submissions:SimpleOrAggregated

María Poveda Villalón
Ontology Engineering Group (OEG)

Departamento de Inteligencia Artificial. Facultad de
Informática, Universidad Politécnica de Madrid (UPM)

Campus de Montegancedo, s/n

28660 Boadilla del Monte, Spain
+34 913363670

mpoveda@delicias.dia.fi.upm.es

Mari Carmen Suárez-Figueroa
Ontology Engineering Group (OEG)

Departamento de Inteligencia Artificial. Facultad de
Informática, Universidad Politécnica de Madrid (UPM)

Campus de Montegancedo, s/n

28660 Boadilla del Monte, Spain
+34 913363672

mcsuarez@fi.upm.es

ABSTRACT

In this paper, we describe a content ontology design pattern to

represent objects that can be simple or aggregated. The

aggregation relation refers to several objects gathered in another

object acting as a whole; all these objects should belong to the

same concept in the model.

Keywords

Ontology design patterns, mereology, aggregation.

1. INTRODUCTION
Mereological relationships are one of the basic structuring

primitives of the universe, and many applications require

representations of them (catalogues of parts, fault diagnosis,

anatomy, geography, etc.) [3].

We usually have the need of representing objects that are made up

of other types of object. In these situations, we can use the part-of

[1] pattern to represent transitive mereological relationships.

Some examples can be “Brain and heart are parts of the human

body” or “Substantia nigra is part of brain”. In addition, we can

use the componency [1] pattern to distinguish between parts and

proper parts in a non transitive fashion. An example of this case

can be “The turbine is a proper part of the engine; both are parts

of a car. Furthermore, the engine and the battery are proper parts

of the car”.

However, sometimes we need to represent objects that can be

made up of objects that belong to the same concept. In these cases

it is also need to distinguish objects into simple or aggregated

ones. For this reason, we have created the SimpleOrAggregated

pattern to represent aggregation relationships, both transitive and

non transitive, between objects that belong to the same concept in

the model. An example of this situation can be “aggregated

service provider is formed by simple or aggregated service

providers”.

2. PATTERN DESCRIPTION

2.1 Intent
The goal of this pattern is to represent objects that can be simple

or aggregated (that is, several objects gathered in another object

acting as a whole).

The main difference between the aggregation relation and other

mereological relationships (such as part-of or componency) is that

the aggregated object and its aggregated members should belong

to the same concept.

2.2 Solution Description
As it can be observed in Figure 1 the class "ObjectByCardinality"

has been created to classify simple and aggregated objects into its

subclasses "SimpleObject" and "AggregatedObject", respectively.

These subclasses are disjoint among them.

<<owl::inverseOf>><<owl::ObjectProperty>>

hasDirectAggregatedMember

<<owl::ObjectProperty>>

isDirectAggregatedMemberOf

<<owl::ObjectProperty>>

<<owl::TransitiveProperty>>

hasAggregatedMember

<<owl::ObjectProperty>>

<<owl::TransitiveProperty>>

isAggregatedMemberOf<<owl::inverseOf>>

<<rdfs::domain>> <<rdfs::range>> <<rdfs::domain>> <<rdfs::range>>

Object AggregatedObjectAggregatedObject Object

ObjectObjectByCardinality
<<owl::equivalentClass>>

<<owl::equivalentClass>>

AggregatedObjectSimpleObject

U

<<owl::equivalentClass>>

<<owl::someValuesFrom>>

hasAggregatedMember<<owl::disjointWith>>

Figure 1. Graphical representation of the

SimpleOrAggregated pattern.

The aggregation relationship between objects means that objects

of a class can be composed by other objects of the same class.

This relationship is represented by the transtive property

"hasAggregatedMember" and its inverse property

"isAggregatedMemberOf". These properties have as subproperties

the non transitive properties "hasDirectAggregatedMember" and

its inverse "isDirectAggregatedMemberOf", respectively. By

means of this structure of properties, we provide a mechanism (a)

to represent transitive aggregation relationships (that is, if A has B

as aggregated member and B has C as aggregated member then A

has C as aggregated member) and (b) to link each aggregated

67

mailto:mcsuarez@fi.upm.es

member just to the next level (that is, A has B as direct aggregated

member).

Finally, the class "AggregatedObject" has been defined as

equivalent to those things that have some values for the property

"hasAggregatedMember". This modelling allows the automatic

classification of aggregated objects in this class when a reasoner is

applied.

2.3 Consequences
This content pattern allows designers to represent both simple

individuals of a given concept (that is, an individual that is made

up of itself) and aggregated individuals of a given concept (that is,

an individual that is made up of several individuals of the same

concept). In summary, this pattern allows to represent both simple

objects and aggregated objects and their members.

In addition, this pattern can be used to detect the following

contradictory situation by means of applying a reasoner: 'to

instantiate the relationship "hasAggregatedMember" for an Object

that belongs to "SimpleObject"'. This situation represents a

consistency error and it is detected when a resoner is applied due

to the following modelling decisions included in the pattern: (a)

"AggregatedObject" class represents the "hasAggregatedMember"

domain and (b) "AggregatedObject" is disjoint with

"SimpleObject".

3. PATTERN USAGE EXAMPLE
This pattern has been applied to different domains such as service

providers and context sources during the mIO! ontology network1

development.

As an example, we show in Figure 2 the application of the

SimpleOrAggegrated pattern to represent that a service provider

can be classified as simple or aggregated. Each service provider

can be also classified with respect to the type of service it

provides (e.g. cultural, entertainment, food, health, etc.).

4. Related work
The origin of this pattern is the modelling of service providers and

context sources into the mIO! ontology network [2] within the

Spanish project mIO!2. The pattern has been also applied to

computing and storage resources modelling in the Metascheduler

ontology3 in the context of the Spanish project España Virtual4.

1http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/ontologies/82-

mio-ontologies

2 http://www.cenitmio.es/

3http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/ontologies/85-

metascheduler-ontologies

4 http://www.españavirtual.org/

ServiceProviderServiceProviderByCardinality

<<owl::equivalentClass>>

AggregatedServiceProviderSimpleServiceProvider

U

<<owl::equivalentClass>>

<<owl::someValuesFrom>>

hasAggregatedMember<<owl::disjointWith>>

MIOServiceProvider

LocalServiceProvider

CulturalServiceProvider

EntertainmentServiceProvider

ReligiousServiceProvider

InformationServiceProvider

HostingServiceProvider

HealthCareProvider

FoodServiceProvider

TransportationServiceProvider

SportServiceProvider

Shop

SecurityServicesProvider

<<owl::equivalentClass>>

Figure 2. SimpleOrAggregated pattern applied to service

providers.

5. Summary and Outlook
The SimpleOrAggregated pattern provides a mechanism to

classify objects as simple or aggregated objects depending on

whether they are an aggregation of some objects. This

classification is compatible with another possible classification of

objects.

6. ACKNOWLEDGMENTS
This work has been partially supported by the Spanish project

mIO! (CENIT-2008-1019).

7. REFERENCES
[1] Presutti, V., Gangemi, A., David S., Aguado de Cea, G.,

Suárez-Figueroa, M.C., Montiel-Ponsoda, E., Poveda, M.

NeOn D2.5.1: A Library of Ontology Design Patterns:

reusable solutions for collaborative design of networked

ontologies. NeOn project. http://www.neon-project.org.

2008.

[2] Poveda, M., Suárez-Figueroa, M.C., García-Castro, R.,

Gómez-Pérez, A. A Context Ontology for Mobile

Environments. Proceedings of CIAO 2010. Lisbon, Portugal.

11 October 2010.

[3] Suárez-Figueroa, M.C., Brockmans, S., Gangemi, A.,

Gómez-Pérez, A., Lehmann, J., Lewen, H., Presutti, V.,

Sabou, M.. NeOn D5.1.1: NeOn Modelling Components.

NeOn project. http://www.neon-project.org. March 2007.

68

