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ABSTRACT 
Recommender systems support users in selecting items and 
services in an information-rich environment. Although 
recommender systems have been improved in terms of accuracy, 
such systems are still insufficient in terms of novelty and 
serendipity, giving unsatisfactory results to users. Two methods of 
“serendipitous recommendation” are therefore proposed. However, 
a method for recommending serendipitous items accurately to 
users does not yet exist, because what kinds of items are 
serendipitous is not clearly defined. Accordingly, a human 
preference model of serendipitous items based on actual data 
concerning a user’s impression collected by questionnaires was 
devised. Two serendipitous recommendation methods based on 
the model were devised and evaluated according to a user’s actual 
impression. The evaluation results show that one of these 
recommendation methods, the one using general unexpectedness 
independent of user profiles, can recommend the serendipitous 
items accurately. 

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine Interface – Human 
factors, Human information processing.  

General Terms 
Human Factors 

Keywords 
Recommender systems, user preference, content-based, 
serendipity, unexpected. 

1. INTRODUCTION 
In recent years, the amount of information accessible to users is 
increasing and becoming more diversified because of the growth 
of information technology and the expansion of commercial use 
of IT. Under this circumstance, although users can select various 
items (such as information, TV programs, and books) they cannot 
select the best of those items from a vast amount of items 

including many useless items. 
To solve this problem, so-called “recommender systems”—for 
recommending suitable items to users by monitoring a user’s 
action and extracting information concerning a user’s 
preferences—are becoming necessary for “item-providing 
services” such as internet shopping sites and department stores. In 
the future, recommender systems will recommend items by 
monitoring all a user’s preferences. Users will get information 
suitable for their needs, and they will have an opportunity to 
discover new items. Moreover, service providers will be able to 
provide services continuously because users will use their systems 
more frequently. 
Recommendation technology is one way to retrieve information 
that suits a user’s preferences. In information-retrieval theory, 
useful information is categorized as two types: that which users 
recognize as useful, and that which users do not recognize as 
useful but is actually useful [1]. We suppose that the items users 
like are categorized as the same two types; accordingly, in this 
paper, the second type of items is defined as “serendipitous items.” 
In general, typical recommender systems use either of two 
strategies: a content-based approach or collaborative filtering [2]. 
The content-based approach recommends items similar to users 
selected items by calculating the similarity between items by 
using feature vectors generated by extraction of a user’s selection 
record. Collaborative filtering recommends items selected by 
multiple users whose selection histories are similar to the relevant 
user by calculating similarity between users’ records. 
These two methods recommend items similar to the ones that the 
user selected before. These items belong to the first type stated 
above because they are recognized as interesting items by users. 
For example, a typical recommendation recommends TV 
programs featuring actor A to users who frequently watch TV 
programs featuring actor A. Consequently, a user might get bored 
with typical recommendation because it always recommends 
similar items that a user already knows are interesting [2]. For that 
reason, recommending items belonging to the second type–
namely, serendipitous ones—become necessary. For example, 
serendipitous recommendation recommends educational programs 
featuring performer A to users who do not usually watch 
educational programs but frequently watch performer A. 
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Nevertheless, typical recommendation methods cannot 
recommend such serendipitous items preferentially. 
The purpose of this study is to realize serendipitous 
recommendation. Accordingly, actual data that users recognized 
as “serendipitous” was collected, and a user-preference model was 
established first. Serendipitous recommendation methods based 
on that model were devised and evaluated with actual data. The 
results of this evaluation verified the effectiveness of a 
serendipitous recommendation method using “general 
unexpectedness” that is independent from a user’s profile. 

2. RELATED WORKS AND MOTIVATION 
In the early stage of developing recommendation systems, the 
accuracy of recommendation of the first-type items was improved. 
It was thought that this improved accuracy was enough to enhance 
user satisfaction. However, it is recognized that novelty and 
serendipity are important factors in satisfying a user, aside from 
simply suitability to a user’s preference [2, 3, 4, 5]. 
There are several related works on serendipitous recommendation. 
Ziegler et al. supposed that serendipitous items exist in 
recommendation lists of different items in different categories 
more than in the lists of similar items, and they proposed a 
recommendation method to increase diversity of recommendation 
lists [6, 7]. They defined “intra-list similarity” as the similarity 
between all items in a recommendation list by calculating 
similarity between two items. Moreover, they increased diversity 
by inserting low-similarity items. 
Approaches that recommend serendipitous items directly have 
also been proposed. Hijikata et al. proposed a method for 
improving novelty and serendipity by calculating the probability 
of known items by using the information about knowns or 
unknowns given explicitly by user [8]. Another method calculates 
the probability of “degree of interest” by using an evaluation of 
items selected by a user (namely, “interested” or “not interested”). 
The items whose degree-of-interest probabilities are nearly equal 
are taken as serendipitous and recommended [9]. 
Another proposed method considers the items that are different 
from the ones users use habitually as serendipitous and 
recommends those [10]. This method uses a preference model to 
predict items that users like and a habit model to predict items that 
users use habitually. It then recommends a recommendation list 
including serendipitous items by predicting the unexpectedness of 
items by calculating differences between the results of the 
preference model and the habit model. 
As mentioned above, the only serendipitous recommendation 
methods proposed until now are based on researchers’ own 
assumptions; no methods based on actual data regarding a user’s 
actual impression of selected items have been devised. Moreover, 
many works suppose that serendipitous items mean unexpected 
items, and they do not treat items that are unexpected and 
interesting. 
In this study, the authors clarified what kinds of items are actually 
serendipitous by collecting data concerning a user’s actual 
impressions, made assumptions based on that actual data, and 
devised two serendipitous recommendation methods based on 
those assumptions. 

3. MODELING SERENDIPITOUS ITEMS 

ACCORDING TO ANALYSIS OF ACTUAL 

DATA 

3.1 User-preference model 
The assumption of user preference was established first, and what 
kinds of items are serendipitous for users was verified by 
analyzing a user’s actual impressions collected by questionnaires 
based on this assumption. The user-preference model established 
before the questionnaires were given is explained in the following. 
Figure 1 shows the concept of the model. In this model, items are 
arranged in feature vector space generated by features of items. 
Although this feature vector space is highly dimensional, for 
simplicity, two-dimensional space is introduced in Figure 1. Items 
that a user selected before exist in the area near the feature vector 
that the user recognizes and knows are interesting (so-called 
“recognized items” below because the user recognizes them as 
interesting and not surprising if recommended). In a distant area 
from that area, serendipitous items (namely, surprising and 
interesting items) are supposed to exist. In an area far from the 
recognized area, not-interesting items are supposed to exist. 
Broadly speaking, it is supposed that each user has several 
recognized areas in the feature vector space, because there may be 
several reasons that the user selected certain interesting items; for 
example, the reasons for selecting a drama and a documentary 
program may be different. 

Items

Not interesting

recognized

serendipitous

recognized

serendipitous

recognized

serendipitous

 

Fig. 1: Concept of user-preference model 

3.2 Questionnaire 
To collect users’ actual impressions, a questionnaire was given to 
thirty users. The method is mentioned below. First, users read the 
information concerning a TV program selected randomly from TV 
programs over three months (31,433 programs), and then they 
classify these TV programs as recommended items into three 
categories:  “recognized program” (first-type item), “serendipitous 
program” (second type) and “not-interesting program.” An 
electric program guide (EPG) is used to provide the information 
concerning TV programs, which includes title, performer, and the 
other contents of programs. 
In the questionnaire, three categories are available for choice by 
users. “Recognized program” means programs that users can 
expect from their own preference, for example, programs that 
users frequently watch. “Serendipitous program” means programs 
that users feel are interesting and surprising when recommended, 



Fig. 2: Number of evaluated programs by each user 

Vertical axis: Number of evaluated programs, Horizontal axis: User ID 

for example, programs that users do not expect from their own 
preferences but are interested in. “Not-interesting program” means 
programs that users are not interested in even though 
recommended. 

Fig. 3: Ratio of recognized programs and serendipitous programs in all programs for users 

Vertical axis: Rate of each program in all programs, Horizontal axis: User ID 
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It takes much time to answer this questionnaire (about one minute 
per program evaluation), so each user answered the questionnaire 
over one month, from ten to one hundred answers per day. We 
supposed that a user’s preference does not change much over one 
month, because a series of TV programs lasts about three months. 
All users live in Japan, twenty six work at Hitachi, Ltd., Central 
Research Laboratory and four are university students. Twenty five 
are male, and five are female. Fifteen are from twenty to thirty 
years old, eleven from thirty to forty, and the other four from forty 
to fifty.  Each user evaluated about one thousand to five thousand 
programs. 

3.3 Analysis method 
The programs collected by questionnaire are first converted into 
term vectors extraction by morphological analysis of text 
information in the EPG. Each vector component contains two 
values, whether the EPG text includes the term or not. The 
recognized programs are then clustered to estimate the recognized 
area. For clustering, the distance between program Pi and program 
Pj is defined as 

 (1) 

where Pi(n) means the vector component of the nth term in 
program Pi, whether program Pi includes the nth term or not (1 or 
0), wn means the user’s weight (a metric of user’s preference) of 
the nth term. The user’s own distance between programs is 
determined by introducing user’s weight wn. 
Weight wn of nth term v is calculated by TFIDF (product of term 
frequency and inverse document frequency) [11]. TFIDF is a 
metric of weighting characteristic terms occurring in observed 
documents by frequency in observed groups and in all groups. 
This metric is introduced to weight a user’s preference as follows. 

)
)(

log()|(tf)|(tfidfn vN
NDvDvw all×==  (2) 

Here, D represents observed program, which means recognized 
programs here, tf(v|D) means the frequency that term v occurs in 
D, Nall means the total number of programs, and N(v) means the 
number of occurrences of term v in all programs. 

3.4 Results 
Figure 2 shows the number of programs evaluated by each user, 
and Figure 3 shows the ratio of recognized programs and 
serendipitous programs in all programs. Although each user has 



various ratios, it is clear the rates of recognized programs are very 
low and there are a lot of inefficient programs. It is also clear that 
users who frequently watch TV programs evaluate more programs 
as recognized rather than serendipitous. On the other hand, the 
users who rarely watch TV programs evaluate more programs as 
serendipitous rather than recognized. 
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In regard to the questionnaire, most users said they feel 
serendipitous concerning the programs that they do not know 
before but are interesting (for example, interesting educational 
programs for users who do not watch educational programs) and 
the programs including an unexpected combination of interesting 
features (for example, educational programs featuring a 
comedian). However, surprising programs are not always 
unexpected programs, so the meanings of surprising would 
include other factors. Moreover, some users evaluated no 
programs as serendipitous, and some users cannot classify 
programs into the three types; consequently, it is difficult to 
evaluate their subjective impression quantitatively. 

Height

A clustering result of recognized programs is shown as 
dendrogram in Figure 4. The clustering method used is 
hierarchical clustering. The height of the cluster means average 
distance between programs belonging to the cluster and the cluster 
center calculated from Equation (1). The number of recognized 
areas is determined by cutting at a certain height of a cluster. 
Figure 5 shows the ratio of average distance of recognized 
programs (radius of recognized area) and average distance of not-
interesting programs (radius of not-interesting area) from the 
nearest center of the cluster with height of clusters. When the 
number of clusters increases, not-interesting programs are 
distributed outside of recognized area. On the other hand, when 
the number of clusters decreases, not-interesting programs are 
distributed inside the recognized area because the number of 
clusters is fewer than the true number of recognized areas. 
Figure 6 shows the ratio of average distance of serendipitous 
programs (radius of serendipitous area) and the radius of a 
recognized area from the nearest center of the cluster with height 
of clusters. As the number of clusters increases, serendipitous 
programs are distributed outside of the recognized area. 
Figure 7 plots the results from Figures 5 and 6. It is indicated that 
not-interesting programs are distributed outside the recognized 
area, and serendipitous programs are distributed far outside the 
recognized area. 

 

Fig. 4: Clustering result of recognized programs 

(leaf nodes: recognized programs; vertical axis: height of cluster) 

 

Fig. 5: Ratio of radiuses of recognized area and not-interesting 
area with height of cluster 

(Denomination: radius of not-interesting area) 
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Fig. 6: Ratio of radiuses of recognized area and serendipitous area 
with height of cluster 

(Denomination: radius of recognized area) 

 

Fig. 7: Ratio of radiuses of not-interesting area, recognized area, 
and serendipitous area with height of cluster 

(Denomination: not-interesting area) 
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3.5 Model based on analysis results 
To summarize the results presented in this section, in the feature 
vector space generated by EPG texts, not-interesting programs are 
distributed outside the recognized area and serendipitous 
programs are distributed far outside the recognized area. This 
result does not support the assumption in Figure 1. We therefore 
suggest the structure of user preference as shown in Figure 8 
instead of that shown in Figure 1. 
Distance from the center of the recognized area means the number 
of terms in the program vector but not in the center because the 
program-vector components are described by only two values, 
whether each term in the contents of programs is included or not. 
In addition, the weight of terms is calculated as a user’s 
preference by TFIDF. Therefore, even though the item includes 
many low-weight terms and is rarely watched, the distance from 
the recognized area is not far. And if the program includes high-
weight terms belonging to the other recognized area, the distance 
from recognized area becomes far. Consequently, programs 
including many high-weight terms belonging to the other 
recognized area and not similar to the ones in the nearest 
recognized area are distributed in the intermediate region of 
recognized areas, and users treat them as serendipitous programs. 
This assumption expresses that “the contents makes users feel 
serendipity concerning an unexpected combination of program 
contents,” which some users commented in the questionnaire. 
Figure 9 shows the distribution of each type of program plotted 
against distance from one center of a recognized area. The solid 
line represents the distribution of not-interesting programs, the 
dotted line represents the distribution of serendipitous programs, 
and the dashed line represents distribution of recognized programs. 
The nearest peak of recognized programs to the origin represents 
the peak of the distribution of the recognized area, and the next-
nearest peak represents several recognized areas. As shown in Fig. 

7, not-interesting programs are distributed broadly both in the 
recognized area and the serendipitous area; consequently, it is 
difficult to distinguish only serendipitous programs accurately by 
distance between programs given by Equation (1). 

Items

recognized

recognized
recognized

Serendipitous

Not interestingNot interesting

Not interesting

 

Fig. 8: User-preference model based on analysis results 

 

4. PROPOSAL AND EVALUATION OF 

RECOMMENDATION METHODS 

4.1 Proposed methods 

4.1.1 Using distance between items 
The distance between items used in this method is calculated from 
Equation (1) reflecting a user’s preference. First, the proposed 
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Fig. 9: Density of programs in each area with distance from center of recognized area 

(Vertical axis: density of programs, horizontal axis: distance from center of recognized area, 

solid line: not interesting programs, dotted line: serendipitous programs, dashed line: recognized programs)



recommender system learns features of programs according to the 
user’s viewing history. In the same way as described in section 3, 
program vectors are defined by a term vector, whose component 
has two values. Second, the system splits watched programs (i.e., 
recognized programs) into several clusters by hierarchical 
clustering and finds the centers of recognized areas. The number 
of recognized areas is defined as 7 to 10 according to the results 
from the questionnaire. The system then calculates the distance of 
each not-watched program from the nearest center, and 
recommends the 10 longest programs. In short, the system 
recommends 10 highest score programs calculated according to 

),(distance)(Score nearesti CPPi =   (3) 

Here, Cnearest means the center of the nearest recognized area with 
program Pi. 
This method may not recommend serendipitous programs 
accurately because not-interesting programs are distributed 
broadly. This method is referred to as the “first method” hereafter. 

4.1.2 Using general unexpectedness 
This method (hereafter, “second method”) introduces 
“unexpectedness of programs” in addition to the distance used in 
the first method in order to capture a “surprising” factor. The 
results of the questionnaire indicate that the serendipitous 
programs have an unexpected aspect for users, as shown in Fig. 8. 
It is assumed that “unexpectedness” means something is hard to 
predict the program contents. Regarding a program-
recommendation system, it is assumed that it is related to an 
unlikely combination of features. The second method treats highly 
unexpected and interesting programs as serendipitous programs. A 
general metric of difficulty of expecting programs for every user 
is defined by the sum of the tendencies of co-occurrence of the 
terms in the program. 
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      (4) 

Tendency of co-occurrence (v, w) means tendency of co-
occurrence of terms v and w in all programs. It makes it possible 
to evaluate quantitatively how unexpected a program is for users. 
Nv means number of programs including term v, and Nvw means 
number of programs including both term v and w. |Pi| means 
number of terms in program Pi and is a normalized factor. If the 
co-occurrence of the terms is low, expectedness will be low, and 
the program will be highly unexpected, so users would be unable 
to find it. Unexpectedness is defined as the inverse of 
expectedness (see Equation (6)), and 10 high-score programs 
(calculated according to the sum of squares of distance between 
programs and unexpectedness as below) are recommended. 

2)(nessUnexpected)1( iP×−+ α
   (5) 

)(sxpectednes
1)(nessUnexpected

i
i PE

P =       (6) 

Parameter α  controls the degree of combination of a user’s 
preference and unexpectedness of programs. Simply put, equation 
(5) is a very simple linear combination of squares of distance and 
unexpectedness. 

4.2 Evaluation method 

4.2.1 Dataset 
The results of the questionnaire implemented in the third section 
were used. Data of fourteen users who classified more than 100 
programs into recognized or serendipitous programs were selected, 
because it was supposed that serendipitous recommendation 
becomes necessary after watching TV programs for about one 
month. (It was assumed that users get bored with typical 
recommendation after about one month and most users watch fifty 
TV programs per month). Each user evaluated from 1000 to 5000 
programs, and the ratio of serendipitous programs in all evaluated 
programs is 7 to 8%. 

4.2.2 Procedure 
The three proposed methods are applied to each user. The 
procedure is mentioned below. First, the system learns recognized 
areas from fifty recognized programs. In this evaluation 
experiment, 50 recognized programs were prepared randomly as a 
training set from evaluated programs as recognized. Next, the 
system recommends ten high-score programs by using the 
proposed methods, random recommendation, and a method using 
only unexpectedness for each user from the remaining evaluated 
programs by using the recognized areas learned first. Random 
recommendation means recommending ten programs randomly, 
and the method using only unexpectedness calculates a program 
score according to unexpectedness only (α=0 in Equation (5)). 
This experiment was performed ten times, and each time different 
recognized programs were used and the accuracy of each method 
was compared. 

4.2.3 Evaluation metrics 
Our purpose is to recommend serendipitous programs. So we use 
detection rate and precision as evaluation metrics for the purpose 
of evaluating accuracy of the proposed methods to detect 
serendipitous programs. Detection rate means the probability of 
detecting a serendipitous program and precision means rate of 
serendipitous programs in recommendation list. 

4.3 Results 
Table 1 lists the evaluation results of the two proposed methods, 
random recommendation and only unexpectedness. Accuracy 
metrics are calculated as an average of users. Parameter α is set 
to 0.05, so the second method has the highest accuracy, . 
The results in Table 1 show that detection rate and precision of 
random recommendation are low, so it suggests how difficult it is 
to recommend serendipitous programs. On the other hand, the 
accuracy of the second method (i.e., using unexpectedness of 
programs) is higher than the other methods, detection rate is 
78.2% and precision is 21.6%. This result means that the second 
method recommends serendipitous programs accurately. 



Table 1: Accuracy results 

Method Random First Second Only 
unexpectedness

Detection 
Rate [%] 

51.9 49.8 78.2 32.8 

Precision [%] 7.98 7.51 21.6 5.21 

 
While accuracy of the first method (i.e., using distance only) is the 
same as that of the random method, accuracy of the second 
method is much higher than the random one, and accuracy of the 
unexpectedness-only method is lower than that of the random one. 
This result shows it is possible to recommend serendipitous 
programs by using both distance reflecting a user’s preference and 
unexpectedness of programs. 
The first method recommends programs including not-interesting 
ones, because it recommends items that are not similar to 
recognized programs.  On the other hand, the second method 
distinguishes “unexpected and interesting programs” and 
“unexpected but not-interesting programs” from programs with 
low similarity according to unexpectedness. Consequently, the 
accuracy of the second method is high.  
Figure 10 shows the concept of user preference by distance and 
unexpectedness inferred from these results. Serendipitous 
programs and not-interesting programs are distant from the 
recognized area. According to the result “only unexpectedness” in 
Table 1, serendipitous programs exist in extra high-
unexpectedness areas because they tend to have more 
combinations of terms whose tendency of co-occurrence is low. 
Moreover, in the right lower box, not-interesting programs may 
exist. It seems very possible that the user would already know the 
highly unexpected programs near to recognized programs and not 
select them, because “unexpectedness” is a general metric and 
does not depend on a user’s record. 

 
Fig. 10: Concept of user preference with distance and 

unexpectedness 
 
Unexpectedness of programs calculated from tendency of co-
occurrence of terms in the programs is introduced here. For 
example, users find programs by reading TV guides and EPGs on 
web sites. Therefore, programs that have rare contents in TV 
guides are supposed to be serendipitous. TV guides and EPG are 
not provided by users but by the surroundings of users, so we 
simply introduce unexpectedness independently from a user’s 

characteristics. Examinees in this experiment are deemed to live 
in similar environments. The influence of unexpectedness for 
users living in totally different environments (e.g., living in 
different countries) might be significant. Unexpectedness may 
therefore be a frequency of contact with items similar to the 
relevant item which a user contacts with so far, with or without 
intention. 
Finally, our proposed method is compared with the other related 
methods. It is hard to compare by accuracy because serendipity 
depends on user’s subjective impression, so we compare these by 
requirements in Table. 2. 

 

Table 2: Comparison of serendipitous recommendation 
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Related works require some information concerning users, one 
requires a user’s impression of recommended items, another 
requires other users’ records, and another requires user’s habits. 
The proposed recommendation method requires few evaluation 
values to learn a user’s preference and does not depend on user’s 
surroundings. On the other hand, it requires information 
concerning programs, but recently there is much information 
regarding programs on Internet reference sites like Wikipedia. In 
short, the proposal method has most broad utility regarding 
various systems because it is useful for both devices and servers. 
As for our future work, however, which method satisfies users 
must be verified by a user’s subjective evaluation. On the other 
hand, we suggest using suitable terms for each user. 

5. FUTURE WORK 
Although the accuracy of our proposal serendipitous 
recommendation method was verified, the following three tasks 
remain as future work: improve accuracy, evaluate by more users, 
and tune performance of actual system 
To improve accuracy, it is necessary to select the recognized area 
outside of which many serendipitous programs exist; in fact, there 
are some recognized areas outside of which serendipitous 
programs do not exist. By considering the radius and number of 
programs included in recognized areas, it is possible to select the 
best recognized area. Moreover, another approach to improving 
accuracy is to get rich information concerning programs via 
metadata and information on web sites. 
It is also necessary to satisfy users by capturing user context with 
their spatial temporal information; for example, a user does not 

di
st

an

Unexpectedness

ce

Not interesting

Recognized

Serendipitous

Not interesting



want to watch a program in the morning but in the evening instead. 
It is also important to capture time-dependent user preferences, for 
example, users feel serendipity if a recommended program was 
not watched recently but has been watched in the past. With our 
recommendation method, a user’s preference is described in a 
feature vector space generated by the user’s selection history, so 
the structure of the space and distribution of user preference 
depends on time. 
To make the user-preference model statistically strong, it is 
necessary to evaluate our proposed method by more users, 
because the concept of serendipity is supposed to depend strongly 
on user’s subjective impression. Moreover, it is important to 
establish methods for evaluating a user’s satisfaction 
quantitatively. 
To introduce our recommendation method in an actual system, it 
is necessary to design an optimal data structure and speed up the 
method. 
In this study, we verified the recommendation method by using 
TV programs, but this approach can be applied to recommend 
items like books and DVDs from a user’s record of selecting TV 
programs. We plan to use this approach to capture the meanings 
of users like and dislike by collecting and analyzing user’s records. 

6. CONCLUSION 
To realize serendipitous recommendation, a recommendation 
method for extracting a user’s preference was proposed and 
evaluated. In particular, based on actual data obtained by giving a 
questionnaire to thirty users, a user-preference model using 
distance between programs was established. Based on this model, 
a serendipitous recommendation method using the distance and 
unexpectedness of programs was proposed. This method 
recommends a serendipitous program accurately at a detection 
rate is 78.2%. Moreover, it was found that the impression of 
unexpectedness depends on a user’s living environment rather 
than his or her character. This result is an important fact in regard 
to understanding a user’s preference in principle. 
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