
A Formalism and Method for the Automated Synthesis of
Executable Process Models from SME-authored Process

Diagrams
José Manuel Gómez-Pérez

iSOCO S.A.
Madrid, Spain

jmgomez@isoco.com

Oscar Corcho
Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, Spain

ocorcho@fi.upm.es

Michael Erdmann
Ontoprise GmbH

Karlsruhe, Germany

Erdmann@ontoprise.de

ABSTRACT

Enabling Subject Matter Experts (SMEs) to formulate knowledge

without the intervention of Knowledge Engineers (KEs) requires

providing SMEs with methods and tools that abstract the

underlying knowledge representation, allowing SMEs to focus on

the modeling activities. However, automatically bridging the gap

between SME-authored models and their internal representation is

not an easy task, especially in the case of complex knowledge

types like processes, where aspects like frame management, data,

and control flow need to be addressed. In this paper, we present a

process representation formalism and method for automatically

grounding SME-authored process models in the form of process

diagrams into a particular representation language, supporting

process representation and reasoning.

Categories and Subject Descriptors
I.2.4 Knowledge Representation Formalisms and Methods –

representations (procedural and rule-based), I.2.8 Problem

Solving, Control Methods, and Search – plan execution,

formation, and generation.

General Terms
Algorithms, Measurement, Performance, Design, Human Factors,

Languages, Theory, Verification.

Keywords
Process knowledge representation, SMEs, PSMs, F-logic.

1. INTRODUCTION
Enabling Subject Matter Experts (SMEs) to model processes by

themselves without the intervention of Knowledge Engineers

(KEs) is a complex problem that needs to be addressed from a

multidimensional perspective in order to: i) provide the required

knowledge artifacts to acquire process knowledge and ii) develop

usable tools enabling SMEs to exploit such artifacts. To this

purpose, our work has focused on producing the following

models, methods and tools:

1. A process metamodel, which provides the terminology

necessary to express process entities in scientific domains

and the relations between them.

2. A library of Problem Solving Methods [4], which provides

high-level, reusable abstractions for process representation

and reasoning strategies.

3. A graphical modeling and reasoning environment, which

leverages the process metamodel and the PSM library to

enable SMEs to model processes.

4. A formalism and method for the automatic synthesis of

executable process models from SME-authored process

diagrams.

While we presented the first three outcomes in [3], herein we

focus on the fourth. More details about the overall approach can

be found in [2].

2. REPRESENTING AND REASONING

WITH PROCESS KNOWLEDGE
We consider four main types of process reasoning to be supported

by the formalism: i) reasoning about process entities, ii)

intermediate results, iii) process stages, and iv) process

preconditions. For example, the multiple-choice question below,

selected from Advanced Placement

(http://apcentral.collegeboard.com) exams in Biology, illustrates

the third type of process reasoning.

In our formalism, a process consists of a set of process actions,

connected in the form of a directed graph, with pre and post

conditions whose evaluation both determines the flow of data

between process steps and controls the order in which such

actions are executed. We define the pre and post states of an

action respectively as the content of the process frame

immediately before and after its execution. The pre state contains

all the process resources in the knowledge base that serve as

inputs to the action, while the post state contains the outcomes of

its execution, obtained by operating on the contents of the pre

state.

At modeling time, our code generation method automatically

synthesizes sound and complete executable code in the form of F-

logic rules associated to each action in a process model. F-logic i)

provides a single entry point for reasoning, supporting the

different knowledge types involved in particular questions, ii)

enables the use of rule knowledge for reasoning within processes,

and iii) keeps introspective properties for retrieval of meta-

information about processes, like subprocesses and intermediate

Which part of the animal cell is required only in the first

stage of mitosis and what is the name of such stage?

a. chromatin and prophase

b. chromatid and prometaphase

c. centromere and anaphase

d. plasma membrane and telophase

process results. Process rules manage the process frame [5] in

order to support data and control flow and can be classified as

follows: i) setup rules, which take the relevant portion of

knowledge from the overall knowledge base, ii) transition rules,

which describe the transformation of inputs into outputs, and iii)

precedence rules, which transfer the output of actions to their

successors. We optimize performance by avoiding second order

reasoning and well-founded semantics evaluation mode. Next, we

show the sample F-logic code of a transition rule corresponding to

a muscle contraction process:

FORALL m, e, j
j: jump@postState(muscleContraction) AND
j: OUTPUT@postState(muscleContraction) AND
muscleContraction[PROVIDES -> j] @postState(muscleContraction)

<-
m:muscle @preState(muscleContraction) AND
m:TOOL@preState(muscleContraction) AND
m[IS_USED_BY -> muscleContraction]@preState(muscleContraction) AND
e:energy@ preState(muscleContraction) AND
e:RESOURCE@preState(muscleContraction) AND
e[IS_CONSUMED_BY -> muscleContraction]@preState(muscleContraction).

3. EVALUATION
This work was evaluated by an independent team in the context of

project Halo. Six SMEs formulated knowledge on the selected

syllabi for the domains of Chemistry, Biology, and Physics, and

tested reasoning with it. The quality of the resulting knowledge

bases was determined by test sets created by the SMEs themselves

through the testing & debugging tool in the system in order to

check that their process models actually behaved as expected.

82% of the process models were correct. In all cases, process

models were formulated by SMEs without intervention of KEs

and only required initial training and sporadic support in the

utilization of the tools.

The process modeling environment was rated by SMEs with an

average of 64.5 out of 100 in the System Usability Scale [1]. As to

utility, SMEs modeling process knowledge rated the approach

with an average of 3 points out of 4, especially in the domain of

Biology. Additionally, personal interviews with SMEs showed a

high degree of satisfaction, with comments like “It makes the

representation of biological models easier” (SME2) and “The

modeling of processes is very useful. It must be possible to ask

questions about the various states of a process. And asking

questions with T&D worked okay” (SME3).

We studied the effects of the application of the optimizations

described in section 6 to the F-logic code resulting from the

process models formulated by the SMEs. We measured response

times (Table 1) of a sample of ten queries uniformly distributed

across the four reasoning types described in section 2. These

queries were executed against the Biology knowledge base

produced by SME3, which contained the largest sample of

process knowledge produced by the SMEs in the evaluation, with

three different configurations of the F-logic reasoner OntoBroker,

combining different uses of well-founded evaluation and second-

order reasoning. C0 is the most generic configuration, with the

well-founded evaluation mode enabled and concept and attribute

names ground disabled. C1 and C2 correspond to the optimization

methods described in the previous section. C1 aims at increasing

performance with respect to C0 by enabling concept and attribute

names ground while C2 extends C1 by additionally disabling

well-founded evaluation.

The results of executing this query set with the three different

configurations are shown in Table 1 (values equal to 0 stand for

queries with response times lower than 1ms) shows an average
performance improvement of 25% for C1 and almost 30% for C2.

The main reason is that concept and attribute names are ground as

in C1. C2, an extension of C1 that also disables well-founded

evaluation mode, adds in this case little performance gain since

the code generation mechanism already produced most of the

code in well-stratified form, hence reducing the need of well-

found semantics.

4. ACKNOWLEDGMENTS

This work has been funded by Vulcan Inc. as part of Ontoprise’s

DarkMatter project within the Halo project

(http://www.projecthalo.com).

5. REFERENCES
[1] Brooke, J. (1996) SUS: a "quick and dirty" usability scale.

In P. W. Jordan, B. Thomas, B. A. Weerdmeester & A. L.

McClelland (eds.) Usability Evaluation in Industry. London.

[2] Gómez-Pérez, J.M. Acquisition and Understanding of

Process Knowledge using Problem Solving Methods. Studies

on the Semantic Web vol. 7. AKA Verlag – IOS Press.

ISBN: 978-3-89838-639-5. June 2010.

[3] Gómez-Pérez, J.M., Erdmann, M., Greaves, M. Applying

Problem Solving Methods for Process Knowledge

Acquisition, Representation, and Reasoning. KCAP 2007.

[4] McDermott, J. Preliminary steps towards a taxonomy of

problem-solving methods. In Marcus, S., editor, Automating

Knowledge Acquisition for Expert Systems, pages 225-255.

Boston, Kluwer.

[5] Pylyshyn, Z.W. The Robot’s Dilemma: The Frame Problem

in Artificial Intelligence. Norwood, 1987.

Table 1: C1 and C2 compared with reference C0

