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Abstract. Many practical information extraction systems use simple taxonomies
for mapping extracted strings to client-specific concept codes. In such taxonomies,
concepts are defined as groups of semantically similar wordsand phrases. For the
mapping to be accurate, a new client-specific taxonomy – usually nothing more
than a set of concept codes, each with a single description – needs to be enriched
with the domain-specific terminology variations, which is avery labor-intensive
task. In this paper, we describe a method to significantly reduce the required
manual effort for this task. Our approach is based on combining multiple existing
client-specific taxonomies into a single semantic space. Ona set of gold stan-
dard taxonomies our method achieves an average precision of91% and a recall
of 55%. An additional practice test shows that the method saves at least 62% of
the manual effort needed to enrich a new taxonomy.

1 Introduction & motivation

For the effective deployment of generic information extraction (IE) systems, a module
for mapping extracted strings to client-specific codes (e.g. map ‘cardiologist’ and ‘car-
diovascular specialist’ to code ‘59C’ – see Figure 1) is indispensable. Typically, simple
(non-hierarchical) taxonomies are used to guide this process, which we will refer to as
normalization. The type of taxonomy that is used in our IE systems starts with an un-
structured set ofconcepts. In its most basic form, a concept consists of aconcept code
(simply some unique client-specific identifier of the concept) and a single textual de-
scription called theconcept description. Typical examples of concept descriptions that
can be found in for instance a taxonomy of job titles, are ‘account manager’, ‘software
engineer’, and ‘administrative assistant’.

Normalization is usually based on string similarity: an extracted string is mapped
to the concept of the closest matching concept description in the taxonomy. However,
because a certain concept can usually be expressed in (many)different ways, it cannot
be captured in a single description, but rather reflects agroup of semantically simi-
lar descriptions, orvariants. Partly, such a group of variants consists of synonyms
(e.g. ‘shop assistant’ and ‘retail assistant’) and abbreviations (e.g. ‘ceo’ and ‘chief exec-
utive officer’), but depending on the taxonomy’s characteristics it can also contain near-
synonyms or hyponyms (e.g. ‘software engineer’, ‘programmer’, and ‘sr. Java/J2EE
developer’).
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The client-specific taxonomies represent partially similar and partially different
conceptualizations of the domain, each with its own specificcoverageandgranular-
ity. As each taxonomy is a certain clustering of domain-specificterminology, it can be
regarded as a particular semantic partitioning, orviewof the domain. Two strings that
are regarded as description variants of the same concept in one taxonomy, might well be
assigned to different concepts in another, more fine-grained taxonomy. As an illustra-
tion, Figure 1 shows different conceptualizations of healthcare-related job titles, taken
from three real-world job title taxonomies.

Taxonomy 1 Taxonomy 2 Taxonomy 3

59C Cardiologist 4138 Specialist (Medical) CVG-12 Health/Care
analyst cardiology surgeon pharmasist
heart specialist medical specialist pharmacy assistent
medical specialist cardiology cardiologist druggist
cardiothoracic surgeon gynaecologist undertaker
cardiovascular specialist oncologist general practitioner
cardiac surgeon dermatologist nurse

60I Internist internist nursing assistant
internal medicine 4139 Nursing/Care geriatric nurse
dr of internal medicine nurse medical specialist

61D Dermatologist healthcare professional internist
pediatric dermatologist mental health nurse clinical analyst
skin disease specialist psychiatric nurse surgeon
specialist dermatology cert. nursing assistant gynaecologist

62P Pediatrician nurse anesthetist dermatologist
paediatric specialist clinical nurse specialist trauma surgeon
youth health specialist elderly care nurse physician

Fig. 1. Fragments of three different conceptualizations of health/medical-related job titles. The
concept codes and the concept descriptions are bold.

For accurate normalization of extracted phrases, a new taxonomy has to be expanded
with the typical terminology variations of its concepts – a process we callenrichment.
Because each client has a unique semantic view on the domain,enriching a taxonomy
is hard to automate. How exactly a particular taxonomy should be enriched depends on
its coverage and granularity, and therefore typically requires human assessment. Obvi-
ously, manually enriching hundreds of concepts with thousands of description variants,
is a very labor-intensive task.

In this paper, we present a method to significantly reduce themanual effort for en-
riching new taxonomies with variants of their concept descriptions. The method exploits
multiple manually created taxonomies by representing their partially shared description
variants in a single semantic space. Our approach comprisestwo steps: (1) a string
similarity-based step for selecting attractor descriptions for the concepts in the new
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taxonomy, and (2) a step for linking the remaining description variants to the attrac-
tors based on their semantic similarity. This second step seeks to exploit the semantic
knowledge present in thecombinationof the existing taxonomies.

The remainder of this paper is organized as follows. First, we will describe the two
steps of our enrichment method. In section 4 we will briefly look at the data used in
our experiments, as well as our evaluation method. Section 5describes the experiments
we conducted along with a discussion of their results. Section 3 places our work in the
context of existing research, and finally, in section 6 we list our conclusions.

2 Methodology

The starting point of our approach is a set of manually enriched taxonomies for the
same domain. These taxonomies – each one different in coverage and granularity – are
represented as a sparse matrix of which the rows represent the description variants in
the taxonomies and a column represents their concept assignments in a particular tax-
onomy. In other words, a row of the matrix is a sparse vector ofconcept codes. We will
refer to a representation of a description variant in the matrix as aninstance. Assuming
that the more different semantic contexts two instances share, the more semantically
related they are, row similarities in the matrix can be regarded as semantic similarities.

Given a new taxonomy – i.e. a never before seen conceptualization of the domain –
the goal is toautomatically enrich its concepts with as much descriptionvariants from
the matrix as possible. This task can be regarded as a weakly-supervised classification
task. For each instance in the matrix, we want to predict a single (or no) class label
from a new, unknown class set (the concepts of the new taxonomy), based on existing
assignments from other class sets (the manually enriched taxonomies, represented in the
matrix). However, in order to do this, we need some initial mapping from our instance
space to the new class set which can function as a seeding set.Section 2.1 describes the
first step of the enrichment process, in which instances, called attractors, are linked
to the concepts of the new taxonomy based on string similarity, and which results in a
seeding set (i.e. a set of instances labeled with the target concepts). The second step of
our approach attempts to link the remaining instances in thematrix to these attractors,
based on the similarity of their semantic vectors. Section 2.2 goes into detail about this
step.

2.1 Step 1: Attractor selection

The first step of our method attempts to select representatives in the matrix for the
concepts of the new taxonomy based on string similarity, which we will callattractors
(as they will be used to ‘attract’ semantically similar instances in the second step). Each
instance in the matrix is compared to each concept of the new taxonomy. An instance is
linked to the best matching concept if their string similarity exceeds a certain threshold.
The left hand side of Figure 2 shows the attractor selection step.

For the sake of clarity, we will also illustrate the individual steps of our method
using the taxonomy fragments in Figure 1. Let us assume that the description variants
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Fig. 2. Visualization of the two-step taxonomy enrichment process.

in the three fragments are used to form the matrix. For example, the description vari-
antdermatologistwill be represented as matrix instance ‘61D, 4138, CVG-12’. Given
a new taxonomy with two medical concepts: ‘023CRD Cardiology’ and ‘024OMS
Other medical specialisms’, our goal is to find for each of these concepts the most
suitable attractor available in the matrix. Because we onlyuse string similarity in this
step, we will findcardiologist, represented in the matrix as instance ‘59C, 4138, -’ for
the first concept, andmedical specialist(instance ‘-, 4138, CVG-12’) for the second
concept.

Step 1 results in a split of the matrix into a set of linked attractors (theattractor set)
and a set of instances that could not yet be linked to any concept. From a classification
point of view, the attractor set is the seeding set for step 2.Note that it is possible
that for some of the concepts of the new taxonomy no attractorwill be found, as an
instance and a concept are only linked if their string similarity exceeds a fixed threshold.
Also, multiple attractors can be linked to a single concept.The attractor coverage of a
new taxonomy after step 1 relies heavily on the richness of the matrix (the description
variety), the string similarity threshold, and also the quality of the concept descriptions
of the new taxonomy. Because the second step of our method depends solely on the
outcome of step 1, it is essential to mimimize the number of errors in the first step. An
incorrectly linked attractor potentially attracts (many)new incorrect instances.

For optimizing the attractor selection accuracy, we experimented with several dif-
ferent string similarity metrics, as well as linguistic preprocessing (lemmatization and
morpheme splitting) of the descriptions. The details of these experiments and their re-
sults will be described in section 5.1.
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2.2 Step 2: Semantic linking

The linking of attractors to concepts in the new taxonomy is solely based on the char-
acteristics of their descriptions. Because semantically similar information can be ex-
pressed in many different ways (synonyms, abbreviations, hyponyms, etc. – see section
1), using only string similarity will not yield a useful taxonomy enrichment. However,
provided that the matrix used for enrichment is rich and contains close or even exact
matches for most concept descriptions in the new taxonomy, step 1 will give us a good
basis to build upon.

As stated earlier in this paper, a row vector of the matrix encodes the combined
semantic contexts of a certain description variant. A high similarity between two of
these vectors means that the description variants they represent have a strong semantical
relationship. As the right hand side of Figure 2 illustrates, we will use the semantic
similarities between the remaining instances in the matrixand the attractor instances
that were linked in step 1 to further enrich the target taxonomy. Analogous to step 1,
in step 2 we compute the similarity of each remaining instance to all attractors. An
instance is linked to the best matching attractor if their semantic similarity exceeds a
certain threshold.

Let us return to the example we used to illustrate the first step of our method in sec-
tion 2.1. In our example, we linked the attractor instance ‘59C, 4138, -’ (cardiologist)
to concept ‘023CRD Cardiology’, and instance ‘-, 4138, CVG-12’ (medical specialist)
to concept ‘024OMS Other medical specialisms’ of the new taxonomy. In the second
step we want to link the remaining instances (i.e.heart specialist(‘59C, -, -’), dermatol-
ogist(‘61D, 4138, CVG-12’), etc.) to the most appropriate concepts of the new taxon-
omy. In order to do that, we need to compare them with the attractors that were linked
to the concepts in step 1. For example, the instance ofdermatologistis equal to that
of medical specialist, which is the attractor of ‘024OMS Other medical specialisms’.
Therefore,dermatologistwill be linked to that concept with high confidence. Another
example,heart specialist, will be linked to concept ‘023CRD Cardiology’ because its
instance is more similar to the attractorcardiologistthat to the attractormedical spe-
cialist. However, whether this instance is actually linked to the concept, depends on the
semantic similarity threshold that has been set in the system.

We investigated the effect of using different vector similarity metrics for this step
and experimented with weighted overlap, based on the granularity of the matrix tax-
onomies. Section 5.2 will go into detail about these experiments.

3 Related work

Our research problem is partially related to theontology matching/mappingproblem:
discovering mappings between different ontologies/taxonomies of the same domain.
Mainly because of the emergence of numerous different meta-data schemas on the In-
ternet (e.g. musical genres, photo tags), this problem is regarded as one of the most
urgent problems facing the Semantic Web.

Our work differs from existing research in several aspects.Firstly, at the problem
level, we are interested in mapping variants to concepts rather than concepts to con-
cepts. Secondly, since our taxonomies have a flat structure (i.e. no hierarchy), we can
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not use the structural information that is central to previous work on ontology align-
ment (e.g. Resnik [9] measures semantic similarity in IS-A taxonomies, based on the
information two concepts share in common). Thirdly, we exploit domain information
implicitly through the use of multiple manually enriched taxonomies. In contrast, previ-
ous work relies on statistics derived from external corpora[7, 5], or search results from
the Internet [3].

The techniques used in our work are also explored in other ontology matching work:
string similarity [10], various metrics for semantic similarity between concepts [4] and
combinations thereof [11]. In terms of exploiting multipletaxonomies, in [1] ontologies
of poor semantics are matched by using an intermediate background ontology.

4 Data & evaluation

For our experiments we used a set of Dutch work experience taxonomies. In total, we
used 21 manually enriched taxonomies which are actually used for normalization in a
live resume extraction system. Each taxonomy is different in nature: some of them only
cover a specific domain of job titles (like Finance or Commerce), while others cover the
full job spectrum. Besides their coverage, the taxonomies also differ in granularity: in
some taxonomies, the description instances are distributed over a rather coarse concept
division (e.g. ‘Administration’, ‘Finance’, ‘Sales’, ‘ICT’, etc.), while other taxonomies
are very dense. Some taxonomies are dense for a certain domain of interest, and use a
couple of general concepts to cover the rest. Also, many of the description instances do
not occur in each taxonomy. The number of concepts in the taxonomy ranges from 33
to 4309, and the number of description variants from 343 to 9662.

Only 12 of the 21 taxonomies could be used for development andtesting purposes,
because the other 9 contained too many unusable concept descriptions (e.g. descrip-
tions that combine several domains, like ‘Advertising/Communication/Marketing/PR’,
or that contain additional meta-information, like ‘Typist/Secretary (not executive, med-
ical; lower education)’). From the 12 usable taxonomies, 3 were used for development
purposes, and 9 were used for testing.

We used leave-one-out cross-validation to evaluate our taxonomy enrichment meth-
od according to the following procedure:

For each test taxonomyT :

given:
Tempty : non-enriched version ofT
Tgold : gold standard ofT
Tenriched : enriched version ofT

do:
1. Create matrixMwithout−T of all other taxonomies
2. EnrichTempty with instances fromMwithout−T

3. CompareTenriched with Tgold



Bootstrapping IE mappings by similarity-based reuse of taxonomies 7

Several taxonomies contain a special concept (e.g. ‘Other’/‘Unknown’) that groups jobs
that were outside the scope of that particular client. We discarded these concepts in the
evaluation because they introduce an non-informative semantic similarity.

Creating a matrix of 22.600 unique instances took 4 seconds on a modern pc (2
2.8GHz processors; 4G of RAM). Enriching a new taxonomy with500 concepts with
the instances from that matrix takes approximately 2 minutes.

5 Experiments & results

This section describes all experiments we conducted and their results. The experiments
we performed to optimize the string-based attractor selection step are reported in 5.1.
Subsequently, in 5.2 we will describe our semantic linking experiments, and finally,
in 5.3, we will report the results of normalizing a batch of job titles extracted from
resumes, using the automatically enriched taxonomies versus their manually enriched
counterparts.

5.1 Step 1

For our attractor selection step, we experimentally compared a selection of both char-
acter-based and token-based string distance (or similarity) metrics.

As a baseline, we applied the well-knownLevenshtein distance, an edit distance
function which assigns a unit cost to all edit operations (insertion, deletion, and sub-
stitution). We also considered a method which is very similar to Levenshtein, origi-
nating from the bioinformatics community, calledNeedleman-Wunsch[8]. Needleman-
Wunsch is basically Levenshtein with an additional variable cost adjustment for gaps,
i.e. an insert or deletion.

The descriptions in our taxonomies are relatively short, typically consisting of one
to four words. We looked at metrics that are often used by the record linkage community
for matching relatively short strings like names or addresses [2]. In the record linkage
literature, good results have been obtained using variantsof theJaro metric [6], which
involves both the number and order of common characters in the similarity computation
of two strings. We also considered a variant of Jaro by Winkler [12], which integrates
the length of the longest common prefix of two strings.

Another method for approximate matching isq-gramoverlap. This method chops a
string in fixed-length parts ofq characters. The similarity between two strings is defined
as the number of common q-grams over the union of all q-grams in both strings. In our
experiments we usedq=3.

A concept description can also be regarded as a bag of words. We evaluated several
token-based distance metrics. TheDice coefficientbetween two word setsX andY

is 2|X∩Y |
|X+Y | . A similar metric in which a small number of common tokens is penalized

slightly more than in the Dice coefficient is theJaccard coefficient, which is simply
|X∩Y |
|X∪Y | . A third token-based measure we applied is thecosine similarity, which is widely
used in the information retrieval community. For most of thepreviously mentioned
string metrics we used the SIM METRICSopen source Java library of similarity metrics,
developed by Sam Chapman.
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Figure 3 compares all similarity metrics described above interms of precision and
recall. We computed the micro-averaged1 precision and recall, as it gives equal weight
to each instance rather than to each concept (macro-averaged). We think this is a more
appropriate measure for our enrichment system, because in apractical normalization
module, each description variant in the taxonomy has equal weight as well.
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Fig. 3. Comparison of different string similarity metrics for the attractor selection step.

As Figure 3 shows, the Levenshtein distance is by far the worst performing metric,
already dropping below 85% precision at a recall of 23% and below 60% at a recall of
40%. In the high-precision region (92-98%) the Jaro and Jaro-Winkler metrics perform
best, whileq-grams have the highest precision at recall values higher than 35%. At
100% precision, all metrics perform similarly with a recallof 12-13%.

In an attempt to improve the recall of the attractor selection step, we applied two
forms of linguistic preprocessing to our descriptions: lemmatization and morpheme
splitting. Especially for Dutch, which contains many compounds, these types of pre-
processing can be very useful. Unfortunately, the preprocessing steps resulted only in
marginal recall improvements, and just for the token-basedstring metrics.

Threshold optimization The quality of our final enrichment result partly depends on
optimal threshold settings in the first step. After all, in step 2, each incorrect attractor
potentially attracts (many) new incorrect descriptions tothe taxonomy concept it is
linked to. On the other hand, we obviously need an acceptablerecall, i.e. the percentage
of taxonomy concepts for which an attractor can be found.

Simply selecting the threshold at which the highest harmonic mean was measured
is not optimal for our situation, because for most string similarity metrics, the highest
F-scores were measured at precision values of 60-70%, whichis simply too low for

1 Micro-averaged values are calculated by constructing a global contingency table and then cal-
culating precision and recall using these sums, whereas in macro-averaging precision and re-
call are calculated for each category and then the average ofthese is taken.
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our purposes. Instead, we optimized the thresholds for the similarity metrics based on
the macro-averaged precision (on the development set) of the result of step 1, where a
concept for which no attractor was selected was counted as 0.This way, we optimize on
a measure which takes the maximum coverage into account, andwhich in our view can
be used as a predictor for the best possible overall enrichment. We empirically validated
this hypothesis on our development set and found that indeedit generally holds. Table
1 lists this optimal macro precision value and the associated threshold for all string
similarity metrics (including some combinations).

Table 1. Threshold optimization for string similarity metrics. Thesecond column shows the max-
imum coverage precision, the third column the selected threshold.

Metric Max.Cov.Precision Thr Precision Recall F1

Jaro-Winkler 81.0 0.95 95.5 21.1 33.4
Jaro 81.0 0.90 96.9 19.9 31.8
Needlem.-Wunsch 81.0 0.85 94.5 20.5 32.5
Jaccard+Q-Grams 79.9 0.55 94.3 19.6 31.2
Q-Grams 79.8 0.65 95.3 19.0 30.3
Levenshtein 79.4 0.80 95.0 18.9 30.2
Cosine+Q-Grams 78.9 0.60 94.3 18.8 30.1
Cosine 77.7 0.80 97.7 14.5 23.8
Dice 77.7 0.80 97.7 14.5 23.8
Jaccard 77.7 0.65 97.7 14.5 23.8

5.2 Step 2

In step 2, we want to compare the semantic vectors of the remaining matrix instances
with those of the attractors selected in step 1. Each position of an instance vector points
to a particular taxonomy and its value can be one of all concept id’s of that taxonomy,
or the undefined valueω if the concerning instance does not occur in that taxonomy.

The most basic distance metric that works for vectors with symbolic features is the
L1 distance, also referred to asHamming distance, Manhattan distance, city-block dis-
tance, or theoverlap metric. TheL1 distance between two vectorsx andy is calculated
as in equations 1 and 2.

L1 =

n
∑

i=1

δ(xi, yi) (1)

where:

δ(xi, yi) =

{

1 if xi 6= yi,

0 if xi = yi.
(2)

To get a distance between 0 and 1, we normalize theL1 scores by the vector length
(i.e. the number of taxonomies in the matrix).
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A distance of 0 means that two instances are equal. To handle the undefined values
a bit more elegantly, we also applied a variant of 2, given in equation 3.

δ(xi, yi) =







1 if xi 6= yi,

0 if xi = yi,

0.5 if xi = ω ∨ yi = ω.

(3)

This variation assigns a value of 0.5 if one or both of the instances we are comparing is
undefined in the concerning taxonomy. Intuitively, this seems like a more appropriate
scoring method, because if an instance is not defined in a taxonomy, it means we do not
have any information about it, i.e. we do not know whether or not it would be assigned
to the same concept as the instance we are comparing it with.

Figure 4 shows the performance of someL1 variations compared to the baseline of
applying only step 1 (Jaro-Winkler). The graph shows the significant recall contribution
of step 2 in the enrichment process. The variation ofL1 described in equation 3 has
slightly better recall than the default version (equation 2) in the +91% precision region,
but decreases recall at precision values of 90% and lower. A variation in which we
combined theL1 distance with a string distance performs worse in the +85% precision
region, but better at lower precision values. Table 2 lists the best overall performing
metric combinations.
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Table 2. Best-performing metric combinations.

Step 1 metricStep 2 metric Max F0.5 Precision Recall R @P = 90% R @ P = 95%

Jaro L1 (0.5 for undef) 75.7 84.3 55.7 51.2 38.2
L1 74.9 86.0 54.7 51.2 34.1

Jaro-WinklerL1 (0.5 for undef) 75.4 83.5 56.0 51.5 34.2
L1 75.1 85.4 55.8 51.2 30.7
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Granularity-based weighing The granularity of a taxonomy has a direct relation with
the mutual semantic similarity of description variants that belong to the same concept.
Roughly said, the more specific a taxonomy concept is, the more likely it is that the
description variants of that concept are actual synonyms inthe linguistic sense. In the
type of taxonomies we work with, description variants of a specific concept are thus
semantically more similar than the variants ranked under a broad concept.

We considered a granularity-based weighted version of theL1 metric (equation 1
and 2). Thexi 6= yi penalty was multiplied by the granularity of taxonomyTi. This
granularity was computed by dividing the number of description instances inTi by the
number of concepts inTi. The weights were normalized to values between 0 and 1. By
applying these weights, a concept match in a taxonomy with broad, highly variational
concepts will be rewarded less than a concept match in a very specific, dense taxonomy.
Figure 5 shows the result of this experiment. The weightedL1 version performs better
than the default version over the entire precision range. At91% precision, recall is
improved with 5.2%.
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Fig. 5. The effect of granularity-based weighing on enrichment performance.

5.3 Normalization accuracy

It is not quite clear how the enrichment performance relatesto normalization perfor-
mance. That is, because certain description variants rarely occur in input documents
and others occur very frequently, an enrichment precision of 91% does not necessarily
mean that this taxonomy, when used for normalization in a practical IE system (see
section 1), will map 9% of the input phrases to the wrong concept. Moreover, a recall
of 55% might seem low, but because normalization is based on string-similarity, many
description variants, like the plural form or orthographicvariations of a description, are
actually redundant.

We compared the normalization performance of taxonomies that were enriched au-
tomatically with that of their manually enriched versions.From the 500 most frequently
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extracted job title descriptions in a batch of Dutch resumes, we randomly selected 200.
These descriptions were normalized with three different taxonomies.

Table 3. Normalization accuracy of three taxonomies; manually versus automatically enriched.

Enrichment Acc. T1 Acc. T2 Acc. T3

Baseline 0.49 0.61 0.51
Manual 0.76 0.78 0.93
Auto 0.68 0.73 0.70
Relative improvement 70% 71% 45%

Table 3 shows that the accuracy of the baseline (normalization with the empty taxon-
omy, using only the original concept descriptions) lies around 50-60%. The manually
enriched versions perform significantly better, especially for T3, which is a very large,
well-maintained taxonomy. The third row shows the performance with the automati-
cally enriched taxonomies, which is around 70% for all threetaxonomies. The relative
improvement at the bottom of the table is the percentage of the performance gap be-
tween the baselines and the manually enriched versions thatour enrichment method
closes, which on average is 62%. The relative contribution of auto-enrichment is only
45% forT3, which is probably due to the fine-grainedness of that particular taxonomy.
Because of the specificity of the concept descriptions of thenon-enriched version, it
is harder to find attractors in step 1 that exceed the strict threshold. We re-enriched
this taxonomy with an adapted threshold for attractor selection (step 1) as well as for
semantic linking (step 2). The resulting new enrichment performs 4% better than the
more stricter enrichment. This tells us that the thresholdsof our method should be fine-
tuned for different granularity levels.

6 Conclusions

In this paper we introduced a novel method for enriching taxonomies with lexical vari-
ants of their concept descriptions. The method relies on a combined representation of
existing taxonomies, and is composed of the following two steps:

1. high-precision selection of attractor descriptions forconcepts based on string simi-
larity;

2. linking of description variants to attractors, using semantic similarity based on their
concept assignments in existing taxonomies.

The best version of our system uses the Jaro-Winkler metric for attractor selection and
a granularity-based weightedL1 distance for semantic linking in step 2, and enriches a
new taxonomy with a precision of 91% at a recall of 55% (measured by cross-validation
with nine taxonomies of different coverage and granularity). Obviously, this will save
at least 55% of our manual enrichment work. However, our additional normalization
test has shown that in practice, this number is actually 62%,and for some taxonomies
the savings can be as high as 70%.
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