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Abstract. The problem of recognizing whether a subset of attributes
is a pseudo-intent is shown to be coNP-hard, which together with the
previous results means that this problem is coNP-complete. Recogniz-
ing an essential intent is shown to be NP-complete and recognizing the
lectically largest pseudo-intent is shown to be coNP-hard.

1 Introduction

One of the long-standing complexity problems in FCA is the problem of checking
whether a given set of attributes is a pseudo-intent. In [4, 5] it was proved that
this problem lies in the class co-NP, however, the question whether the problem
is complete in this class was still open. In [6] there was a conjecture that this
problem is transhyp-hard [6], which would not mean that this problem is co-NP-
complete. In this paper we prove a stronger statement, namely that the problem
is coNP-hard, which, together with the result from [4, 5] means that the problem
is coNP-complete. This main result has several consequences concerning essen-
tial intents and lectically largest pseudo-intent. Recognizing an essential intent is
NP-complete and recognizing the lectically largest pseudo-intent is coNP-hard.
The rest of the paper is organized as follows: In the second section we introduce
the main definitions and give a precise problem statement. In the third section
we give a proof of the main result. In the fourth section we discuss the complex-
ity of some related problems, namely that of recognizing essential intents and
generating pseudo-intents in the order dual to the lectic one.

2 Definitions

Let G and M be sets, called the set of objects and attributes, respectively. Let I
be a relation I C G x M between objects and attributes: for g € G, m € M, gIm
holds iff the object g has the attribute m. The triple K = (G, M,I) is called
a (formal) context. If A C G,B C M are arbitrary subsets, then the Galois
connection is given by the following derivation operators:

A'={me M| glmVg e A}

B'={g9€G|gImVYm € B}
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The pair (A4, B), where A C G, B C M, A’ = B, and B’ = A is called a
(formal) concept (of the context K) with extent A and intent B (in this case we
have also A” = A and B” = B). The set of attributes B is implied by the set of
attributes A, or the implication A — B holds, if all objects from G that have all
attributes from the set A also have all attributes from the set B, i.e. A’ C B’.

The operation (-)” is a closure operator [1], i.e. it is idempotent (X" = X"),
extensive (X C X”), and monotone (X CY = X" CY"). Sets ACG, BC M
are called closed if A” = A and B” = A. Obviously, extents and intents are
closed sets.

Implications obey the Armstrong rules:

A— B A—B,BUC—D
A— A AUC — B’ AuC—D '

A minimal (in the number of implications) subset of implications, from which
all other implications of a context can be deduced by means of the Armstrong
rules was characterized in [3]. This subset is called the Duquenne Guigues or
stem base in the literature. The premises of the implications of the stem base
can be given by pseudo-intents(see e.g.[1]): a set P C M is a pseudo-intent if
P # P” and Q" C P for every pseudo-intent Q C P. For a closed set A C M
such that P ¢ A the intersection A N P is also closed (see [1]). A set Q@ C M is
called quasi-closed (quasi-intent) if for any R C @ one has R’ C Q or R” = Q".
For example closed sets are quasi-closed. For a quasi-closed set () it holds that
(QNC)" =(QNC) for any closed set C such that @ ¢ C. Another definition of
a pseudo-intent, which we will use in this paper, is very close to that from [3]:
a nonclosed set P C M is a pseudo-intent iff P is quasi-closed and Q" C P for
any quasi-closed set @ C P (see [4,5]). A set A C M is called an essential intent
(essential-closed subset of attributes) iff there is a pseudo-intent P C M such
that P = A.

Let G ={g1,...,9n} and M = {mq,...,my} be sets with same cardinality.
Then the context K = (G, M,Z.) is called contranominal scale, where 7, =
G x M\ {(g1,m1),...,(gn,mn)}. The contranominal scale has the following
property, which we will use later: for any H C M one has H' = H and H' =
{gi|m; ¢ H1<i<n}

3 Recognition of pseudo-intents

Here we discuss the algorithmic complexity of the problem of pseudo-intent
recognition.

Problem: Pseudo-intent recognition (PI)
INPUT: A context K = (G, M,I) and a set P C M.
QUESTION: Is P a pseudo-intent of K?

In order to prove colN P-hardness of PI we consider the most well-known
N P-complete problem, namely CNF satisfiability.
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Problem: CNF satisfiability (SAT)
INPUT: A boolean CNF formula f(x1,...,2,) =C1 A... ACj
QUESTION: 1s f satisfiable?

Consider an arbitrary CNF instance C1, ..., Cy with variables z1, ..., x,, where
Ci = (laV.. Viy,) (1 <i<k)areclausesand l;; € {x1,..., 2, }U{~21,..., "2y}
(1 <i<k, 1<j<n,;) are some variables or their negations, called literals.
From this instance we construct a context K = (G, M, I). Define

M = {p,cl,...,Ck,(El,ﬁ.’Eh...,!'En,ﬁ.’IIn7€}

G= {gl’l’g_‘zl?"’7g$n’g_‘zn’ch7gC7gll7'"7gln}
Ufg [1<i<n, 1<j<n}u{g” |1<i<n, 1<j<n}
For 1 < i < n define the set L; = {z1,~@1,...,Zn, "Tn} \ {2s, ~2;}. In addition
for1 <i<mandl < j<ndefinethesets L;’ = L;\{z;} and L, = L;\{~x,}.
Now we are ready to define I. The relation [ is given by two parts. The first
part is
Im{gwlvg—*wu"'agwn,g—*wn} X MZCUI#
C={(92:,Cj) |2 ¢ Cj, 1 <i<n, 1 <j <k}
U{(gﬂwiﬂcj) | T ¢Cj7 1<i<n, 1 S]Sk}

1-75 = {gazmg—'wm' .. agInmg—'wn} X {xla IR P 7o _‘xn}
\ {(gzlvml)v (g—\mlv_'xl)u R (ga:naxn)a (g—\mnv_'xn)}

hence C! N {guysG=ars---»Yu, 9=z, ; is the set of objects which correspond to
literals not included in C; (1 < i < k), and Z+ is the relation of the contra-
nominal scale. The rest of [ is given by the object intents

gox = M\ {p,e}

g, ={p}UL;, 1<i<n

)

g ={p}UL, 1<i<n, 1<j<n
9. ={pyUL™, 1<i<n, 1<j<n
Note that there are some objects (e.g. g, and g;'') with the same intents, but

this does not matter.

For any A C {x1,~x1,...,T,, "z, } that satisfies A N {z;,—~z;} # 0 for 1 <
1 < n, we define truth assignment ¢ 4:

true, ifz; ¢ A and —x; € A
da(z;) =1 false, if ~z; ¢ A and z; € A4;
false, otherwise (z; € A and —z; € A);
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Hp‘Cl Cy - Ck‘ T1 T - Tn ﬂxn‘e‘
gz,
gz
: C -
9z
g-zy
gCX >< ...... >< >< ............ ><
gc >< >< ...... X
g1, X L1
z1 z1
g1, X L
221 S®q
g1, X L
gﬁn % L
9y " || < L™
ai, X L'n
1 x
gln X Lnl
T -z
gln X Ln .
iy |« L
gl:‘fn X L;z"

Table 1. Context K.
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In the case x; ¢ A and —x; ¢ A for some 1 < i < n, ¢, is undefined. Note that
for A C {x1,~@1,...,2n, Ty} the truth assignment ¢4 is (correctly) defined iff
A L; for every 1 <i < n.

Symmetrically for a truth assignment ¢ define the set Ay, = {—z; | ¢(;) =
true} U{z; | ¢(z;) = false}.

Before proving coN P-hardness of PI we prove some auxiliary statements.
The following lemma is crucial for the reduction from SAT to the complement
of PIL.

Lemma 1 If a subset A C {1, -1, ..., &y, 2, } is closed and A & g]. for any
1 <i<nthen ¢pa is defined and ¢ satisfies f i.e f(da) = true. Conversely,
if a truth assignment ¢ satisfies f, then Ay is closed and Ay ¢ g, for every
1<i<n.

Proof. Let A C {1, -z1,...,2Zn, 77y} and A is not a subset of any g; (1 <i <
n), then A ¢ L; for any 1 < i < n and hence (by definition of ¢4) ¢4 is defined.
Since Z4 is the relation of contranominal scale and any intent can be expressed
as the intersection of object intents, we have A" = {g,, | z; ¢ A} U{g-s, | ~2: ¢
AYUB, where B C G—{0s,, 921+ Gzns Gz, }- Since AL L; forany 1 <i<n
we also have A ¢ L}’ and A ¢ L, for every 1 <i < n and 1 < j < n. Thus
B ={gcx}.

Suppose A” = A. Then AN{C4,...,Cr} =0 and hence for every 1 <i < k
there is some g € A’ that C; ¢ ¢'. Since C; € gpx and A" = {g,, | z; ¢
AYU{g-s; | 7xs € A} U{gex} the latter means that g € {gs, | z; ¢ A} U{g-s,
—x; ¢ A}. Then, by definition of the relation C, there is a literal z; ¢ A or
—x; ¢ A that belongs to C;. Thus ¢4 satisfies C; for every 1 < i < k.

Now let ¢ be a truth assignment and f(¢) = true. Obviously, Ay & g;.
for every 1 < i < n (by definition of Ag). Then A} = {g;, | z; & Ay} U
{g-a; | 21 & Ay} U{gex}. Note that AY N {x1,~x1,... 20, "2} = Ay N
{1, 21,...,2p, ~xn} and Ay C g . Hence Ay is closed iff Ay,n{C4,...,Cy} =
(0. Assume that C; € Ag N {C1,...,Ci} for some 1 < i < k. This means that
C; € gy, and C; € g', for every z; ¢ Ay and ~z, ¢ Ay. But then by definition
of the relation C the clause C; is not satisfied by ¢. a

Proposition 2 Forany 1 <i<n if AC gfi then A is closed.

Proof. Let A C g; and p € A. Then A" =, o, gfijl NNos,ga gl:"”j/ =A. In

the case p ¢ A we can express A” as A” = (AU {p})" Ng-x = A. O
Now we are ready to prove colN P-hardness of PI.

Theorem 3 PI is coN P-hard.

Proof. We reduce CNF to the complement of PI. Given a CNF instance f =
Cy A ...\ Cy, we construct a context K like that described above (see Table 1).
We take P = M \ {e} as a set for deciding whether it a pseudo-intent. Hence
the corresponding PI instance is (K, P) and we prove that f is satisfiable if and
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only if P is not a pseudo-intent of K. Without loss of generality we will assume
that for every 1 < i < n the clause x; V —z; is included in f (it does not affect
satisfiability).

(=) Let f be satisfiable and let ¢ be the truth assignment that satisfies
f(¢) = true. Consider the set Q = {p} U Ay. As we will see later ) is a pseudo-
intent, @ C P and Q" = M ¢ P, and hence P is not a pseudo-intent. First
let us check that Q" = M. Since p € Q we should test only that @ ¢ ¢,
where g € {gc, 91,591, }U{g7 [1<i<n1<j<n}u{g™ |1<i<
n,1 < j < n}. Clearly Q@ ¢ g because Ay is not empty. By Lemma 1 for
any 1 <i <n, Ay ¢ g; , therefore Q ¢ g;,. Hence Q ¢ gi_jl and Q ¢ gljxj'
(1 <i<n,1<j<n). Inorder to prove that @ is a pseudo-intent we show
that any proper subset of @ is closed. Consider an arbitrary set A C Q. If pe A
then (since A # Q) there is a literal | € {x1,-z1,..., 2y, @, } such that [ € Q
and | ¢ A. Thus by proposition 2 the subset A is closed. Now let p ¢ A then
if A=Q\ {p} = Ay by lemma 1 the subset A is closed. If A # @Q \ {p} then
A C Ay and by proposition 2 the subset A is closed.

(<) Now let a pseudo-intent @) be a proper subset of P (i.e. @ C P) and
Q" ¢ P. Then @ is not a subset of any object intent of K. Together with the
fact of quasi-closedness of @ this implies that QN g’ is closed for any g € G. Note
that p € @ since otherwise @ C g¢ . Consider @ N g. Since @ N g¢ is closed
and p € Q N g, there are only two possibilities: @ N gy = p or Q N gy = g
Assume Q N gy = gi. Then Q = g U B, where B C {1, x1,...,Zn, "2, } and
B # ( (because Q # P and Q # g¢). Consider Q Ngry = {C1,...,Cr} U B.
This set must be closed by quasi-closedness of Q. Note that {C1,...,Cx} U
B ¢ g, for any 1 <i < nand {Ci,...,Cr} UB € g¢ (since B # (). Thus
(QNgrx) CH{GarsGowrs-- s Guns G }- Since (Q N gy ) # 0 there is a literal
l e {z1,~x1,...,2,, "2y} such that g; € (Q N gry)'. Then, by definition of g
and the fact that some clause C; contains the literal [ we get that C; ¢ Q Ngp -
Thus Q Nge =p and Q\ {p} = Q@ Ngrx C {x1,21,..., 2y, "2, }. Moreover,
Q ¢ g for every 1 < i < n, hence ¢ = ¢q\(p} is (correctly) defined. Since
Q \ {p} is closed by lemma 1, the truth assignment ¢ satisfies f. O

In [4] it was shown that PI € coNP hence we obtain
Corollary 1. PI is coN P-complete.

4 Recognizing essential intents and lectically largest
pseudo-intents

An important problem related to recognizing pseudo-intents is deciding whether
a given set is the lectically largest pseudo-intent.

Let M = {my,...,my} be a finite set with linear order on it (m; < -+ <
my,). For sets A C M and B C M we say that A lectically smaller than B
(A < B, B is lectically larger than A) if 3Im; e B\ A: AnN{m; e M |j <i} =
Bn{m; € M | j <i}. It is not hard to see that the lectic order is a linear order
on the subsets of M.
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Problem: The lectically largest pseudo-intent (LLPT)
INPUT: A context K = (G, M, I) with linear order on M and a set P C M.
QUESTION: Is P the lectically largest pseudo-intent of K?

Proposition 4 LLPI is coN P-hard.

Proof. We reduce SAT to the complement of LLPI as in the proof of Theorem 3 .
The linear orderon M is: p < C; < ... < Cp < z1 < 21 < ... < xp < "y < €.
Since P = M \ {e} and M is closed, P is the lectically largest pseudo-intent iff
P is a pseudo-intent. g
Thus it is impossible to find the lectically largest pseudo-intent in polynomial
time unless P = N P.

In [8] it was shown that pseudo-intents cannot be enumerated with polyno-
mial delay in the lectic order (unless P = NP). Proposition 4 shows that this
also cannot be done in the dual order, i.e., the following corollary holds.

Corollary. Pseudo-intents cannot be generated with polynomial delay in the
order dual to the lectic one unless P = NP.

Another problem related to the problem of recognizing pseudo-intents is that of
recognizing essential intents.

Problem: Essential intents recognition (EI)
INPUT: A context K = (G, M,I) and a set A C M.
QUESTION: Is A an essential intent of K7

Proposition 5 EI is NP-complete.

Proof. 1. NP-Hardness. We reduce SAT to EI, in the same way as in the
reduction from SAT, to the complement of PI. Let us construct the context
Ko = (G, M \ {e},I), where G, M and I are the sets of objects, attributes and
the relation of context K from the proof of Theorem 3 (see Table 1). Obviously,
M \ {e} is an essential intent of Ky iff M \ {e} is not a pseudo-intent of K.

2. Membership in NP. The set A is an essential intent of the context K =
(G, M, I) iff there is a pseudo-intent P C M such that P” = A. Since a pseudo-
intent is an inclusion-minimal quasi-closed set with the same closure (e.g. see
[4]), a set A is an essential intent iff there is quasi-closed set (@ C M such that
Q" = A. Quasi-closedness can be tested in polynomial time (see [4]). Hence a
nondeterministic guess for checking essential-intent A can be a quasi-closed set
Q such that Q" = A. 0.

Conclusion

A long-standing complexity problem about the complexity of recognizing a pseudo-
intent was solved. This problem was shown to be coNP-complete. This main
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result has several important consequences concerning essential intents and the
lectically largest pseudo-intent. Recognizing an essential intent was shown to be
NP-complete and recognizing the lectically largest pseudo-intent was shown to be
coNP-hard. The latter fact means that pseudo-intents cannot be generated with
polynomial delay in the order dual to the lectic one unless P = N P. Whether
pseudo-intents cannot be generated with polynomial delay (unless P = NP) in
arbitrary order still remains an important open problem.
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