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Abstract. The paper is a continuation of our previous paper on opera-
tors and spaces associated to matrices whose degrees are elements from
a residuated lattice. The motivation for this study is to develop a cal-
culus for such matrices which can be used in situations such as matrix
decompositions. In this paper, we focus on row and column spaces, left
and right ideals of matrices, and Green’s relations. We prove basic re-
sults concerning these notions, show links to known structures, and put
a new perspective on results known from Boolean matrices and their
generalizations.

1 Introduction

In this paper, we continue the study, started in [6], of operators and spaces as-
sociated to matrices with entries from residuated lattices. Our main motivation
is recent results on the role of closure and interior structures, most importantly
concept lattices, for decompositions of such matrices and factor analysis of data
described by such matrices [7, 8, 10, 9]. In [6], we presented results regarding the
operators and spaces associated to products of matrices and established some
links to traditionally studied concepts from Boolean matrices. We showed that
some of the concepts of Boolean matrix theory, such as the concept of a row
space, can be naturally defined in terms of closure structures known from the
theory of ordered sets and, in particular, in terms of structures known formal
concept analysis of binary data [11]. Furthermore, we suggested that the con-
cepts of Boolean matrix theory can be extended to matrices with entries from
residuated lattices by utilizing the existing and possibly developing new notions
and results of formal concept analysis of data with fuzzy attributes. A study of
these topic is the primary purpose of the present paper.

The paper is organized as follows. Preliminaries are provided in Section 2.
Section 3 presents the results, namely the results on rows and column spaces,
and the results on Green’s relations for matrices with entries from residuated
lattices. Section 4 presents conclusions and topics for future research.
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2 Preliminaries: Matrices, Compositions,

Decompositions, Concept Lattices

This section provides preliminaries, mainly from [6–10].

Matrices We deal with matrices whose degrees are elements from residuated
lattices. In particular, we deal with (de)compositions I = A ∗ B which involve
an n × m matrix I, an n × k matrix A, and a k × m matrix B. The entries
of matrices I, A, B, are elements of a residuated lattice (see below); for the
composition operator ∗, we use three particular products (explained later in this
section).

Recall that a (complete) residuated lattice [3, 14, 19] is a structure L =
〈L,∧,∨,⊗,→, 0, 1〉 such that

(i) 〈L,∧,∨, 0, 1〉 is a (complete) lattice, i.e. a partially ordered set in which
arbitrary infima and suprema exist;

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is
commutative, associative, and a ⊗ 1 = a for each a ∈ L;

(iii) ⊗ and → satisfy adjointness, i.e. a ⊗ b ≤ c iff a ≤ b → c.

0 and 1 denote the least and greatest elements of L. The partial order of L is
denoted by ≤; infima and suprema in L by ∧ and ∨. Throughout the paper, L
denotes an arbitrary complete residuated lattice. Common examples of complete
residuated lattices include those defined on a unit interval, i.e. L = [0, 1], or on
a finite chain in a unit interval, e.g. L = {0, 1

n
, . . . , n−1

n
, 1}.

We assume that Iij , Ail, Blj ∈ L. That is, all the matrix entries are elements
of some complete residuated lattice L. Elements a ∈ L are also called grades
(degrees). In particular Iij is interpreted as the degree to which object i has at-
tribute j; Ail as the degree to which factor l applies to object i; Blj as the degree
to which attribute j is a manifestation (one of possibly several manifestations)
of factor l.

Therefore, examples of matrices I which are subject to our decomposition
are





1.0 1.0 0.0 0.0 0.6 0.4
1.0 0.9 0.0 0.0 1.0 0.8
1.0 1.0 0.0 1.0 0.0 0.0
1.0 0.5 0.0 0.7 1.0 0.4



 or





0 0 1 1 1
0 0 1 1 0
0 0 0 0 1
0 1 1 1 0



.

The second matrix demonstrates that binary matrices are a particular case of
the matrices for L = {0, 1}.

Remark 1. Residuated lattices are heavily used in fuzzy logic [3, 14]. Operations
⊗ (multiplication) and → (residuum) play the role of a (truth function of) con-
junction and implication, respectively. Examples of residuated lattices are well
known. For instance, for L = [0, 1], we can use any left-continuous t-norm for ⊗,
such as minimum, product, or ÃLukasewicz, and the corresponding residuum →.
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Composition Operators We use three composition operators, ◦, ⊳, and ⊲, and
consider the corresponding decompositions I = A◦B, I = A⊳ B, and I = A⊲ B.
The composition operators are defined by

(A ◦ B)ij =
∨k

l=1
Ail ⊗ Blj , (1)

(A⊳ B)ij =
∧k

l=1
Ail → Blj , (2)

(A⊲ B)ij =
∧k

l=1
Blj → Ail. (3)

Note that these operators were extensively studied by Bandler and Kohout,
see e.g. [17]. They have natural verbal descriptions. For instance, (A◦B)ij is the
truth degree of “there is factor l such that l applies to object i and attribute j

is a manifestation of l”. Note also that in the binary case, i.e. L = {0, 1}, A ◦B

coincides with the well-known Boolean product of matrices.

Decomposition Problem Given an n×m matrix I and a composition operator ∗
(i.e., ◦, ⊳, or ⊲), the decomposition problem consists in finding a decomposition
I = A ∗B of I into an n× k matrix A and an k ×m matrix B with the number
k (number of factors) as small as possible. The smallest k is called the Schein
rank of I and is denoted by ρs(I) (to make the type of product explicit, also
by ρs◦(I), ρs ⊳(I), and ρs ⊲(I)). Looking for decompositions I = A ∗ B can be
seen as looking for factors in data described by I. That is, decomposing I can
be regarded as factor analysis in which the data as well as the operations used
are different from the ordinary factor analysis [15].

Concept Lattices Associated to I Let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m}.
Recall that LU denotes the set of all L-sets in U , i.e. all mappings from U to
L. Consider the following pairs of operators induced by matrix I. First, a pair
〈↑, ↓〉 of operators ↑ : LX → LY and ↓ : LY → LX is defined by

C↑(j) =
∧n

i=1
(C(i) → Iij), (4)

D↓(i) =
∧m

j=1
(D(j) → Iij), (5)

for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. Second, a pair 〈∩, ∪〉 of operators ∩ :
LX → LY and ∪ : LY → LX is defined by

C∩(j) =
∨n

i=1
(C(i) ⊗ Iij), (6)

D∪(i) =
∧m

j=1
(Iij → D(j)), (7)

for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. Third, a pair 〈∧, ∨〉 of operators ∧ : LX →
LY and ∨ : LY → LX is defined by

C∧(j) =
∧n

i=1
(Iij → C(i)), (8)

D∨(i) =
∨m

j=1
(D(j) ⊗ Iij), (9)

for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. 〈↑, ↓〉 forms an antitone Galois connection,
〈∩, ∪〉 and 〈∧, ∨〉 each form an isotone Galois connection. To emphasize that the
operators are induced by I, we also denote the operators by

〈↑I , ↓I 〉, 〈∩I , ∪I 〉, and 〈∧I , ∨I 〉.
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Furthermore, denote the corresponding sets of fixpoints by B(X↑, Y ↓, I), B(X∩, Y ∪, I),
and B(X∧, Y ∨, I), i.e.

B(X↑, Y ↓, I) = {〈C,D〉 |C↑ = D, D↓ = C},

B(X∩, Y ∪, I) = {〈C,D〉 |C∩ = D, D∪ = C},

B(X∧, Y ∨, I) = {〈C,D〉 |C∧ = D, D∨ = C}.

The sets of fixpoints are complete lattices, called concept lattices associated to
I, and their elements are called formal concepts. Note that these operators and
their sets of fixpoints have extensively been studied, see e.g. [1, 2, 4, 12, 18]. Note
that if L = {0, 1}, B(X↑, Y ↓, I) coincides with the ordinary concept lattice of
the formal context consisting of X, Y , and the binary relation (represented by)
I.

The concept lattices associated to I play a fundamental role for decomposi-
tions of I. Namely, given a set

F = {〈C1,D1〉, . . . , 〈Ck,Dk〉}

of L-sets Cl and Dl in {1, . . . , n} and {1, . . . ,m}, respectively, define n × k and
k × m matrices AF and BF by

(AF )il = (Cl)(i) and (BF )lj = (Dl)(i).

This says: the l-th column of AF is the transpose of the vector corresponding to
Cl and the l-th row of BF is the vector corresponding to Dl. Then, we have:

Theorem 1 (universality, [7, 10]). (◦) For every I there exists F ⊆ B(X↑, Y ↓, I)
such that I = AF ◦ BF .
(⊳) For every I there exists F ⊆ B(X∩, Y ∪, I) such that I = AF ⊳ BF .
(⊲) For every I there exists F ⊆ B(X∧, Y ∨, I) such that I = AF ⊲ BF .

Theorem 2 (optimality, [7, 10]). (◦) Let I = A ◦ B for n × k and k × m

matrices A and B. Then there exists F ⊆ B(X↑, Y ↓, I) with |F| ≤ k such that
for the n × |F| and |F| × m matrices AF and BF we have I = AF ◦ BF .

(⊳) Let I = A⊳ B for n × k and k × m matrices A and B. Then there exists
F ⊆ B(X∩, Y ∪, I) with |F| ≤ k such that for the n × |F| and |F| × m matrices
AF and BF we have I = AF ⊳ BF .

(⊲) Let I = A⊲ B for n × k and k × m matrices A and B. Then there exists
F ⊆ B(X∧, Y ∨, I) with |F| ≤ k such that for the n × |F| and |F| × m matrices
AF and BF we have I = AF ⊲ BF .

3 Row and Column Spaces, and Green’s relations

3.1 Row and Column Spaces

In Boolean matrix theory [16], row and column spaces play a crucial role. In
[6] we shortly presented a connection between the row and column spaces on
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one hand, and the concept lattices associated to matrices, on the other hand. In
this section, we recall and further develop this connection and related notions
for matrices with entries from residuated lattices. For convenience, we identify
vectors and matrices with entries from residuated lattices with fuzzy sets and
fuzzy relations. That is, a vector 〈a1, . . . , an〉 with entries ai ∈ L is sometimes
viewed as a fuzzy set C in an n-element universe set, say {1, . . . , n} such that
C(i) = ai for i = 1, . . . , n, and the like.

By Ln and Ln×m, we denote the set of all vectors with n components (i.e.,
1×n matrices) and the set of all n×m matrices with entries from L (or, the set of
all fuzzy sets in an n-element universe and the set of all fuzzy relations between
an n- and m-element universes). Using the terminology of Boolean matrices,
we define the following notions, generalizing the notions known from Boolean
matrices.

Definition 1. V ⊆ Ln is called an i-subspace (or just a subspace if there is no
danger of confusion) if

– V is closed under ⊗-multiplication, i.e. for every a ∈ L and C ∈ V , a⊗C ∈ V

(here, a ⊗ C is defined by (a ⊗ C)(i) = a ⊗ C(i) for i = 1, . . . , n);
– V is closed under

∨

-union, i.e. for Cj ∈ V (j ∈ J) we have
∨

j∈J Cj ∈ V

(here,
∨

j∈J Cj is defined by (
∨

j∈J Cj)(i) =
∨

j∈J Cj(i)).

V ⊆ Ln is called a c-subspace (or just a subspace if there is no danger of
confusion) if

– V is closed under →-shift, i.e. for every a ∈ L and C ∈ V , a → C ∈ V

(here, a → C is defined by (a → C)(i) = a → C(i) for i = 1, . . . , n);
– V is closed under

∧

-intersection, i.e. for Cj ∈ V (j ∈ J) we have
∧

j∈J Cj ∈
V (here,

∧

j∈J Cj is defined by (
∧

j∈J Cj)(i) =
∧

j∈J Cj(i)).

Remark 2. (1) If V ∈ Ln are regarded as fuzzy sets, the concepts of an i-subspace
and a c-subspace coincide with the concept of a fuzzy interior operator and a
fuzzy closure operator as defined in [2, 5].

(2) For L = {0, 1} the concept of an i-subspace coincides with the concept of
a subspace from the theory of Boolean matrices [16]. In fact, closedness under
⊗-multiplication is satisfied for free in the case of Boolean matrices. Note also
that for Boolean matrices, V forms a c-subspace iff V = {C |C ∈ V } forms an i-
subspace (with C defined by C(i) = C(i) where a = a → 0, i.e. 0 = 1 and 1 = 0),
and vice versa. However, such a reducibility among the concepts of i-subspace
and c-subspace is not available in general because in residuated lattices, the law
of double negation (saying that (a → 0) → 0 = a) does not hold.

Definition 2. The i-span ( c-span) of V ⊆ Ln is the intersection of all i-
subspaces (c-subspaces) of Ln that contain V . The row i-space ( row c-space)
of matrix I ∈ Ln×m is the i-span (c-span) of the set of all rows of I (considered
as vectors from Ln). The column i-space ( column c-space) is defined analogously
as the i-span (c-span) of the set of columns of I. The row i-space, row c-space,
column i-space, and column c-space of matrix I is denoted by Ri(I), Rc(I), Ci(I),
Cc(I).
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Remark 3. For L = {0, 1}, the row i-space of I coincides with the row space of
I as defined in Boolean matrix theory.

For the concept lattices B(X↑, Y ↓, I), denote the corresponding sets of ex-
tents and intents by Ext(X↑, Y ↓, I) and Int(X↑, Y ↓, I). That is,

Ext(X↑, Y ↓, I) = {C ∈ LX | 〈C,D〉 ∈ B(X↑, Y ↓, I) for some D},

Int(X↑, Y ↓, I) = {D ∈ LY | 〈C,D〉 ∈ B(X↑, Y ↓, I) for some C},

and analogously for Ext(X∩, Y ∪, I), Int(X∩, Y ∪, I), Ext(X∧, Y ∨, I), and Int(X∧, Y ∨, I).
A fundamental connection between the row and column spaces on one hand,

and the concept lattices on the other hand, is described in the following theorem
(IT denotes the transpose of I).

Theorem 3. For a matrix I ∈ Ln×m, X = {1, . . . , n}, Y = {1, . . . ,m}, we
have

Ri(I) = Int(X∩, Y ∪, I) = Ext(Y ∧,X∨, IT ), (10)

Rc(I) = Int(X↑, Y ↓, I) = Ext(Y ↑,X↓, IT ), (11)

Ci(I) = Ext(X∧, Y ∨, I) = Int(Y ∩,X∪, IT ), (12)

Cc(I) = Ext(X↑, Y ↓, I) = Int(Y ↑,X↓, IT ). (13)

Proof. Ri(I) = Int(X∩, Y ∪, I) was established in [6]. The second equality of (10)
is immediate. (12) is a consequence of (10) and when taking a transpose of I,
extents and intents switch their roles.

Sketch of the proof of (11): The assertion follows from the fact that D ∈
Int(X↑, Y ↓, I) iff D = C↑ for some C, i.e. D(j) =

∧

i∈X(C(i) → Iij), which
means that D is the

∧

-intersection of →-shifts C(i) → Ii of rows Ii of I. The
set of all such intersections may be shown to form a c-space and it is the least
c-space containing all rows of I. ¤

The following theorem provides us with the relationships generalizing the
well-known relationship between the row (column) space of a Boolean product
of two Boolean matrices and the row (column) spaces of the two matrices.

Theorem 4. For A ∈ Ln×k and B ∈ Lk×m,

Ri(A ◦ B) ⊆ Ri(B), (14)

Ci(A ◦ B) ⊆ Ci(A), (15)

Rc(A⊳ B) ⊆ Rc(B), (16)

Cc(A⊲ B) ⊆ Cc(A). (17)

In addition,

Cc(A⊳ B) ⊆ Ext(X∩, {1, . . . , k}∪, A), (18)

Rc(A⊲ B) ⊆ Int({1, . . . , k}∧, Y ∨, B). (19)

Proof. The assertions follow from Theorem 3 and [6, Theorem 4] describing
relationships of concept lattices of compositions of fuzzy relations; the full proof
is omitted. ¤
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3.2 Green’s Relations

Green’s relations [13] originated in semigroup theory and play an important role
in Boolean matrix equations and other areas of Boolean matrix theory [16]. We
now establish their basic properties for matrices with entries from residuated
lattices. We take advantage of the fact that the n×n matrices with entries from
a residuated lattice form semigroup with respect to ◦.

Definition 3. For n × n matrices I and J , Green’s relations L, R, and D are
defined as follows:

– ILJ iff {M ◦ I |M ∈ Ln×n} = {M ◦ J |M ∈ Ln×n}, i.e. I and J generate
the same left ideal (we say that I and J are L-equivalent).

– IRJ iff {I ◦ M |M ∈ Ln×n} = {J ◦ M |M ∈ Ln×n}, i.e. I and J generate
the same right ideal (we say that I and J are R-equivalent).

– IDJ iff there exists matrix K ∈ Ln×n such that ILK and KRJ .

Remark 4. (1) There exist several other ways to define Green’s relations. For
example:

– IRJ iff there exist A,B such that I ◦ A = J and J ◦ B = I.
– IDJ iff there exists K such that IRK and KLJ ; D is the supremum of L

and R in the lattice of equivalence relations.

(2) Due to lack of space, we omit the other two Green’s relations, denoted
usually H and J .

Theorem 5. (1) ILJ iff Ri(I) = Ri(J).
(2) IRJ iff Ci(I) = Ci(J)

Proof. (1) {M ◦ I |M ∈ Ln×n} = {M ◦ J |M ∈ Ln×n} iff {M ◦ I |M ∈ L1×n} =
{M ◦ J |M ∈ L1×n}. Now, an immediate reflection shows that the latter condi-
tion is equivalent to Int(X∩, Y ∪, I) = Int(X∩, Y ∪, J)., i.e. by Theorem 3, I and
J have the same row i-spaces.

(2) The proof is similar to that of (1). ¤

Theorem 6. Let B be a k×m matrix and I be an n×m matrix. Ri(I) ⊆ Ri(B)
iff there exists an n × k matrix A such that I = A ◦ B.

Proof. “⇒”: Let Ri(I) ⊆ Ri(B), i.e. Int(X∩, Y ∪, I) ⊆ Int(X∩, Y ∪, B). Every
H ∈ Int(X∩, Y ∪, B) can be expressed as

∨

1≤l≤k cl ⊗ Bl . Thus every H ∈
Int(X∩, Y ∪, I) can be expressed as

∨

1≤l≤k cl ⊗ Bl . Therefore, a row Ii of I

can be expressed as
∨

1≤li≤k clj ⊗Bl . We get the required matrix A by putting
Ail = clj .

“⇐”: This was established in Theorem 4. ¤

In a similar way, we can establish other theorems describing the inclusion of
the row and column spaces of I in the corresponding spaces of B (we omit them
due to lack of space).
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Theorem 7. If ILJ and A ◦ B = I then there exists A′ such that A′ ◦ B = J .

Proof. Follows from (1) of Theorem 5 and Theorem 6. ¤

An analogous theorem holds true for the equivalence relation R. Using The-
orem 7 and the analogous version for R, we get the following corollary regarding
the Schein rank of D-equivalent matrices.

Theorem 8. If IDJ then ρs◦(I) = ρs(J).

In the following theorem, B(X∩, Y ∪, I) ≈ B(X∩, Y ∪, J) denotes that B(X∩, Y ∪, I)
and B(X∩, Y ∪, J) are isomorphic lattices.

Theorem 9. IDJ iff B(X∩, Y ∪, I) ≈ B(X∩, Y ∪, J).

Proof. Sketch: “⇒”: Let IDJ . There there exists K such that ILK and KRJ .
Hence, we have Int(X∩, Y ∪, I) = Int(X∩, Y ∪,K) by Theorem 5. Let now T and
S be matrices for which K ◦ S = J and J ◦ T = K (they exists according to the
above remark). Consider the mappings

∩S : Int(X∩, Y ∪,K) → Int(X∩, Y ∪, J),
∩T : Int(X∩, Y ∪, J) → Int(X∩, Y ∪,K).

One can show that ∩S∩T and ∩T ∩S are identities. Therefore, Int(X∩, Y ∪,K) and
Int(X∩, Y ∪, J) are isomorphic, establishing that B(X∩, Y ∪, I) and B(X∩, Y ∪, J)
are isomorphic lattices. The proof of “⇐”omitted due to lack of space. ¤

The above notions and results in this section have their counterparts for ⊳-
and ⊲-compositions of matrices. In the rest of this section, we present some of
them without proofs.

Definition 4. For n × n matrices I and J , Green’s relations L⊳, R⊲, and D⊳ ⊲

are defined as follows:

– IL⊳J iff {M ⊳ I |M ∈ Ln×n} = {M ⊳ J |M ∈ Ln×n}.
– IR⊲J iff {I ⊲ M |M ∈ Ln×n} = {J ⊲ M |M ∈ Ln×n}.
– ID⊳ ⊲J iff there exists matrix K ∈ Ln×n such that IL⊳K and KR⊲J .

Theorem 10. (1) IL⊳J iff Rc(I) = Rc(J).
(2) IR⊲J iff Cc(I) = Cc(J)

Theorem 11. Let B be a k×m matrix and I be an n×m matrix. Rc(I) ⊆ Rc(B)
iff there exists an n × k matrix A such that I = A⊳ B.

Theorem 12. If IL⊳J and A⊳ B = I then there exists A′ such that A′ ⊳ B = J .

Theorem 13. If ID⊳ ⊲J then ρs ⊳(I) = ρs ⊳(J).
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4 Conclusions

We established properties of structures associated with matrices with entries
from residuated lattices. By doing so, we generalized the properties known from
Boolean matrix theory and provided links to structures known from formal con-
cept analysis. The line of research started in this paper and its predecessor is
to be continued to establish foundations for a calculus of matrices with entries
from residuated lattices. The usefulness of such calculus for data analysis is
demonstrated in [8].
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