
Context Slices: Representing Contexts in OWL
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices

Chris Welty

IBM Watson Research
Hawthorne, NY 12540, USA

cawelty@gmail.com

ABSTRACT
This ontology pattern can be used to represent and reason about
contextualized statements using standard OWL dialects. The
simple idea is to bundle the notion of context into certain nodes in
the graph, rather than the more typical treatment of contexts as a
property of the statements themselves.

Keywords
Semantic Web, OWL, RDF, Contexts.

1. INTRODUCTION
Most information on the web is contextualized somehow, for
example information may be believed by a person or organization,
it may hold only for some time period, it may have been
reported/observed by an individual, etc. There are myriad
proposals and logics for context, but none are standards and few
have even prototype implementations.
In RDF and other binary relation languages (like object oriented
languages and description logics), one typical way to represent
that a binary relation holds in some context is to "reify" the
relation-holding in the context as an object with a binary relation
between the obtainment and each the two relation arguments and a
third binary relation between the obtainment and an object
representing the context itself. The downside to this approach is
the expressive ability of the language to describe the binary
relation, especially in the case of description logics, is lost. One
can of course use RDF reification, however this is not supported
in OWL, either.
The motivation for context slices is to provide a logical pattern for
encoding context information in standard RDF graphs that allows
some of the expressiveness of OWL to be used in describing the
relations that hold in contexts.
This is a generalization of the four dimensional ontology for
fluents published in [1].

2. PATTERN DESCRIPTION
The idea of the context slices pattern is, rather than reifying the
statement itself, to create a projection of the ''relation arguments''
in each context for which some binary relation holds between
them.

Take for example the statement "Chris believes Sam is CEO of
IBM". Say we already have nodes in some graph representing
Sam, Chris and IBM. We create, as shown in Figure 1, the
context c1 corresponding to Chris' belief, and two nodes
representing Chris' belief about Sam and Chris' belief about IBM
(shown as Sam@c1 and IBM@c1).

This allows us to represent ceoOf as a binary relation, which
seems more natural, and it allows us to use the expressivity of
OWL in more ways. We can say of the ceoOf relation that it has
an inverse, hasCeo. We can express cardinality, e.g., a company
may have only one CEO within a context. We can say that a
relation is transitive or symmetric. We can express relation
taxonomies in the usual way.

While clearly OWL does not support RDF reification, and so none
of this is possible if statement reification is used. As mentioned
above a more standard way of representing this kind of
information (including time, belief, knowledge, etc.) is to create
an OWL class that represents the relation holding, with properties
for the arguments. This approach makes it possible to express
global but not local range and domain constraints, global but not
local cardinality, and symmetry.

Note that the ContextualProjection class should be considered
disjoint with any of the classes in an ontology that have
projections.

Figure 1: Graphical illustration of an example using the pattern.

3. IMPLEMENTATION
In OWL functional syntax:

 Ontology(<http://example.org/ContextSlices>
 Annotation(owl:versionInfo "1.0"@en)
 Annotation(rdfs:label "Context slices ontology logical

pattern"@en)

 Declaration(Class(cs:Context))
 DisjointClasses(cs:Context cs:ContextualProjection)
 Declaration(Class(cs:ContextualProjection))
 SubClassOf(cs:ContextualProjection

ObjectAllValuesFrom(cs:hasContext cs:Context))
 SubClassOf(cs:ContextualProjection

ObjectExactCardinality(1 cs:hasContext))
 SubClassOf(cs:ContextualProjection

ObjectExactCardinality(1 cs:projectionOf))
 DisjointClasses(cs:ContextualProjection cs:Context)
 Declaration(ObjectProperty(cs:contextualProperty))
 ObjectPropertyDomain(cs:contextualProperty

cs:ContextualProjection)
 ObjectPropertyRange(cs:contextualProperty

cs:ContextualProjection)
 Declaration(ObjectProperty(cs:hasContext))
 FunctionalObjectProperty(cs:hasContext)

 ObjectPropertyDomain(cs:hasContext
cs:ContextualProjection)

 Declaration(ObjectProperty(cs:projectionOf))
 FunctionalObjectProperty(cs:projectionOf)
 ObjectPropertyDomain(cs:projectionOf

cs:ContextualProjection))

4. REFERENCES
[1] Welty, Chris and Richard E. Fikes. 2006. A Reusable

Ontology for Fluents in OWL. In Bennet and Fellbaum, eds.,
Proceedings of the Fourth International Conference on
Formal Ontology in Information Systems. IOS Press. See
http://www.booksonline.iospress.nl/Content/View.aspx?piid
=2209.

