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Abstract. Formal concept analysis (FCA) is used nowadays in a large
number of applications in several different areas. Nevertheless, in some
applications the size of a concept lattice may be prohibitively large, thus
creating a need for new approaches and algorithms to reduce concept
lattices to a manageable size. This paper presents a new method for re-
ducing a concept lattice’s complexity and introduces a new methodology
for evaluating reduction methods. The main idea of the proposed ap-
proach, junction based on objects similarity (JBOS), is the substitution
of groups of “similar” objects by prototypical ones. As a consequence,
the resulting lattice is simplified in its size and structure. The user has
control of the degree of simplification by means of parameters specifica-
tion. Two measures are proposed for the evaluation of the final lattice
with respect to the original one, the first related to the consistency of
the reduced lattice and the other to the descriptive losses incurred by the
reduction. The JBOS approach was applied to two data sets from the
UCI machine learning repository. The results show that it is possible to
reduce the size of a concept lattice in a controlled way. In particular, it
makes possible the use of FCA in a data set (formal context) for which
that use was previously impossible.
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1 Introduction

Formal concepts analysis (FCA) is a technique of applied mathematics based on
the mathematization of the notion of concept, consisting of intention and exten-
sion, and on the organization of the concepts through a conceptual hierarchy[8].
Its formalization was born in 1982 with the work presented by Wille[18], who
proposed to consider each lattice element as a formal concept and the lattice rep-
resenting a conceptual hierarchy. Currently there is a growing interest in applica-
tions of FCA in information retrieval[12], data mining[16], neural networks[19],
social networks[11], etc.
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The great potential of FCA is provided by the organization of knowledge into
a conceptual hierarchy. In fact, the main applications make use of this hierarchy
representing it by means of a line diagram, a nested line diagram, a tree diagram
etc. However, generating all formal concepts and classifying them hierarchically
presents, in the worst case, an exponential behavior[14]. Although this behavior
is rarely found in practical cases[10], the computational cost can be prohibitive
for many applications.

In general, techniques for reducing the complexity of the concept lattices can
be applied to the formal context or to the concept lattice itself. A simple way
to reduce the size of the concept lattice would be, for example, the creation of
a cutting threshold, from which only the formal concepts considered “relevant”
would be selected and preserved (of course in this case it would be necessary to
develop some criterion of relevance). A simple kind of reduction applied to the
formal context would be the junction of lines and/or columns as suggested by
Ganter and Wille[8]: if for two objects g and h, g′ = h′ then g and h can be
replaced by one single object; dually, if for two attributes m and n, m′ = n′, then
m and n can be replaced by one single attribute. Despite reducing the formal
context, this method does not reduce the size of the concept lattice.

Another interesting possibility is to apply techniques of the KDD process
(knowledge discovery in databases)[15] to reduce the size of the formal context.
Gajdos et al.[7] and Karen et al.[4] propose the use of SVD (singular value
decomposition), which is a technique capable of reducing the dimensionality of
data masses. Another very interesting technique for reducing the concept lattice
based on the formal context was presented by Belohlávek et al[2]. The authors
propose to use the knowledge of the user to create restrictions on attributes of
the formal context. These restrictions, called AD-formulas (attribute-dependency
formulas), are used during the generation of formal concepts and concept lattice
construction to retain only the formal concepts conforming to them.

Among the main techniques applied directly to the concept lattice, there is
that of Arévalo et al.[1] which proposes the creation of a Galois Subhierarchy. In
this case, the only formal concepts selected are Cg∪Cm, where Cg = {(g′′, g′)|g ∈
G} and Cm = {(m′′,m′)|m ∈ M}.

Another option to reduce the complexity of the concept lattice is to as-
sociate the concept of frequent items from the KDD process, to frequent for-
mal concepts[15]. A formal concept (X,Y ) is considered frequent if, only if,
sup(Y,G) ≥ minSup, where sup(Y,G) (the support) is the number of objects in
G which contains the attributes in Y and minSup is a minimal support provided
as a parameter by the user. Another very interesting technique for reducing com-
plexity is based on the concept of stability proposed by Kuznetsov[13]. Unlike
other methods of reduction, the stability method seeks to create an index for
concepts, indicating how much the intent of the concept depends on the set of
objects. Using this index, one can assume a threshold at which all the formal con-
cepts with lower values are removed. Recently, Jay et al.[11] applied the concept
of stability and iceberg lattices in social network analysis.
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Despite the range of techniques to reduce the complexity of concept lattices,
no methodologies were found for the analysis of these techniques. Obviously,
any proposal should be accompanied by measuring of how the resulting concept
lattice relates to the original lattice. Thus, this paper presents a methodology
based on two metrics. The first aims to evaluate the degree of consistency of the
reduced lattice with respect to the original data. The second aims to assess the
loss of the ability to discriminate between objects features.

We propose a new method for reducing the complexity of the concept lattice,
called junction based on objects similarity (JBOS), which seeks to replace groups
of similar objects by representative objects. The method was applied to two
databases of the UCI machine learning repository, one which leads to a concept
lattice of moderate size and the other which leads to a very large concept lattice.
The results were evaluated through the proposed methodology, which showed
for each of the databases, the most promising levels of reduction based on the
values for the parameters of the JBOS method. In particular, the JBOS method
was able to reduce the complexity of the large concept lattice, making plausible
its analysis on the reduced form.

This paper is organized in five sections. In the next section a short review of
the formal concept analysis is presented mainly in order to fix the terminology.
In the third section, the method for reducing the complexity of concept lattices
is presented and the methodology for the evaluation of reduction methods is
proposed. In the fourth one, a case study is presented. Finally, the contributions
and the conclusions of this work are presented.

2 Formal Concept Analysis - A short review

This very short review is mainly based on the notions and terminology exposed
on [8]. Formal concept analysis is a field of mathematics which was born in the
early eighties[3,8]. Its main characteristic is knowledge representation by means
of specific diagrams called line diagrams (based on Hasse diagrams), which are
what mathematicians call diagrams of (concept) lattices. In FCA, formal contexts

are primordial elements. A formal context is a triplet (G,M, I), where G is a set
whose elements are called objects, M is a set whose members are called attributes

and I ⊆ G × M is a relation termed incidence relation. If (g,m) ∈ I, one says
that “the object g has the attribute m”. A formal context is usually represented
by a cross table where the objects are rows headers, the atributes are columns
headers and there is a cross in row g and column m if and only if (g,m) ∈ I.

Given a set of objects A ⊆ G from a formal context (G,M, I), it could be
asked which attributes from M are common to all those objects. Similarly, it
could be asked, for a set B ⊆ M , which objects have all the attributes from B.
These questions are answered by the derivation operators, defined as: A′ = {m ∈
M |∀g ∈ A(g,m) ∈ I} and B′ = {g ∈ G|∀m ∈ B(g,m) ∈ I}.

A formal concept is a pair (A,B) ∈ P(G) × P(M) such that A′ = B and
B′ = A, where A is called the extent and B the intent of the concept. The set of
formal concepts is ordered by the partial order ≤ such that for any two formal
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concepts (A1, B1) and (A2, B2), (A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2

(and, in this case, B2 ⊆ B1). The set of concepts ordered by ≤ constitutes a
complete lattice[5] termed concept lattice. The concept lattice obtained from a
formal context (G,M, I) is denoted by B(G,M, I).

The first part of the basic theorem on concept lattices says that a con-
cept lattice B(G,M, I) is a complete lattice in which for any arbitrary set
C ⊆ B(G,M, I) the infimum and supremum are given by

∧

C = (
⋂

X, (
⋃

Y )′′)
and

∨

C = ((
⋃

X)′′,
⋂

Y ), where X = {A | (A,B) ∈ C} and Y = {B | (A,B) ∈
C}[8].

3 Complexity reduction

In the development of the method of complexity reduction proposed in this work,
it was assumed that the following requirements should be met:

1. avoid creating new objects, attributes or incidences;
2. seek to preserve original conceptual hierarchy at the most;
3. provide a high fidelity with respect to the original knowledge, in other words,

the knowledge presented in the reduced concept lattice must be faithful (con-
sistent) with the original; and

4. present low descriptive losses, in other words, seek to preserve the power
of discrimination afforded by the range of attributes of the original formal
context.

In order to measure the degree of satisfaction given to the last two require-
ments, a methodology for evaluation was created.

3.1 A methodology for evaluating methods of complexity reduction

In order to evaluate techniques for reducing the size of concept lattices, one must
somehow compare the information in the formal context and/or in the obtained
concept lattice with the information found in the original formal context and/or
the respective concept lattice.

The methodology proposed here is based on two types of comparisons. In the
first one, the obtained concept lattice, named reduced concept lattice is compared
with the original formal context, but in an indirect way: from the reduced concept
lattice it is produced a set of rules and the “capacity” of this set to take into
account all the original objects is assessed. In the second one, the obtained formal
context, named reduced formal context is evaluated with respect to the original
formal context, seeking to assess the loss in the capacity to discriminate the
characteristics of objects.

The first evaluation measure requires the production of implication rules from
the reduced lattice. A valid implication rule for a certain formal context is an
expression P → Q, where P and Q are sets of attributes of the formal context
and P ′ ⊆ Q′, expressing the fact that if an object has attributes in P , then it has



84 Sérgio M. Dias and Newton J. Vieira

those of Q[9]. The set of all valid rules for a formal context usually has a high
degree of redundancy and its extraction is impractical. On the other hand, the
extraction of a minimum non-redundant set may also be impractical[3]. Thus,
it is proposed to generate a set of rules possibly not minimal, but with little
redundancy, for example, a set of rules reduced to the left [17]. A rule P → Q is
said reduced to the left in a set of rules Z if for any proper subset S of P the set
(Z − {P → Q}) ∪ {S → Q} is not equivalent to Z1.

To measure the degree of equivalence between the original formal context and
the reduced formal context, two metrics are proposed: fidelity and descriptive

loss. Let Go be the set of objects from the original formal context, Gr be the set
of objects from the reduced formal context and let us assume that k rules are
extracted from the reduced concept lattice, rules which will be denoted by r1,
r2, . . . , rk.

The fidelity, F , aims to measure the percentage of successfull applications of
rules to the original objects. If there is a rule ri = P → Q for which P ⊂ g′

and Q 6⊂ g′ for an object g ∈ Go, then one says that the rule ri has failed. The
fidelity is given by the following equation2:

F =

∑k

i=1

(

1 −
Nf

i

|Go|

)

k
× 100 (1)

where Nfi is the total number of failures of the rule ri (i.e. the number of ob-
jects in Go for which the rule fails.). Thus, F is the percentage of non failures
considering the |Go| × k applications of k rules to |Go| objects. In order to avoid
multiple contributions to F from objects which have exactly the same attributes,
such objects must be previously reduced to only one object.

The descriptive loss, DL, aims to measure the loss of ability to characterize
the set of objects Go due to loss of attributes in the reduction. For its definition
an onto function will be used ν : Go → Gr that maps to each object g of Go an
object ν(g) in Gr as a result of a possible simplification of g due to the reduction
process. It’s supposed that the object ν(g) will have as attributes a subset of
the g attributes, i.e. ν(g)′ ⊆ g′. In particular, if the object g is “eliminated” in
the reduction process, ν(g)′ = ∅. Note that it may happen that ν(g) = ν(h)
for two different objects g and h, and this could be interpreted as saying that
g and h stayed with the same attributes after the reduction process, becoming
indistinguishable. In particular, all eliminated objects become indistinguishable.
The descriptive loss is given by:

DL =



1 −

∑

g∈Go

(

|ν(g)′|
|g′|

)

|Go|



 × 100 (2)

where |ν(g)′| is the number of attributes of the reduced object ν(g) and |g′|
is the number of attributes of the original object g. DL, as defined above, can

1 Two sets of rules are said to be equivalent if they have the same set of consequences.
2 |C| denotes the number of elements of the set C.
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report descriptive losses when attributes considered “redundant” in the actual
application are eliminated. Therefore, such attributes must be removed before
applying the reduction method.

3.2 Junction Based on Objects Similarity - JBOS

The JBOS method is applied from the formal context. It is based on the junction
of “similar” objects, namely the replacement of such objects by a single repre-
sentative of them. Naturally, the key entity here is the notion of similarity. For
its definition, a weight is created for each attribute of the formal context, which
seeks to represent the attribute’s relevance, and the similarity is determined from
the weights of the attributes. As the structure of the concept lattice is derived
from the arrangements of attributes of objects, it is expected that the junction
of similar objects will preserve at a certain degree (which will depend on the
specific assigned weights) a portion of the original structure while providing a
certain degree of simplification.

In the rest of this section, let (G,M, I) be a formal context from which a
reduced formal context must be produced.

It is assumed that to each attribute m ∈ M is assigned a weight wm such
that 0 ≤ wm ≤ 1. Such weight can be thought as measuring the significance of
the attribute from 0 (no relevance) to 1 (absolute relevance). The weight should
be defined by the user based on the semantic load of the attribute, i.e. based on
its importance to the model represented by the formal context. The similarity
between two objects g, h ∈ G will also be expressed by a real number between 0
(completely dissimilar) and 1 (completely indistinguishable), so defined:

sim(g, h) =

∑

m∈M µ(g, h,m)
∑

m∈M wm
;µ(g, h,m) =

{

wm, if (g,m) ∈ I ↔ (h,m) ∈ I

0, otherwise.

(3)

That is, the similarity between two objects g and h is given by the weighted
sum of the weights of attributes in which both objects agree with each other
(both have them or both do not have them).

From the similarity matrix it is possible to build an algorithm that makes
clusters of similar objects, so that two objects can be in the same group only if
they have a certain degree of “similarity”. Accordingly, it is suggested the use of
a similarity index ǫ, and a maximum number of similar elements α, both defined
by the user. Two objects g, h ∈ G will be considered similar by the algorithm,
and therefore are likely to stay in the same group if and only if sim(i, j) ≥ ǫ.
The number α is just one more cutting option for the user: it specifies that each
group can contain at most α elements. Algorithm 1 shows how the groups of sim-
ilar objects are determined. The auxiliary function GreaterSimilarity(sim, g,G)
returns an object of G among the most similar to the object g; if there is more
than one, it chooses any one. The function ChooseObjectIn(G) selects any object
from the set G. The set of groups of similar objects is denoted by γ in the algo-
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rithm. Notice that even though similarity3 is a tolerance relation, the algorithm
computes “maximal” sets H such that g is similar to h for all g, h ∈ H.

Algorithm 1 Function Group Objects

Input: a set of objects G, a similarity matrix sim, a similarity index ǫ and a maximum
number of similar elements α.

Output: the set of groups of similar objects γ.
1: γ = ⊘
2: while G 6= ⊘ do

3: g = ChooseObjectIn(G)
4: H = {g}
5: G = G - {g}
6: while G 6= ⊘ and |H| < α do

7: h = GreaterSimilarity(sim,g,G)
8: if sim(h,f) ≥ ǫ for all f ∈ H then

9: H = H ∪ {h}
10: G = G - {h}
11: else

12: break

13: end if

14: end while

15: γ = γ ∪ {H}
16: end while

17: return γ

Let (Go,Mo, Io) be the original formal context. Let γ be the set obtained
by Algorithm 1 from Go and specific values for ǫ and α. In the reduced formal
context each set H ∈ γ will be considered as an object and such object will
have the attributes of Mo which are common to all objects in H. That is, the
attributes of H will be those in

⋂

{g′|g ∈ H}, where the operator of derivation
is applied from Io. Therefore, by the JBOS method the reduced formal context
(G,M, I) is such that: G = γ; M =

⋃

{
⋂

{g′|g ∈ H}|H ∈ γ}; and (H,m) ∈ I if,
and only if, m ∈

⋂

{g′|g ∈ H}.

The main merit of the JBOS method just described is to apply a consistent
reduction based on the user’s knowledge.If the relevance of the attributes is not
known the user must discover it, for example, by correlation analysis, princi-
pal components analysis etc. By knowing the relative importance of attributes,
the user can set weights that mirror that importance. This knowledge and the
definition of the parameters ǫ and α are then used to reduce the number of ob-
jects, which in real applications is often higher than the number of attributes.
Consequently, the number of formal concepts and the cost of performing the
derivations are also reduced. Therefore, applications once inviable can eventu-
ally become viable.

3 Two objects g and h are similar to each other iff sim(g, h) ≥ ǫ.
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4 Case Study

The JBS method was analyzed using the proposed methodology on two classic
databases from UCI machine learning repository: Wine Data Set and Water

Treatment Plant Data Set (avaliable at: http://www.ics.uci.edu/~mlearn.). The
data cleaning process and formal contexts modelling, including the choice of cut
points for the discretization of the real parameters, are described in [6]. It is
noteworthy that the number of formal concepts for the Water base, about 9
million, is intractable for the existing usual implementations.

Table 1. Characteristics of the databases used in the evaluation of the JBOS method.

Wine Water

Number of objects 132 316

Number of attributes 29 67

Density 48.3% 52.2%

Number of formal concepts 29,032 8,940,648

The JBOS method and the calculations concerning the methodology for
complexity reduction techniques evaluation have been implemented using the
framework EF-Concept Analysis (Educational Framework for Concept Analysis)
(available at: http://www.dcc.ufmg.br/~mariano)[6]. This framework consists of
a set of interfaces, data structures and algorithms that ensures agile development
of FCA algorithms.

4.1 Applying the JBOS method

As discussed in Section 3.2, the JBOS method requires a set of weights represent-
ing the significance of each attribute. In order to determine this set of weights,
a deep study of the database or the assistance of a domain expert is necessary.
That study is beyond the scope of this work, which seeks only to demonstrate
that from a set of weights it is possible to reduce the formal context in order to
obtain a concept lattice consistent with the original. Although the JBOS method
is not validated here in terms of specific applications, which must be done in a fu-
ture work, biased results or very specific results applying to particular databases
are avoided. Thus, a set of weights for each of the databases, Wine and Water,
is assigned based simply on the frequency of the attributes: a higher frequency

corresponds to a higher weight (obviously, this criterion may not be appropriate
depending on the application that will follow the reduction process.).

The method also needs values for the parameters ǫ and α. The first was set
to range from 1 to 0 for each of the bases. The second was set at 20% of the
number of objects, which amounts to 26 and 63 for the Wine and Water bases,
respectively.
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The results for the Wine database can be seen in the graphs of Figures 1
and 2. It should be emphasized that all values are percentages of the respective
elements of the original formal context. Initially, note on Figure 1 that for ǫ =
0.92 the number of objects was reduced to 77% of the number of objects from
the original formal context and the number of formal concepts to approximately
70% of the number of formal concepts of the original lattice. Note also that for
the same value of ǫ the fidelity was approximately 99% and the descriptive loss
about 3.8%, as shown in the graph in Figure 2. Thus, seting ǫ = 0.92 can be
an interesting option as it implies a significant reduction of the concept lattice
combined with a high fidelity and a low descriptive loss. Indeed, for ǫ as low as
0.85 the numbers are relatively good. In particular, for ǫ = 0.85 the number of
formal concepts drops to 18.46%, the fidelity is 97% and the descriptive loss is
approximately 18.8%. Note that despite the large reduction of the number of
formal concepts, the measured quality indices may be deemed acceptable.

Fig. 1. Objects, density, formal concepts
and rules obtained for the Wine formal
context.

Fig. 2. Fidelity and descriptive loss ob-
tained for the Wine formal context.

Note too in the graph of Figure 1 that the reduction of the number of objects
|G| is higher, when compared with the reduction of the density |I|. One expla-
nation for this is that the objects of each set F ∈ γ have number of attributes
relatively close to each other; and this induces a smaller change in density with
respect to the number of objects. Note also that for ǫ ≤ 0.15 there were neither
further reductions in the parameters under analysis nor changes in levels of fi-
delity and descriptive loss, since the number of formal concepts was reduced at
the most for the given value of α.

The results for the Water database can be seen in the graphs of Figures 3
and 4. First, note that using the framework EF-Concept Analysis, on the account
of the huge number of formal concepts in this database, it was not possible to
generate the formal concepts for values ǫ > 0.86; consequently, it was not possible
to get the number of rules for the original context. Thus, the graph in Figure
3 does not have the percentages of rules for such values of ǫ. Note, however,
that the calculation of fidelity after a reduction that leads to a treatable formal
context is possible, since it does not depend on obtaining the formal concepts or
the original concept lattice.
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Figure 3 shows that for ǫ = 0.86 the number of objects obtained was about
31% and the number of formal concepts about 2.14% (which results in about
191,800 formal concepts). For this same value of ǫ, Figure 4 shows a fidelity of
about 95% and a descriptive loss of about 21%. Note that even with a great
reduction of formal concepts, the fidelity was still high, demonstrating a high
degree of consistency of the JBOS method, and the descriptive loss was not high.
Also note that for values ǫ < 0.42% there is no reduction at all.

Fig. 3. Objects, density, formal concepts
and rules obtained for the Water formal
context.

Fig. 4. Fidelity and descriptive loss ob-
tained for the Water formal context.

The results show that the quality of the reduction achieved by the JBOS
method, and even its viability, depend on a proper choice of values for ǫ after the
weights of attributes are defined. Although the results do not show, as they don’t
consider particular uses of the reduced formal contexts, the definition of weights
that really reflect the relevance of each attribute is very important because it
is from these weights that the similarity calculations, which are the basis for
the application of the method, are made. Regarding the parameter α, it is not
much important. It can, in general, be ignored or receive a high value as it
was done above. In other words, decreasing values for α can be considered if
experiments with values for weights of attributes and for ǫ are insufficient to
produce acceptable reductions.

Regarding the measures of the reduction quality, a high fidelity and a low
descriptive loss give evidence of good quality. The calculations of both are made
from the original formal context, without the need of obtaining their respective
formal concepts. After obtaining a reduced formal context through the JBOS
method, it is always possible to calculate the descriptive loss incurred. The cal-
culation of the fidelity is possible when the generation of rules from the resulting
formal context is feasible, and this is what happens when the creation of formal
concepts is achieved. This was the case, for example, for the Water database
with ǫ ≤ 0.86. Another particularly important feature of these indices is that
they are, as far as the authors know, the first application independent proposal
for measuring quality of methods of complexity reduction.
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5 Conclusions

The JBOS method obtains a reduced formal context based on a set of weights
measuring the significance of the attributes. The requirements presented in Sec-
tion 3, desirable for any method of complexity reduction, are met by JBOS.
Regarding the first one, creating objects, attributes or incidences, besides going
in the opposite direction of the reduction, it would alter the model described by
the formal context and hence by the concept lattice. The JBOS method fully
meets this requirement. Regarding the level of satisfaction for the last three
requirements, it depends very much on a judicious choice of weights for the
attributes and also on the allocation of an appropriate similarity threshold ǫ.
Anyway, such degree of judiciousness can be adjusted by means of experiments
using different weight assignments and values for ǫ and α.

It was also presented a methodology for evaluation of techniques for reducing
the concept lattice’s complexity, consisting of two metrics that seek to quan-
tify precisely the degree of satisfaction to the latter two requirements refered to
above. Because these two requirements are very dependent on the second, preser-
vation of the original conceptual hierarchy, such metrics also indirectly quantify
this second requirement. It is rarely found in the literature methodologies for
evaluating methods of complexity reduction, and those which are found are de-
signed based on specific reduction methods or applications. The methodology
introduced in this paper is independent of reduction method and application.
It is based on two metrics: an index of fidelity and a descriptive loss. The first,
which measures the degree of consistency of the information present in the ob-
tained formal context with respect to the original, is calculated from a set of
rules extracted from the concept lattice. The second, which measures the loss
of capacity to represent the details found in the model described in the original
formal context, is calculated directly on the obtained formal context.

The results of the evaluation of the JBOS method applied to the two databases,
Wine and Water, show that it is possible to reduce the complexity of the con-
cept lattice preserving the consistency and with a good level of descriptive loss,
both being measured by the methodology introduced. In particular, regarding
the database Water, for which it was not possible to generate the formal concepts
from the original context, it was possible to build the concept lattice with very
significant reductions, yet maintaining a relatively high rate of fidelity and a not
very big descriptive loss. The results showed that the method is able to reduce
the complexity of the concept lattice (number of formal concepts) with a good
level of control on the consistency and amount of knowledge detail produced.
Besides, it is possible through adjustment of weights and parameters, to strive
to meet the desired levels of quality.

As future work we intend to compare the JBOS method with other ap-
proaches and to analyze the impact of the discretization process (applied to
build the formal context) on similarity and quality measures. The suitability of
JBOS for reducing the structural complexity of concept lattices for some real
applications will be tested.
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