
Supporting Consumers in Providing Meaningful
Multi-Criteria Judgments

Friederike Klan
Institute of Computer Science

Friedrich-Schiller-University of Jena
friederike.klan@uni-jena.de

Birgitta König-Ries
Institute of Computer Science

Friedrich-Schiller-University of Jena
birgitta.koenig-ries@uni-jena.de

ABSTRACT
The huge amount of products and services that are avail-
able online, makes it difficult for consumers to identify offers
which are of interest to them. Semantic retrieval techniques
for Web Services address this issue, but make the unreal-
istic assumption that offer descriptions describe a service’s
capabilities correctly and that service requests reflect a con-
sumer’s actual requirements. As a consequence, they might
produce inaccurate results. Alternative retrieval techniques
such as collaborative filtering (CF) mitigate those problems,
but perform not well in situations where consumer feedback
is scarce. As a solution, we propose to combine both tech-
niques. However, we argue that the multi-faceted nature
Web Services imposes special requirements on the under-
lying feedback mechanism, that are only partially met by
existing CF solutions. The focus of this paper is on how to
elicit consumer feedback that can be effectively used in the
context of Web Service retrieval and how to support users
in that process. Our main contribution is an algorithm that
suggests which service aspects should be judged by a con-
sumer. The approach effectively adjusts to user’s ability and
willingness to provide judgments and ensures that the pro-
vided feedback is meaningful and appropriate in the context
of a certain service interaction.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval; H.3.5 [Information Storage
And Retrieval]: On-line Information Services

General Terms
Algorithms, Human Factors, Measurement

Keywords
recommend what to judge, multi-criteria judgments, person-
alized feedback elicitation

Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain.

1. INTRODUCTION
The huge amount and heterogeneity of information, prod-

ucts and services that are available online, makes it difficult
for consumers to identify offers which are of interest to them.
Hence, new techniques that support users in the product
search and selection process are required. In the past decade,
semantic technologies have been developed and leveraged to
approach this issue [3]. They provide information with a
well-defined and machine-comprehensible meaning and thus
enable computers to support people in identifying relevant
content. This idea is not restricted to information, but also
applies to functionality provided via the web as services.
Semantic Web Services (SWS) provide a specific function-
ality semantically described in a machine-processable way
over a well-defined interface. Similarly, service requesters
may semantically express their service requirements. Hav-
ing both, a semantic description of a consumer’s needs as
well as the published semantic descriptions of available Web
Services, suitable service offers can be automatically discov-
ered by comparing (matching) the given service request with
available offer descriptions. Services might be automatically
configured and composed and finally invoked over the web.

Existing semantic matchmaking and service selection ap-
proaches evaluate the suitability of available service offers
exclusively by comparing the published offer descriptions
with a given request description. They implicitly assume
that offer descriptions describe a service’s capabilities cor-
rectly and that service requests reflect a consumer’s actual
requirements. The first assumption might have been valid in
a market with a small number of well-known and accredited
companies. However, it is no longer true in today’s market,
where easy and cheap access to the Internet and the emer-
gence of online marketplaces that offer easy to set up on-
line storefronts enable virtually everyone to provide his own
online shop accessible to millions of buyers. The situation
becomes even more critical, since due to the huge number of
offers, a hard competition and price war has been aroused
that might cause some providers to promise more than they
are able to provide. In our mind, the assumption that ser-
vice requests reflect a consumer’s actual requirements is also
not realistic. This is due to the fact that, though SWS ap-
proaches provide adequate means to semantically describe
service needs, they require the user to do this at a formal,
logic-based level that is not appropriate for the average ser-
vice consumer in an e-commerce setting. As a result, SWS
applications typically provide request templates for common
service needs. Those templates are then adjusted to fit to a
consumer’s requirements in a certain purchasing situation.

Though the resulting service requests might be a good esti-
mate of a consumer’s service needs, they cannot exactly met
his true requirements. As a consequence, service discovery
mechanisms that are purely based on the comparison of se-
mantic request and offer descriptions might produce inac-
curate results and thus lead to suboptimal service selection
decisions.

To mitigate those problems, alternative retrieval techniques
such as collaborative filtering [9] have been developed. Those
techniques do not rely on explicit models of consumer re-
quirements and product properties. They evaluate product
ratings of neighboring users, i.e. those that have a similar
taste, to recommend products or services that might be of
interest to a potential consumer. Though collaborative fil-
tering approaches are very effective in many domains, they
lack the powerful knowledge representation and matchmak-
ing capabilities provided by SWS and thus perform not well
in situations where feedback is scarce [9]. As a solution, we
propose to combine both techniques. More specifically, we
suggest to perform retrieval based on semantic service de-
scriptions and then use a collaborative feedback mechanism
to verify and refine those results. We think, that such a
hybrid approach can benefit from the best of both worlds
and thus has the potential to significantly improve the re-
trieval quality. Combining semantic retrieval with collab-
orative feedback mechanisms is not new (see for example
[8, 11]). However, we argue that simply re-using existing
techniques, as done in other approaches, will not tap the
full potential of this type of approach. This is due to the
fact, that the multi-faceted nature and the peculiarities of
SWS impose special requirements on the underlying feed-
back mechanism and in particular on the properties of the
consumer feedback that is required. In this paper, we will
analyze those requirements (Sect. 2) and will show that they
are only partially met by existing collaborative filtering so-
lutions (Sect. 3). The focus of this paper is on how to elicit
consumer feedback that can be effectively used in the context
of SWS retrieval and how to support users in that process
(Sects. 4 and 5). Our main contribution is an algorithm
that suggests which service aspects should be judged by a
consumer (Sect. 6). The approach accounts for a user’s abil-
ity and willingness to provide judgments and ensures that
the provided feedback is meaningful and appropriate in the
context of a certain service interaction. Our evaluation re-
sults show that the proposed procedure effectively adjusts to
a consumer’s personal judgment preferences and thus pro-
vides helpful support for the process of feedback elicitation
(Sect. 7). A detailed discussion on how to effectively use
consumer feedback to enhance SWS retrieval is published in
[6].

2. REQUIREMENTS
Various collaborative filtering mechanisms that allow to

retrieve products or services that are of interest to a con-
sumer [9] have been proposed. Those mechanisms are very
effective in many domains and seem to be very promising in
the context of our work. However, we argue that the multi-
faceted nature of SWS imposes special requirements on the
underlying feedback mechanism, that are only partially met
by existing CF solutions. In the following, we will specify
those requirements.

Consumer feedback is subjective, since it reflects a ser-
vice’s suitability as perceived through a certain consumer’s

eyes. Hence, feedback is biased by personal expectations and
preferences about the invoked service. Moreover, feedback
may refer to different services and to different request con-
texts. For example, a ticket booking service might have been
used to buy group tickets for a school class or to buy a sin-
gle ticket. However, the suitability of a service might differ
depending on the request context and hence the resulting
feedback also does. Feedback mechanisms should account
for those facts. To enable effective usage, feedback has to
be meaningful, i.e., the expectations and the context under-
lying a judgment should be clear. In addition, it should be
evident whether and how feedback made under one circum-
stance can be used to infer about a service’s suitability in
another situation.

We would also like to emphasize the necessity of feedback
to be as detailed as possible, i.e. comprising of judgments re-
ferring to various aspects of a service interaction. This is for
several reasons. Firstly, feedback, judging the quality of a
provided service as a whole, is of limited significance, since as
an aggregated judgment it provides not more than a rough
estimate of a service’s performance. Secondly, aggregated
feedback tends to be inaccurate. This is due to the fact, that
humans are bad at integrating information about different
aspects, as they appear in a multi-faceted service interac-
tion, in particular if those aspects are diverse and incompa-
rable [2, 10]. Finally, it has been shown in [4] that using
detailed consumer feedback allows to estimate user taste’s
more accurately and thus can significantly improve predic-
tion accuracy. In the context of detailed, i.e. multi-criteria,
consumer feedback, meaningful also means that the relation-
ship between different service aspects that might have been
judged is clear and that all relevant aspects characterizing
a certain service interaction have been judged. The latter is
due to the fact, that inferred judgments based on incomplete
information might be incorrect.

Another problem we encounter is feedback scarcity. Given
certain service requirements, a certain context and a par-
ticular service, feedback for exactly this set-up is rare and
typically not available at all. Hence, scarce feedback has to
be exploited effectively. In particular, service experiences
related to different, but similar contexts and those related
to other, but similar services have to be leveraged. However,
unfolding the full potential of consumer feedback, in partic-
ularly when using multi-aspect feedback, requires that users
provide useful responses. To ensure this, the feedback elic-
itation process should be assisted. In particular, it should
be taken care that elicited feedback is comprehensive and
appropriate in the context of a certain service interaction.
In addition, a consumer’s willingness to provide feedback
as well as his expertise in the service domain should be ac-
counted for. This is important, since asking a consumer for
a number of judgments he is not able and/or not willing to
provide will result in no or bad quality feedback. Finally,
it should also be ensured that all relevant information that
are necessary for effectively exploring consumer feedback are
recorded. This should happen transparently for the user.

Since the type of service interactions to be judged and
the kind of users that provide feedback are diverse and not
known in advance, even for a specific area of application, a
hard-wired solution with predefined service aspects to judge
is inappropriate. In fact, the process of feedback elicitation
should be customizable and should be automatically config-
urable at runtime.

3. RELATED APPROACHES
Aspects such as feedback scarcity and subjectivity of con-

sumer feedback are typically addressed in existing collabo-
rative filtering solutions [9]. Also, dealing with the context-
dependent nature of judgments has been an issue (see e.g.
[1]). However, existing solutions only partially address the
question of how to effectively use judgments made in one
context to infer about a service’s suitability in another con-
text. Multi-criteria feedback has been an issue in both aca-
demic [4] and commercial recommender systems. Typically,
the set of aspects that might be judged by a consumer is
either the same for all product types or specific per product
category. However, in the first case, this set of aspects is
either very generic, i.e. not product-specific, or not appro-
priate for all products. In the second case, this set has to
be specified manually for each new product. Moreover, typi-
cally the single aspect ratings are supplementary in the sense
that they do not have any influence on a product’s overall
rating. Alternatively, some reviewing engines such as those
provided by Epinions 1or Powerreviews2, offer more flexible
reviewing facilities based on tagging. Those systems allow
consumers to create tags describing the pros and contras of
a given product. These tags can then be reused by other
users. Tagging provides a very intuitive and flexible mech-
anism that allows for product-specific judgments. However,
the high flexibility of the approach is at the cost of the judg-
ments’ meaningfulness. This is due to the fact that tags do
not have a clear semantics. In particular, the relationship
between different tags is unknown and thus makes them in-
comparable. Moreover, those systems do not ensure that
all relevant aspects of a product or a service interaction are
judged. To summarize our findings, more flexible and adap-
tive mechanisms to elicit and describe multi-criteria feed-
back are required. In particular, the question of how to
describe this type of feedback meaningfully has been hardly
considered. To the best of our knowledge, the issue of assist-
ing consumers in providing comprehensive, appropriate and
meaningful feedback has not been addressed at all. Also, as-
pects such as a consumer’s ability and willingness to provide
judgments for specific aspects have been hardly considered
in existing solutions.

4. SEMANTIC WEB SERVICE RETRIEVAL
As a basis for further discussion, we introduce the seman-

tic service description language DSD (DIANE Service De-
scription) [7] and its mechanisms for automatic semantic
service matchmaking that underlie our approach. Similarly
to other service description approaches, DSD is ontology-
based and describes the functionality a service provides as
well as the functionality required by a service consumer by
means of the precondition(s) and the set of possible effect(s)
of a service execution. In the service request depicted in
Fig. 1, the desired effect is that a product is owned after
service execution. A single effect corresponds to a partic-
ular service instance that can be executed. While service
offer descriptions describe the individual service instances
that are offered by a service provider, e.g. the set of mobile
phones offered by a phone seller, service request descrip-
tions declaratively characterize the set of service instances
that is acceptable for a consumer. In the service request

1http://www.epinions.com
2http://www.powerreviews.com

in Fig. 1, acceptable instances are mobile phones that are
cheaper than 50$, are either silver or black, are of bar or
slider style and are from either Nokia or Sony Ericsson. As

price
Product

MobilePhoneType

Model

Owned

:ServiceProfile

productType

style colorphoneType

manufacturer model

product

effect

Battery

battery

...

Company
in {nokia[1.0], sonyEricsson[0.8]}

in {bar, slider}

MobilePhoneStyle Color
in {silver, black}

Price

Currency

==usd

Double

<=50

currency amount

MobilePhone

0.3 * (battery mul style mul color) +
0.7 * (phoneType mul battery mul color)

Figure 1: DSD service request

can be seen in the example, DSD utilizes a specific mech-
anism to declaratively and hierarchically characterize (ac-
ceptable) sets of service effects: Service effects are described
by means of their attributes, such as price or color. Each
attribute may be constrained by direct conditions on its val-
ues and by conditions on its subattributes. For instance,
the attribute phoneType is constrained by a direct condition
on its subattribute manufacturer, which indicates that only
mobile phones from Nokia or Sony Ericsson are acceptable.
The direct condition <= 50 on the price amount in Fig. 1
indicates that only prices lower than 50$ are acceptable.
Attribute conditions induce a tree-like and more and more
fine-grained characterization of acceptable service effects. A
DSD request does not only specify which service effects are
acceptable, but also indicates to which degree they are ac-
ceptable. In this context, a preference value from [0, 1] is
specified for each attribute value. The default is 1.0 (totally
acceptable), but alternative values might be specified in the
direct conditions of each attribute. For example, the pref-
erence value for the attribute manufacturer is 1.0 for Nokia
phones and 0.8 for mobile phones from Sony Ericsson.

As demonstrated in [7], DSD service and request descrip-
tions can be efficiently compared. Given a service request,
the semantic matchmaker outputs an aggregated overall pref-
erence value ∈ [0, 1] for each available service offer descrip-
tion. This value is called matching value and indicates how
ell a considered service offer fits to a consumer’s require-
ments encoded in the service request. Based on the match-
ing values, the best fitting service offer is determined and
invoked.

5. FEEDBACK ELICITATION
In the following, we will analyze what is required to make

detailed consumer feedback meaningful, comprehensive and
appropriate to characterize a certain service interaction. We
will demonstrate how semantic service descriptions can be
used to elicit feedback that fulfills those requirements. A
detailed discussion on how to effectively use the elicited con-
sumer feedback to enhance SWS retrieval is out of the scope

of this paper and is published in [6].

What is required to make consumer feedback appropri-
ate, comprehensive and meaningful.

We assume, that a service request at least covers all service
aspects that are important to the consumer. Potentially, all
service aspects in a request description might be rated by
a consumer. In order to be able to exploit these ratings,
we need to make sure that they are meaningful (i.e., con-
tain the rating context, e.g., which product a rating refers
to) and comprehensive (i.e., contain all relevant aspects, a
quality rating without information whether the price was ok
is not helpful). In addition, we need to know how different
service aspects relate to each other (e.g., how can a rating
about quality be gained from ratings on subaspects such as
usability and battery capacity?). The challenging question
is how to fulfill the identified requirements while still being
flexible in the choice of the aspects to rate.

Creating appropriate, comprehensive and meaningful
consumer feedback.

We propose the concept of a feedback structure to deal
with that issue. A feedback structure is a subtree of the
request tree, whose leaves correspond to the aspects that
may be rated by the user. Consider the example request
depicted in Fig. 1. The dotted part of the tree indicates
a possible feedback structure for that request, where the
aspects price, battery, style, color and phoneType have to be
rated by the consumer. Note that this structure contains
all information that are necessary to effectively utilize the
provided ratings. In particular, it encodes the context of
a rating in terms of the path from the request root to the
rated aspect, the other aspects that were judged and the
hierarchical relationship between the considered aspects.

To assure that the provided feedback is comprehensive,
the request subtrees rooted at the feedback structure’s leaves
should cover all leaves of the tree. This guarantees that all
service aspects considered in the request description are ei-
ther directly or indirectly (by providing an aggregated rat-
ing) judged by the service consumer. The feedback struc-
ture depicted in Fig. 1 fulfills this requirement and thus is
valid. Omitting, e.g., the aspect phoneType would result in
an invalid structure. Note, that we are still flexible in the
choice of the attributes to be rated, e.g. we could allow the
consumer to provide a single rating for productType instead
of asking him to judge battery, style, color and phoneType
separately. The feedback structure together with the con-
sumer provided ratings are propagated to other consumers
and might be used to infer knowledge about a service’s suit-
ability for consumers with other service requirements (see
[6] for details).

6. RECOMMENDING WHAT TO JUDGE
To ensure feedback quality, the feedback elicitation pro-

cess should be assisted and should account for a consumer’s
judgment preferences such as his willingness to provide rat-
ings as well as his expertise in the considered service domain.
However, those judgment preferences might differ from re-
quest to request, e.g. I might be an expert in judging the
quality of Personal Computers, but I do not know that much
about servers. As a consequence, I like to/I’m able to judge
the quality of a purchased computer, in case of a PC, but

I’m not willing to do that when purchasing a new server
for our working group. This aspect should be considered
during feedback elicitation. To achieve this, we propose the
following solution.

Assume, that given a certain service request, an appro-
priate service was selected and invoked and now its suit-
ability has to be judged by the consumer. In a first step,
we utilize the provided service request to determine possible
feedback structures as defined in the previous section. Sub-
sequently, the structure that is most suitable for the user,
i.e. in the context of the given request, fits best to the
consumer’s personal abilities and judgment preferences, is
selected and presented to the user. The required knowledge
about the user’s judgment requirements is learned from the
his behavior in previous judgment sessions. The presented
feedback structure represents a careful compromise between
the consumer’s competing judgment requirements and might
be adjusted to his actual judgment needs. This can be done
by expanding and/or hiding subtrees of the presented struc-
ture. For example, in the structure depicted in Fig. 1, we
might expand the leaf phoneType to judge its subaspects
manufacturer and model. Finally, the user judges all leaf at-
tributes of the structure, e.g. by providing a rating. Once,
the consumer submits his judgments, the system takes care
of storing all relevant feedback information and session data
for future recommendations. In particular, it is recorded
which and how many service aspects were judged by the
consumer and which service request lead to the judgment.
The acquired information are used later on to identify suit-
able feedback structures in future judgment sessions.

6.1 Feedback structure suitability
Given a consumer’s service request, typically many dif-

ferent feedback structures are possible. However, how to
measure the suitability of each feedback structure to iden-
tify one that fits best to the user’s personal abilities and
willingness to provide judgments? We have to consider two
aspects here. Firstly, comprise the feedback structure leaves
of those attributes that the consumer’s is able to judge and
secondly, is the consumer willing to judge all those aspects?

As a measure of a consumer’s willingness and ability to
judge a certain service aspect, we us the frequency with
which the user judged this aspect in the past. We also con-
sider the request context in which an aspect was judged.
More specifically, we consider how similar the request that
lead to the past judgment is to our request. Let r be the
service request that was posed by the consumer. Then the
consumer’s willingness and ability to judge service aspect
a is determined by wa(r) =

∑
r′∈Ra

sim(r′, r), where Ra

is the set of past service requests that lead to a judgment
of a. The value sim(r′, r) indicates how similar the service
requirements encoded in the past request r′ are to those in
current request r. A detailed discussion on how compute the
semantic similarity of two requests is provided in Sect. 6.3.

The suitability sattributes(fs, r) of a given feedback struc-
ture fs is determined by the consumer’s willingness and abil-
ity to judge its leaf aspects Afs. We propose to compute it
as the sum of its leaf attributes’ wi-values.

sattributes(fs, r) =

∑
i∈Afs

wi(r)∑
j∈Ar

wj(r)
(1)

The term is normalized by dividing it by the sum of the
wj-values of all attributes j ∈ Ar that are contained in the

given request r. Hence, sattributes(fs, r) ∈ [0, 1].
To measure a consumer’s willingness to judge k = |Afs|

leaf aspects Afs, we compare how similar the past requests
that also led to a judgment of k aspects are to the service
request r posed by the consumer. More specifically, the
suitability snumber(fs, r) of the feedback structure fs with
respect to the number of service aspects that have to be
judged is determined by

snumber(fs, r) = sim(Rk, r), (2)

where sim(Sk, r) is the mean request similarity of all past
service requests that lead to a judgment of k aspects. In
cases, where no previous requests lead to a number of k ser-
vice aspects to be judged, snumber(fs, r) is determined as
the mean of sim(Rk′ , r) and sim(Rk′′ , r), where k′ is the
largest k′ < k for which a past request with k′ judgments
exists and k′′ is the smallest k′′ > k for which a past re-
quest with k′′ judgments exists. In case, k′/k′′ did not ex-
ist, sim(R′

k, r)/sim(R′′
k , r) was assumed to be 1.0/0.0, i.e.

by default feedback structures with a low number of service
aspects to be judged are preferred. Assuming that sim(x, y)
is a value from [0, 1], snumber(fs, r) is also from [0, 1]. The
overall suitability s(fs, r) ∈ [0, 1] of a feedback structure fs
in the context of the posed request r is

s(fs, r) = α · sattributes(fs, r) + β · snumber(fs, r). (3)

The parameters α and β with α, β ∈ [0, 1] and α = 1 − β
determine the influence of the terms sattributes(fs, r) and
snumber(fs, r), respectively. The values α and β might vary
from user to user. In Sect. 6.4, we will demonstrate how
those values can be learned from a consumer’s past judgment
behavior.

6.2 Determining possible feedback structures
For a given request, the number of possible feedback struc-

tures might be high, whereas the number of those that have
the potential to be optimal (with respect to their suitabil-
ity s(fs, r) for the user) is low. Hence, we require a way
to determine potentially optimal feedback structures effec-
tively, i.e. without having to construct all possible struc-
tures. In the following, we propose an algorithm that per-
forms this task. It constructs potentially optimal feedback
structures recursively and drops non-optimal partial struc-
tures as soon as possible. Fig. 2 shows how the algorithm

0.0

0.3

0.2 0.2

0.05 0.05 0.05 0.050.05 0.05

0.0 0.0

{[1,0.05]} {[1,0.05]} {[1,0.05]} {[1,0.05]} {[1,0.05]}

{[1,0.05], [2,0.0]}

{[1,0.0]}{[1,0.0]}

{[1,0.2], [4,0.2], [5,0.2]}{[1,0.2], [2,0.1]}

{[1,0.3], [2,0.4], [5,0.4],[6,0.4],[3,0.3], [6,0.3], [7,0.3]}

{[1,0.3], [2,0.4], [5,0.4],[6,0.4],[3,0.3], [7,0.3]}

product

price productType

currency amount battery
style phoneType color

manufacturer model

Figure 2: Determining possible feedback structures

works, exemplary for the service request depicted in Fig. 1.

Each request node is associated with a list of entries, each
corresponding to one of the feedback structures that are
possible for the subtree rooted at that node. Let fs be
one of those structures and let [a, b] be its corresponding
entry. Then a is the number of aspects that have to be
judged in fs and b is sattributes(fs, r), where r is the re-
quest subtree rooted at the considered node. The algorithm
works as follows. First, it initializes each request node’s
list with an entry [1, sattributes(fs, r)], where fs is the feed-
back structure comprising only of the node itself and r is
the request subtree rooted at the considered node. For an
example, consider Fig. 2. The initial entry in each list is
highlighted. The number within each node indicates the
value sattributes(fs, r), which, for the sake of this example,
is arbitrarily chosen. Starting from the request leaves (high-
lighted request nodes), the algorithm recursively computes
lists for all parent nodes. Computing a node’s list is done in
three steps. First, the cross product C of the child nodes’
entry sets is computed. For example to determine possible
feedback structures for the product-node (Fig. 2), we have
to determine C = [1, 0.2], [2, 0.1]× [1, 0.2], [4, 0.2], [5, 0.2], i.e.
the cross product of the price and productType node’s entry
lists. Each element c of C gives rise to an entry [a, b] in the
product-node list, i.e. to a possible feedback structure fs of
this node’s subtree. Since a is the number of attributes to
judge in fs, it is computed as the sum of the a values in c.
The suitability b of fs with respect to the selection of at-
tributes that have to judged is computed as the sum of its
leaf attributes’ b values (Formula 1), i.e. the sum of the b
values in c. In a final step, we prune the computed list. This
is done by keeping only a single entry [a, b] for each differ-
ent value of a per node, where b = max{x|[a, x]isinthelist}.
Note, that in doing so, we keep only those feedback struc-
tures that have the potential to be optimal and hence reduce
the length of the node list to at most l, where l is the num-
ber of leaves of the subtree rooted at the considered node.
Finally, we end up with a list for the request root comprising
of entries for all possible feedback structures for the request,
that have the potential to be optimal. Those structures are
compared with respect to their suitability (Formula 3). The
most suitable is selected and presented to the user.

6.3 Request similarity
As mentioned earlier, a consumer’s judgment preferences

depend on the request context, i.e. the kind of service in-
teraction, that has to be judged. To allow for a compari-
son of the request contexts, in which judgments have been
made in the past, with the current request, we require a
measure for the semantic similarity of two requests, i.e. the
similarity of the service requirements they encode. In this
section, we will propose such a measure. It recursively com-
putes the similarity sim(r, r′) of two request trees r and r′

by computing the similarity of their root nodes’ ontolog-
ical type (simtype(root(r), root(r′))) and direct conditions
(simdc(root(r), root(r

′))) and the aggregated similarity of
their root nodes’ child trees (simattr(root(r), root(r′))). More
specifically, we define sim(r, r′) to be the mean of these three
values. In the remainder of the section, we will explain the
rationale between those three similarity values and particu-
larize on how to determine them. Possible similarity values
sim(r, r′) are from the interval [0, 1], where a similarity value
of 0.0 means ”not similar at all” and a value of 1.0 means
that the service requirements encoded by two requests are

identical.

Determining the type similarity.
The type similarity simtype(n, n′) ∈ [0, 1] of two nodes n

and n′ indicates how similar those nodes are with respect
to their ontological type. It is defined similar to Jaccard’s
index [5], that is often used to compare the sample sets,

simtype(n, n′) =
|An ∩An′ |
|An ∪An′ | (4)

where An is the set of attributes defined for the type of n
and An′ is the set of attributes defined for the type of n′.
The type similarity simtype(n, n′) for the root nodes of the

requests depicted in Fig. 3 is |{battery,phoneType,color}|
|{battery,phoneType,color,style}| =

0.75.

Determining the similarity of the direct conditions.
The similarity simdc(n, n

′) ∈ [0, 1] of two nodes n and n′

indicates how similar those nodes are with respect to their
direct conditions. As mentioned in Sect. 4, direct conditions
restrict acceptable values of a service attribute. For each
kind of direct condition that might be specified for a certain
attribute, we define a separate similarity measure. For ex-
ample, for direct conditions of type IN{. . .}, the similarity
is determined as the quotient of the number of common val-
ues divided by the number of values that are allowed for n
or n′. For direct conditions of type <= x and >= x, the
similarity is calculated as min{x, y}/max{x, y}, where x is
the upper/lower bound for the values of n and y for those of
n′. Accordingly, if only one of the nodes specified a certain
type of direct condition, the similarity is defined to be 0.0
and if both nodes do not specify any direct conditions, the
similarity is defined to be 1.0.

As an example, consider again the requests depicted in
Fig. 3. The Color-nodes both specify a direct condition
of type IN{. . .}. The similarity simdc(ncolor, n

′
color) with

respect to this direct condition is 1/2 = 0.5. The Bat-
tery-nodes both do not specify any direct conditions, hence
simdc(nbattery, n

′
battery) = 1.0.

Determining and aggregating the similarity of the root
nodes’ child trees.

The similarity value simattr(n, n′) ∈ [0, 1] indicates how
similar two nodes n and n′ are with respect to their child
trees. Let A be the set of attributes defined either for
the type of n, the type of n′ or for both types and let
{sim(ra, r

′
a)|a ∈ A} be the similarity values for correspond-

ing attribute subtrees ra and r′a of n and n′. Again, in-
spired by Jaccard’s index, the aggregated similarity of two
nodes’ child trees is defined as the sum of the similarity val-
ues {sim(ra, r

′
a)|a ∈ A} divided by the sum of the maximal

similarity values that can be achieved for each attribute, i.e.
|A|.

simattr(n, n′) =

∑
a∈A sim(ra, r

′
a)

|A| (5)

Since attributes in A are not necessarily defined for both, the
type of n and n′, we set sim(ra, r

′
a) = 0.0, if the attribute

a is not defined for one type. Attributes in A might also
not be specified in one or both of the nodes. If an attribute
a is not specified in both nodes, we set sim(ra, r

′
a) = 1.0,

else, if a is specified in just one of the nodes, sim(ra, r
′
a)

is defined to be sim(ra, t
′) resp. sim(t, r′a), where t is a

tree comprising of a single node, having the most generic
type defined for a in the ontology. We illustrate the pro-

MobilePhoneType

productType

style colorphoneType

Battery

battery

...

in {bar, slider}

MobilePhoneStyle Color
in {silver, black}

MobilePhone

...

productType

colorphoneType

Battery

battery

...

Color
in {black}

Phone

request r:

request r':

Figure 3: Determining the similarity of two requests
r and r′

cedure for the root nodes of the two request fragments de-
picted in Fig. 3. The type of r’s root node is MobilePhone
and that of r′’s root node is Phone. Assume, that the on-
tology defines the attributes battery, phoneType and color
for the type Phone and an additional attribute style for
the type MobilePhone, which is a subtype of Phone. The
similarity simattr(n, n′) of the requests’ root nodes n and
n′ is determined by the similarity of their corresponding
child trees for the attributes A = {battery, phoneType, color,
style}. The attributes battery and color are specified in both
requests, hence the similarity values sim(rbattery, r

′
battery)

and sim(rcolor, r
′
color) can be computed by determining the

request similarity for the request subtrees rooted at the
Battery-nodes and the subtrees rooted at the Color-nodes.
The attribute style is only defined for the type MobilePhone,
hence sim(rstyle, r

′
style) = 0.0. The attribute phoneType is

defined for both types, MobilePhone and Phone, but only
specified in r. Hence, r′phoneType has to be replaced by a
node t′ having the most generic type defined for the at-
tribute phoneType. Let PhoneType be this type. This means
that the type of the node that describes the attribute phone-
Type has to be PhoneType or one of its subtypes. Presume
that MobilePhoneType is a subtype of PhoneType. The simi-
larity sim(rphoneType, r

′
phoneType) is determined by comput-

ing sim(rphoneType, t
′), where rphoneType is the subtree of r

rooted at the MobilePhoneType-node.

6.4 Dynamically adjusting α and β

As discussed earlier, the parameters α and β that weight
the influence of the terms sattributes(fs, r) and snumber(fs, r),
might vary from user to user. In this section, we will demon-
strate how those values can be learned from a consumer’s
past judgment behavior. Initially, i.e. without having in-
formation about a user’s previous judgment behavior, we
do not know anything about those parameters’ values, so α
could be any value from the interval [0, 1] and β = 1 −

α. Hence, for the purpose of computing the suitability
s(fs, r) of possible feedback structures, we set α to the
midpoint of this interval, i.e. α = 0.5 = β. Once hav-
ing determined the most suitable feedback structure fs, we
present it to the consumer, who has the opportunity to
change it by expanding/collapsing nodes. Finally, the con-
sumer provides judgments for the resulting structure’s leaf
nodes. Obviously, the resulting feedback structure fs’ was
more suitable to the user than the structure fs that was
recommended. Hence, we conclude that s(fs′, r) should be
larger than s(fs, r). Using Formula 3, we get that s(fs, r)−
snumber(fs′, r)/sattributes(fs′, r) − snumber(fs′, r) < α for
sattributes(fs′, r) > snumber(fs′, r) and> α for sattributes(fs′, r)
< snumber(fs′, r). Using those information, we can adjust,
i.e. shrink the range of α correspondingly. For example, if
we get α < 0.8, we adjust the interval to [0, 0.8). In case,
the consumer’s judgment behavior is inconsistent, e.g. hav-
ing α ∈ (0.5, 0.7), we get α < 0.8, we simply ignore those
information. To ensure, that the most recent information
have the most influence, we process session data in the or-
der of increasing age.

7. EVALUATION
In the evaluation of our approach, we wanted to find out

how fast the recommendation algorithm proposed in Sect. 6
adjusts to different judgment preferences.

Test setting.
For that purpose, we created a set of DSD service requests

covering typical requirements of consumers looking for com-
puter items from different categories, such as desktop PCs,
PDAs, servers, notebooks or organizers. For our tests, we
created 48 service requests, 6 per category. Requests within
each category varied in the selection of attributes that were
specified and in the range of attribute values that were ac-
ceptable for the user. All request types shared common at-
tribute types, e.g. for all kinds of requests an attribute color
and an attribute price could be specified.

Using this requests we performed several tests with a sin-
gle test user. The basic procedure for each test was as fol-
lows. Starting with no information about previous judgment
behavior, several judgment sessions were performed. Dur-
ing each session, one of the 48 requests was selected. After
that, the system proposed a feedback structure using the al-
gorithm proposed in Sect. 6 with knowledge about the user’s
judgment behavior in the previous judgment sessions. After
being provided with the recommended feedback structure,
the user had the opportunity to change this structure. For
that purpose, the consumer was allowed to expand/collapse
feedback structure nodes. By clicking on a particular node,
all its direct children were expanded/collapsed. The quality
of the proposed feedback structure was measured as the edit
distance between the proposed feedback structure and the
actual feedback structure that was used. More formally, we
counted the number of expand/collapse operations the user
had to perform to get the structure whose leaves he finally
judged. The rationale behind this measure is, that the edit
distance is a direct measure of the users effort to get to the
desired structure and thus, in our opinion, is a good measure
for the quality of the recommended structure. For each of
the test, we looked at whether and how fast the edit distance
decreased with the number of judgment sessions.

Test runs and results.
We performed test runs with different judgment prefer-

ences and different sets of requests that were posed during
a sequence of sessions. In a first series of tests, the requests
within each sequence of sessions were different, but chosen
from a single (computer) category, e.g. just notebook re-
quests. This test setting served as a baseline and was chosen
to evaluate the performance of our approach in the absence
of any context effects. We performed three kinds of tests
differing in the judgment preferences of the judging user.
In test A1, the consumer always judged a certain number
of aspects. However, the types of aspects that were judged
differed. In test A2, the user judged a different number of
attributes during each session, but required that the set of
attributes to judge contained a certain set of attributes. For
example, a user might require to always judge the price of
a product, but is also willing to rate other service aspects.
Finally, we performed a test A3, were the consumer had spe-
cific requirements on both, the number and kind of aspects
to judge. The tests A1-A3 were performed with request
sets from different categories. The plot depicted in Fig.4
(A2) is representative for all test runs and all types of tests
in this series. It shows the results for test A2 performed
with requests from the category digital watches. As can be
seen, the adaptation of the recommendation algorithm to
the consumers judgment preferences is very fast. The initial
edit distance decreases to 0 after just one session. This is
due to the fact, that request similarity does not play a role
in those tests and hence the values of α and β can be arbi-
trarily chosen. The depicted behavior was observed for all
three kinds of tests (A1-A3).

0

1

2

3

4

1 5 10

session number

ed
it

di
st

an
ce

0

1

2

3

4

1 5 10

ed
it

di
st

an
ce

session number

A2

B1

Figure 4: Results of the tests A2 and B1

In a second series of tests, we evaluated how fast the pro-
posed recommendation algorithm adjusts to a consumers
judgment preferences, if those depend on the request con-
text. For that purpose, we performed judgment sessions,
were the user posed requests from different categories and
exhibited a different judgment behavior for each category.
We run three types of tests. In test B1, similarly to test

0

1

2

3

4

1 5 10

ed
it

di
st

an
ce

session number

0

1

2

3

4

1 5 10

ed
it

di
st

an
ce

session number

B2

B3

Figure 5: Results of the tests B2 and B3

A1, the user always judged a particular number of aspects.
However, this number differed for each request category. For
example, a user might always judge 3 aspects when asking
for desktop PCs, but is willing to judge 5 service aspects,
when asking for notebooks. Analogously to test A2, the
user in test B2 required the set of aspects to be judged to
contain a particular set of aspects. However, this set var-
ied for different request categories. Finally, we performed
a test B3, were the consumer had specific requirements on
both, the number and kind of aspects to judge. Those re-
quirements were different for each request category. Fig. 4
(B1) exemplary shows the results for tests of type B1. In
the depicted test, we alternated sessions based on a request
for a desktop PC (continuous line), where the user judged
11 service aspects, with those based on a request for a PDA
(dotted line), where the consumer judged only one aspect.
As can be seen, the adjustment to the consumer’s judgment
preferences for PDAs takes 3 sessions. This is due to the
fact, that at the beginning both terms sattributes and snumber

are equally weighted. Since for desktop PCs many aspects
are judged and since most of those aspects are also shared
by PDA requests, term sattributes dominates the suitability
value and thus favors improper feedback structures. This
changes when α and β adjust over time. Fig. 5 (B2) ex-
emplary shows the results for tests of type B2. Again, we
alternated desktop PC requests with those for a PDA. While
when judging desktop PCs, we had a set of two aspects that
had to be judged in any case, it was only one specific aspect
when judging PDAs. Again, it required 4 sessions to adjust
α and β appropriately. Finally, Fig. 5 (B3) exemplary shows
the results for tests of type B3. In this test, we alternated
three types of requests (desktop PC, PDA and digital watch
requests). As can be seen, the algorithm propose appro-
priate feedback structures after just 1 session of each type.
This is due to the fact, that for the three request types, the
consumer’s judgment behavior differed much in terms of the
number and types of aspects to be judged. Hence, though
α and β are not yet adjusted, the correct feedback structure

can be identified.

8. CONCLUSION
In this paper, we demonstrated how detailed consumer

feedback, that is meaningful and appropriate in the context
of a service interaction, can be elicited and how users can be
supported in that process. Our main contribution is an al-
gorithm that suggests service aspects that might be judged
by a consumer. Our evaluation results show, that the pro-
posed procedure effectively adjusts to a user’s ability and
willingness to provide judgments.

9. REFERENCES
[1] G. Adomavicius. Incorporating contextual information

in recommender systems using a multidimensional
approach. ACM Transactions on Information Systems,
23(1):103, 2005.

[2] R. M. Dawes. The robust beauty of improper linear
models in decision making. American Psychologist,
34(7):571–582, 1979.

[3] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn,
M. Stollberg, D. Roman, and J. Domingue. Enabling
Semantic Web Services: The Web Service Modeling
Ontology. Springer, 2007.

[4] Y. K. Gediminas Adomavicius. New recommendation
techniques for multi-criteria rating systems. IEEE
Intelligent Systems, 22(3), 2007.

[5] P. Jaccard. Étude comparative de la distribution
florale dans une portion des alpes et des jura. Bulletin
de la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[6] F. Klan and B. König-Ries. Enabling trust-aware
semantic web service selection - a flexible and
personalized approach. Jenaer Schriften zur
Mathematik und Informatik, Math/Inf/02/10,
Friedrich-Schiller-University Jena, August 2010.

[7] U. Küster, B. König-Ries, M. Klein, and M. Stern.
Diane - a matchmaking-centered framework for
automated service discovery, composition, binding and
invocation. In Proceedings of the 16th International
World Wide Web Conference (WWW2007), Banff,
Alberta, Canada, May 2007.

[8] U. S. Manikrao and T. V. Prabhakar. Dynamic
selection of web services with recommendation system.
In Intl. Conf. on Next Generation Web Services
Practices, pages 117–121, Washington, DC, 2005.
IEEE Computer Society.

[9] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The
Adaptive Web: Methods and Strategies of Web
Personalization, volume 4321 of Lecture Notes in
Computer Science, pages 291–324. Springer, Berlin,
Heidelberg, 2007.

[10] P. Slovic. Limitations of the Mind of Man:
Implications for decision making in the nuclear age.
Los Alamos Scientific Laboratory, 1972.

[11] H. C. Wang, C. S. Lee, and T. H. Ho. Combining
subjective and objective qos factors for personalized
web service selection. Expert Syst. Appl.,
32(2):571–584, 2007.

