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Abstract. Many practical information extraction systems use simgk®homies
for mapping extracted strings to client-specific concepieso In such taxonomies,
concepts are defined as groups of semantically similar vanmrdphrases. For the
mapping to be accurate, a new client-specific taxonomy —llysoathing more
than a set of concept codes, each with a single descripti@edsto be enriched
with the domain-specific terminology variations, which igeay labor-intensive
task. In this paper, we describe a method to significantlycedhe required
manual effort for this task. Our approach is based on comgimiultiple existing
client-specific taxonomies into a single semantic spacea@at of gold stan-
dard taxonomies our method achieves an average precisi@t®fand a recall
of 55%. An additional practice test shows that the methoésat least 62% of
the manual effort needed to enrich a new taxonomy.

1 Introduction & motivation

For the effective deployment of generic information exti@t (IE) systems, a module
for mapping extracted strings to client-specific codes. ([@ap ‘cardiologist’ and ‘car-
diovascular specialist’ to code ‘59C’ — see Figure 1) is spéinsable. Typically, simple
(non-hierarchical) taxonomies are used to guide this mgcehich we will refer to as
normalization. The type of taxonomy that is used in our IE systems starts aitun-
structured set ofoncepts. In its most basic form, a concept consists abacept code
(simply some unique client-specific identifier of the cortyemd a single textual de-
scription called theoncept description. Typical examples of concept descriptions that
can be found in for instance a taxonomy of job titles, are ¢act manager’, ‘software
engineer’, and ‘administrative assistant’.

Normalization is usually based on string similarity: anragted string is mapped
to the concept of the closest matching concept descriptidhe taxonomy. However,
because a certain concept can usually be expressed in (iffeygnt ways, it cannot
be captured in a single description, but rather refleaggoap of semantically simi-
lar descriptions, owariants. Partly, such a group of variants consists of synonyms
(e.g. ‘'shop assistant’ and ‘retail assistant’) and ablatéis (e.g. ‘ceo’ and ‘chief exec-
utive officer’), but depending on the taxonomy’s charastéess it can also contain near-
synonyms or hyponyms (e.g. ‘software engineer’, ‘prograriand ‘sr. Java/J2EE
developer’).
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The client-specific taxonomies represent partially simédad partially different
conceptualizations of the domain, each with its own speciiieerageand granular-
ity. As each taxonomy is a certain clustering of domain-spefiminology, it can be
regarded as a particular semantic partitioningyiew of the domain. Two strings that
are regarded as description variants of the same concepeitasonomy, might well be
assigned to different concepts in another, more fine-gdaiaeonomy. As an illustra-
tion, Figure 1 shows different conceptualizations of Headte-related job titles, taken
from three real-world job title taxonomies.

Taxonomy 1 Taxonomy 2 Taxonomy 3

59C Cardiologist 4138 Specialist (Medical) |CVG-12 Health/Care

analyst cardiology surgeon pharmasist
heart specialist medical specialist pharmacy assistent
medical specialist cardiology  cardiologist druggist
cardiothoracic surgeon gynaecologist undertaker
cardiovascular specialist oncologist general practitioner
cardiac surgeon dermatologist nurse

60l Internist internist nursing assistant
internal medicine 4139 Nursing/Care geriatric nurse
dr of internal medicine nurse medical specialist

61D Dermatologist
pediatric dermatologist
skin disease specialist
specialist dermatology
62P Pediatrician
paediatric specialist
youth health specialist

healthcare profession
mental health nurse
psychiatric nurse
cert. nursing assistan
nurse anesthetist
clinical nurse speciali
elderly care nurse

internist

clinical analyst
surgeon
gynaecologist
dermatologist
trauma surgeon
physician

D

]

=3

Fig. 1. Fragments of three different conceptualizations of héakdical-related job titles. The
concept codes and the concept descriptions are bold.

For accurate normalization of extracted phrases, a newntarg has to be expanded
with the typical terminology variations of its concepts —ragess we caknrichment.
Because each client has a unique semantic view on the doemiohing a taxonomy
is hard to automate. How exactly a particular taxonomy sthbelenriched depends on
its coverage and granularity, and therefore typically negguhuman assessment. Obvi-
ously, manually enriching hundreds of concepts with thadsaf description variants,
is a very labor-intensive task.

In this paper, we present a method to significantly reducertéeual effort for en-
riching new taxonomies with variants of their concept diggioms. The method exploits
multiple manually created taxonomies by representing theattially shared description
variants in a single semantic space. Our approach comprigesteps: (1) a string
similarity-based step for selecting attractor descripgidor the concepts in the new
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taxonomy, and (2) a step for linking the remaining desariptvariants to the attrac-
tors based on their semantic similarity. This second stefssto exploit the semantic
knowledge present in theombinationof the existing taxonomies.

The remainder of this paper is organized as follows. Firstyill describe the two
steps of our enrichment method. In section 4 we will brieflgk@t the data used in
our experiments, as well as our evaluation method. Sectatasbribes the experiments
we conducted along with a discussion of their results. 8e@iplaces our work in the
context of existing research, and finally, in section 6 wiedig conclusions.

2 Methodology

The starting point of our approach is a set of manually emdctaxonomies for the
same domain. These taxonomies — each one different in ag&rarad granularity — are
represented as a sparse matrix of which the rows represedettription variants in
the taxonomies and a column represents their concept assigs in a particular tax-
onomy. In other words, a row of the matrix is a sparse vectaoatept codes. We will
refer to a representation of a description variant in theimas aninstance. Assuming
that the more different semantic contexts two instanceeesltiae more semantically
related they are, row similarities in the matrix can be rdgdras semantic similarities.

Given a new taxonomy — i.e. a never before seen concepttiafizz the domain —
the goal is taautomatically enrich its concepts with as much descriptianants from
the matrix as possibleThis task can be regarded as a weakly-supervised clasisifica
task. For each instance in the matrix, we want to predict glsifor no) class label
from a new, unknown class set (the concepts of the new taxghdrased on existing
assignments from other class sets (the manually enrickeddanies, represented in the
matrix). However, in order to do this, we need some initiappiag from our instance
space to the new class set which can function as a seedirf®@estibn 2.1 describes the
first step of the enrichment process, in which instanceggaattractors, are linked
to the concepts of the new taxonomy based on string sinyilanitd which results in a
seeding set (i.e. a set of instances labeled with the taogepts). The second step of
our approach attempts to link the remaining instances imtagix to these attractors,
based on the similarity of their semantic vectors. Secti@mgdes into detail about this
step.

2.1 Step 1: Attractor selection

The first step of our method attempts to select represeagativthe matrix for the
concepts of the new taxonomy based on string similarityctviaie will call attractors
(as they will be used to ‘attract’ semantically similar exstes in the second step). Each
instance in the matrix is compared to each concept of the aewnbmy. An instance is
linked to the best matching concept if their string simtkagxceeds a certain threshold.
The left hand side of Figure 2 shows the attractor selectiem s

For the sake of clarity, we will also illustrate the indivalusteps of our method
using the taxonomy fragments in Figure 1. Let us assume lileadéscription variants
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Matrix Enriched taxonomy
New taxonomy b y A . yB T . y C
Instance 1 descr. | ConceptA; | ConceptB; | ConceptC, ?Ziiﬂii 2 ggzg:
Instance 2 descr. | Concept A; - Concept C,
<5 instance 3 descr. - - Concept C;
Concept T, descr. DY : - Concept B, | Concept Cs Instance 8 descr.
Instance 6 descr.
Concept T3 descr. Concept A, Concept B3 Concept G Instance 7 descr.
Concept Az - Concept Cy
- Concept Bs | Concept C; Concept T;
Concept A3 Concept Bs Concept Cy Instance 9 descr.
- Concept Bg Concept Cs _‘:l
Step 1:
attractor selection
Attractor set

Concept T; Concept A; - Concept C,

Concept T, ConceptA; | ConceptBs | ConceptCy Step 2
Concept T3 - Concept Bg Concept Cs seman;’; Iir‘1king
Remaining instances

ConceptA; | ConceptB; | ConceptC,
- - Concept C3
Concept Az - Concept Cy
- Concept Bs Concept Cy

Fig. 2. Visualization of the two-step taxonomy enrichment process

in the three fragments are used to form the matrix. For exantpé description vari-
antdermatologiswill be represented as matrix instan&D, 4138, CVG-12'. Given

a new taxonomy with two medical concept®23CRD Cardiology’ and ‘0240M S
Other medical specialisms, our goal is to find for each of these concepts the most
suitable attractor available in the matrix. Because we osly string similarity in this
step, we will findcardiologist, represented in the matrix as instans@C, 4138, -’ for

the first concept, anthedical specialisfinstance -, 4138, CVG-12') for the second
concept.

Step 1 results in a split of the matrix into a set of linkedaattors (theattr actor set)
and a set of instances that could not yet be linked to any gin€eom a classification
point of view, the attractor set is the seeding set for steplde that it is possible
that for some of the concepts of the new taxonomy no attragiibbe found, as an
instance and a concept are only linked if their string siritif@exceeds a fixed threshold.
Also, multiple attractors can be linked to a single conc&ht attractor coverage of a
new taxonomy after step 1 relies heavily on the richnessehthtrix (the description
variety), the string similarity threshold, and also the lgyaf the concept descriptions
of the new taxonomy. Because the second step of our methazhdssolely on the
outcome of step 1, it is essential to mimimize the number frerin the first step. An
incorrectly linked attractor potentially attracts (mamgw incorrect instances.

For optimizing the attractor selection accuracy, we expernted with several dif-
ferent string similarity metrics, as well as linguistic precessing (lemmatization and
morpheme splitting) of the descriptions. The details obéhexperiments and their re-
sults will be described in section 5.1.
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2.2 Step 2: Semantic linking

The linking of attractors to concepts in the new taxonomypigsly based on the char-
acteristics of their descriptions. Because semanticathjiar information can be ex-
pressed in many different ways (synonyms, abbreviationshyms, etc. — see section
1), using only string similarity will not yield a useful taromy enrichment. However,
provided that the matrix used for enrichment is rich and amst close or even exact
matches for most concept descriptions in the new taxonaey,swill give us a good
basis to build upon.

As stated earlier in this paper, a row vector of the matrixogies the combined
semantic contexts of a certain description variant. A highilarity between two of
these vectors means that the description variants thegsept have a strong semantical
relationship. As the right hand side of Figure 2 illustrate@e will use the semantic
similarities between the remaining instances in the manig the attractor instances
that were linked in step 1 to further enrich the target taxopcAnalogous to step 1,
in step 2 we compute the similarity of each remaining instataocall attractors. An
instance is linked to the best matching attractor if themaetic similarity exceeds a
certain threshold.

Let us return to the example we used to illustrate the firgt st®ur method in sec-
tion 2.1. In our example, we linked the attractor instark9, 4138, -’ (cardiologis)
to concept023CRD Cardiology’, and instance-, 4138, CVG-12' (medical specialigt
to concept0240M S Other medical specialisms’ of the new taxonomy. In the second
step we want to link the remaining instances (ieart specialist' 59C, -, -'), dermatol-
ogist(‘61D, 4138, CVG-12'), etc.) to the most appropriate concepts of the new taxon-
omy. In order to do that, we need to compare them with theatira that were linked
to the concepts in step 1. For example, the instanageafhatologistis equal to that
of medical specialistwhich is the attractor 0f0240M S Other medical specialisms.
Therefore dermatologiswill be linked to that concept with high confidence. Another
exampleheart specialistwill be linked to concept023CRD Cardiology’ because its
instance is more similar to the attractardiologistthat to the attractomedical spe-
cialist. However, whether this instance is actually linked to thecspt, depends on the
semantic similarity threshold that has been set in the syste

We investigated the effect of using different vector simifjametrics for this step
and experimented with weighted overlap, based on the gaeibubf the matrix tax-
onomies. Section 5.2 will go into detail about these expenits.

3 Reated work

Our research problem is partially related to tir@ology matching/mappingroblem:
discovering mappings between different ontologies/taxoies of the same domain.
Mainly because of the emergence of humerous different mataschemas on the In-
ternet (e.g. musical genres, photo tags), this problemgarded as one of the most
urgent problems facing the Semantic Web.

Our work differs from existing research in several aspdeistly, at the problem
level, we are interested in mapping variants to conceplerahan concepts to con-
cepts. Secondly, since our taxonomies have a flat strudteten hierarchy), we can
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not use the structural information that is central to prasiavork on ontology align-
ment (e.g. Resnik [9] measures semantic similarity in 1SaRohomies, based on the
information two concepts share in common). Thirdly, we ekpllomain information
implicitly through the use of multiple manually enricheddaomies. In contrast, previ-
ous work relies on statistics derived from external corfjér&], or search results from
the Internet [3].

The techniques used in our work are also explored in othetayy matching work:
string similarity [10], various metrics for semantic siarity between concepts [4] and
combinations thereof [11]. In terms of exploiting multipéexonomies, in [1] ontologies
of poor semantics are matched by using an intermediate bawwid ontology.

4 Data & evaluation

For our experiments we used a set of Dutch work experienamtaxies. In total, we
used 21 manually enriched taxonomies which are actuallgt fmenormalization in a
live resume extraction system. Each taxonomy is differentiture: some of them only
cover a specific domain of job titles (like Finance or Comregrehile others cover the
full job spectrum. Besides their coverage, the taxononigs differ in granularity: in
some taxonomies, the description instances are distdlmyter a rather coarse concept
division (e.g. ‘Administration’, ‘Finance’, ‘Sales’, ‘IT, etc.), while other taxonomies
are very dense. Some taxonomies are dense for a certainrofriaterest, and use a
couple of general concepts to cover the rest. Also, manyeflscription instances do
not occur in each taxonomy. The number of concepts in thentaxy ranges from 33
to 4309, and the number of description variants from 343 &296

Only 12 of the 21 taxonomies could be used for developmentestohg purposes,
because the other 9 contained too many unusable concepiptiess (e.g. descrip-
tions that combine several domains, like ‘Advertising/@oumication/Marketing/PR’,
or that contain additional meta-information, like ‘Tyg&écretary (not executive, med-
ical; lower education)’). From the 12 usable taxonomiesgBenused for development
purposes, and 9 were used for testing.

We used leave-one-out cross-validation to evaluate oontaxy enrichment meth-
od according to the following procedure:

For each test taxononi:

given:
Tempty  : NON-enriched version af
Tyold : gold standard of’
Tenriched . €nriched version of’

do:
1. Create matri¥V it hout—1 Of all other taxonomies
2. EnrichT .y, ey With instances fromVyithout—1
3. Compard cy,riched With Tgorq
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Several taxonomies contain a special concept (e.g. ‘Otb@aknown’) that groups jobs
that were outside the scope of that particular client. Weatided these concepts in the
evaluation because they introduce an non-informative sémsimilarity.

Creating a matrix of 22.600 unigue instances took 4 seconds modern pc (2
2.8GHz processors; 4G of RAM). Enriching a new taxonomy \&i@i® concepts with
the instances from that matrix takes approximately 2 mmute

5 Experiments & results

This section describes all experiments we conducted anmdréselts. The experiments
we performed to optimize the string-based attractor sielectep are reported in 5.1.
Subsequently, in 5.2 we will describe our semantic linkirgeximents, and finally,

in 5.3, we will report the results of normalizing a batch ob jtitles extracted from

resumes, using the automatically enriched taxonomiesusdheir manually enriched
counterparts.

51 Stepl

For our attractor selection step, we experimentally comgar selection of both char-
acter-based and token-based string distance (or sirg)lanigtrics.

As a baseline, we applied the well-knowevenshtein distancan edit distance
function which assigns a unit cost to all edit operationsdition, deletion, and sub-
stitution). We also considered a method which is very sintital evenshtein, origi-
nating from the bioinformatics community, calldtedleman-Wuns¢8]. Needleman-
Wunsch is basically Levenshtein with an additional vagatdst adjustment for gaps,
i.e. an insert or deletion.

The descriptions in our taxonomies are relatively shogtidsily consisting of one
to four words. We looked at metrics that are often used byabend linkage community
for matching relatively short strings like names or addeeq2]. In the record linkage
literature, good results have been obtained using varérte Jaro metric [6], which
involves both the number and order of common characterigithilarity computation
of two strings. We also considered a variant of Jaro by Winjdlg2], which integrates
the length of the longest common prefix of two strings.

Another method for approximate matchingjigramoverlap. This method chops a
string in fixed-length parts af characters. The similarity between two strings is defined
as the number of common g-grams over the union of all g-grarhsth strings. In our
experiments we useg=3.

A concept description can also be regarded as a bag of worlevilfuated several
token-based distance metrics. Thee coefficienbetween two word setX andY
is 2||>?T;\| A similar metric in which a small number of common tokens énalized
slightly more than in the Dice coefficient is tldaccard coefficientwhich is simply
B{(Bﬂ . Arthird token-based measure we applied isdbsine similaritywhich is widely
used in the information retrieval community. For most of gireviously mentioned
string metrics we used thadM ETRICSopen source Java library of similarity metrics,
developed by Sam Chapman.
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Figure 3 compares all similarity metrics described abowueims of precision and
recall. We computed the micro-averadguecision and recall, as it gives equal weight
to each instance rather than to each concept (macro-awhrage think this is a more
appropriate measure for our enrichment system, becaus@ifiactical normalization
module, each description variant in the taxonomy has eqagtwas well.

Evaluation of string-similarity metrics (instance-pivoted)
100

T T
‘,:".‘9.1 on jaccard (token) —+—

N dice (token) -~~~
95 X cosine (token) & _|
S g-grams - -e- -
A levenshtein -4 -

> jaro
% L SO jaro-winkler
A N, . needleman-wunch ---¢---
;‘ ...
85 ey

80

Micro-averaged Precision
o
B
’
/ 4
o
§

70 s 'Y

65

60

55

10 15 20 25 30 35 40 45 50 55
Micro-averaged Recall

Fig. 3. Comparison of different string similarity metrics for thiéractor selection step.

As Figure 3 shows, the Levenshtein distance is by far the twa@gforming metric,
already dropping below 85% precision at a recall of 23% anovib60% at a recall of
40%. In the high-precision region (92-98%) the Jaro and-Vdirkler metrics perform
best, whileg-grams have the highest precision at recall values higter 85%. At
100% precision, all metrics perform similarly with a recafll12-13%.

In an attempt to improve the recall of the attractor selectitep, we applied two
forms of linguistic preprocessing to our descriptions: heatization and morpheme
splitting. Especially for Dutch, which contains many corapds, these types of pre-
processing can be very useful. Unfortunately, the premsing steps resulted only in
marginal recall improvements, and just for the token-basedg metrics.

Threshold optimization The quality of our final enrichment result partly depends on
optimal threshold settings in the first step. After all, ias2, each incorrect attractor
potentially attracts (many) new incorrect descriptionghte taxonomy concept it is
linked to. On the other hand, we obviously need an acceptab#dl, i.e. the percentage
of taxonomy concepts for which an attractor can be found.

Simply selecting the threshold at which the highest harmaréan was measured
is not optimal for our situation, because for most stringilsirity metrics, the highest
F-scores were measured at precision values of 60-70%, vidisimply too low for

! Micro-averaged values are calculated by constructing baglcontingency table and then cal-
culating precision and recall using these sums, whereasaravaveraging precision and re-
call are calculated for each category and then the averatpesé is taken.
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our purposes. Instead, we optimized the thresholds forithigasity metrics based on
the macro-averaged precision (on the development seteaksult of step 1, where a
concept for which no attractor was selected was countedEs®way, we optimize on
a measure which takes the maximum coverage into accountylaictl in our view can
be used as a predictor for the best possible overall enrichmé& empirically validated
this hypothesis on our development set and found that indieguherally holds. Table
1 lists this optimal macro precision value and the assattittieeshold for all string
similarity metrics (including some combinations).

Table 1. Threshold optimization for string similarity metrics. Thecond column shows the max-
imum coverage precision, the third column the selectedtiuiel.

Metric Max.Cov.Precision| Thr|Precision|Recall| Fy
Jaro-Winkler 81.00.95 95.5 21.133.4
Jaro 81.00.90 96.9 19.931.8
Needlem.-Wunscgh 81.00.85 94.5 20.532.5
Jaccard+Q-Gram|s 79.90.55 94.3 19.631.2
Q-Grams 79.80.65 95.3 19.030.3
Levenshtein 79.40.80 95.00 18.930.2
Cosine+Q-Gramg 78.90.60 94.3 18.830.1
Cosine 77.7/0.80 97.7 14.523.8
Dice 77.70.80 97.7 14.523.8
Jaccard 77.7/0.65 97.7 14.523.8

52 Step?2

In step 2, we want to compare the semantic vectors of the rengaimatrix instances
with those of the attractors selected in step 1. Each paositi@n instance vector points
to a particular taxonomy and its value can be one of all conidépof that taxonomy,
or the undefined valug if the concerning instance does not occur in that taxonomy.

The most basic distance metric that works for vectors withlsylic features is the
L, distance, also referred to Bamming distanceManhattan distancecity-block dis-
tance or theoverlap metric The L; distance between two vectorsandy is calculated
as in equations 1 and 2.

Li= 8(xi y) (1)
i=1
where:
1if ZT; iy

To get a distance between 0 and 1, we normalizelthacores by the vector length
(i.e. the number of taxonomies in the matrix).
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A distance of 0 means that two instances are equal. To hameliendefined values
a bit more elegantly, we also applied a variant of 2, givergjuation 3.

O(wi,yi) = 0if z; = y;, )
0.5ifx; =wVy =w.

This variation assigns a value of 0.5 if one or both of thesinses we are comparing is
undefined in the concerning taxonomy. Intuitively, thisrasdike a more appropriate
scoring method, because if an instance is not defined in atemy, it means we do not
have any information about it, i.e. we do not know whetheratritwould be assigned

to the same concept as the instance we are comparing it with.

Figure 4 shows the performance of sofgvariations compared to the baseline of
applying only step 1 (Jaro-Winkler). The graph shows thaifitant recall contribution
of step 2 in the enrichment process. The variatiorofdescribed in equation 3 has
slightly better recall than the default version (equatipmzhe +91% precision region,
but decreases recall at precision values of 90% and lowemrfation in which we
combined thd.; distance with a string distance performs worse in the +8586ipion
region, but better at lower precision values. Table 2 lists hest overall performing
metric combinations.

Evaluation of semantic similarity metrics (instance-pivoted)
100

T T .
Baseline (Jaro-Winkler) -- -e-- -
Jaro-Winkler + L1 ——
EoEd [

P
* * 'E:———" - L1 (0.5 for undef) =

85

80

Micro-averaged Precision

75 i

70

65

60

20 25 30 35 40 45 50 55 60 65
Micro-averaged Recall

Fig.4. ThreeL, variations compared to the baseline of only applying step 1.

Table 2. Best-performing metric combinations.

Step 1 metritStep 2 metric Max Fy 5| Precision|Recall| R@Q P = 90%|RQ P = 95%

Jaro L1 (0.5 for unde 75.7 84.3 55.7 51.2 38.2
Ly 74.9 86.00 54.7 51.2 34.1
Jaro-Winkler L, (0.5 for unde 75.4 83.5 56.0 51.5 34.2

L1 75.1 85.4 55.8 51.2 30.7|
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Granularity-based weighing The granularity of a taxonomy has a direct relation with
the mutual semantic similarity of description variantstthelong to the same concept.
Roughly said, the more specific a taxonomy concept is, theerikely it is that the
description variants of that concept are actual synonyntisedinguistic sense. In the
type of taxonomies we work with, description variants of aafic concept are thus
semantically more similar than the variants ranked undeoadconcept.

We considered a granularity-based weighted version ofthenetric (equation 1
and 2). Thex; # y; penalty was multiplied by the granularity of taxonomy This
granularity was computed by dividing the number of desmipinstances iff; by the
number of concepts ifh;. The weights were normalized to values between 0 and 1. By
applying these weights, a concept match in a taxonomy witladyrhighly variational
concepts will be rewarded less than a concept match in a peifgc, dense taxonomy.
Figure 5 shows the result of this experiment. The weiglitedersion performs better
than the default version over the entire precision range9 i precision, recall is
improved with 5.2%.

Evaluation of granularity-based weighted L1
100

Heee

T 0
Weighted L1 — 2 —

95 S S

~~~~~~~

90

85

Micro-averaged Precision

80

75

70

20 25 30 35 40 45 50 55 60 65 70
Micro-averaged Recall

Fig. 5. The effect of granularity-based weighing on enrichmenfquarance.

5.3 Normalization accuracy

It is not quite clear how the enrichment performance rel&desormalization perfor-
mance. That is, because certain description variantsyragur in input documents
and others occur very frequently, an enrichment precisi®186 does not necessarily
mean that this taxonomy, when used for normalization in &tfma IE system (see
section 1), will map 9% of the input phrases to the wrong cphddoreover, a recall
of 55% might seem low, but because normalization is basedrimgssimilarity, many
description variants, like the plural form or orthograptéciations of a description, are
actually redundant.

We compared the normalization performance of taxonomitstiere enriched au-
tomatically with that of their manually enriched versioRsom the 500 most frequently
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extracted job title descriptions in a batch of Dutch resumesrandomly selected 200.
These descriptions were normalized with three differexatamies.

Table 3. Normalization accuracy of three taxonomies; manually v&eutomatically enriched.

Enrichment Acc. Ty |Acc. Ty |Acc. T3
Baseline 0.49 0.61 0.51
Manual 0.7 0.7 0.93
Auto 0.6 0.73 0.70
Relative improvement 70%  71%  45%

Table 3 shows that the accuracy of the baseline (normalizatith the empty taxon-
omy, using only the original concept descriptions) liesuaith 50-60%. The manually
enriched versions perform significantly better, especialt 75, which is a very large,
well-maintained taxonomy. The third row shows the perfanoeawith the automati-
cally enriched taxonomies, which is around 70% for all theee@nomies. The relative
improvement at the bottom of the table is the percentageeptrformance gap be-
tween the baselines and the manually enriched versionothatnrichment method
closes, which on average is 62%. The relative contributiceuto-enrichment is only
45% forTs, which is probably due to the fine-grainedness of that pagidaxonomy.
Because of the specificity of the concept descriptions ofnihre-enriched version, it
is harder to find attractors in step 1 that exceed the strieistiold. We re-enriched
this taxonomy with an adapted threshold for attractor sieledstep 1) as well as for
semantic linking (step 2). The resulting new enrichmenfgrers 4% better than the
more stricter enrichment. This tells us that the threshofasir method should be fine-
tuned for different granularity levels.

6 Conclusions

In this paper we introduced a novel method for enriching texnies with lexical vari-
ants of their concept descriptions. The method relies omabared representation of
existing taxonomies, and is composed of the following tvepst

1. high-precision selection of attractor descriptionsdmncepts based on string simi-
larity;

2. linking of description variants to attractors, using seic similarity based on their
concept assignments in existing taxonomies.

The best version of our system uses the Jaro-Winkler metriatfractor selection and
a granularity-based weightdd distance for semantic linking in step 2, and enriches
new taxonomy with a precision of 91% at a recall of 55% (meadbly cross-validation
with nine taxonomies of different coverage and granulri@bviously, this will save
at least 55% of our manual enrichment work. However, ourtamidil normalization
test has shown that in practice, this number is actually 62%d,for some taxonomies
the savings can be as high as 70%.
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