
A Generalized Probabilistic Framework and its Variants for
Training Top-k Recommender Systems

Harald Steck
Bell Labs, Alcatel-Lucent

Murray Hill, NJ
Harald.Steck@alcatel-lucent.com

Yu Xin
∗

CSAIL MIT
Cambridge, MA

YuXin@mit.edu

ABSTRACT
Accounting for missing ratings in available training data
was recently shown [3, 17] to lead to large improvements
in the top-k hit rate of recommender systems, compared
to state-of-the-art approaches optimizing the popular root-
mean-square-error (RMSE) on the observed ratings. In this
paper, we take a Bayesian approach, which lends itself natu-
rally to incorporating background knowledge concerning the
missing-data mechanism. The resulting log posterior distri-
bution is very similar to the objective function in [17]. We
conduct elaborate experiments with real-world data, testing
several variants of our approach under different hypotheti-
cal scenarios concerning the missing ratings. In the second
part of this paper, we provide a generalized probabilistic
framework for dealing with possibly multiple observed rat-
ing values for a user-item pair. Several practical applica-
tions are subsumed by this generalization, including aggre-
gate recommendations (e.g., recommending artists based on
ratings concerning their songs) as well as collaborative filter-
ing of sequential data (e.g., recommendations based on TV
consumption over time). We present promising preliminary
experimental results on IP-TV data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
Data Mining

General Terms
Algorithms

Keywords
Recommender Systems

∗This work was done while an intern at Bell Labs, Alcatel-
Lucent.

Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain.

1. INTRODUCTION
The idea of recommender systems is to automatically sug-

gest items to each user that s/he may find appealing. The
quality of recommender systems can be assessed with respect
to various criteria, including accuracy, diversity, surprise /
serendipity, and explainability of recommendations.

This paper is concerned with accuracy. The root mean
squared error (RMSE) has become the most popular accu-
racy measure in the literature of recommender systems–for
training and testing. Its computational efficiency is one of
its main advantages. Impressive progress has been made in
predicting rating values with small RMSE, and it is impos-
sible to name all approaches, e.g., [4, 6, 7, 11, 13]). There is,
however, also some work on optimizing the ranking of items,
e.g., measured in terms of normalized Discounted Cumula-
tive Gain (nDCG) [18]. Despite their differences, they have
in common that they were trained and tested on observed
ratings only. Obviously, these measures cannot immediately
be evaluated if some items have unobserved ratings.

In this paper, we consider the top-k hit rate–based on all
(unrated) items–as the natural accuracy measure for rec-
ommender systems, as only a few out of all unrated items
can be recommended to a user in practice (see Section 3
for exact definition of top-k hit rate). While this measure
is computationally tractable for testing the predictions of
recommender systems, unfortunately it is computationally
very costly for training recommender systems. For training,
we thus resort to appropriate surrogate objective functions
that are computationally efficient.

In recent work [3, 17], it was shown that the top-k hit
rate can be significantly improved on large real-world data
by accounting for the fact that the observed ratings provide
a skewed picture of the (unknown) distribution concerning
all (unrated) items and users.

Motivated by the results of [17], as the first contribution of
this paper, in Section 2 we present a probabilistic approach
that allows us to naturally include background knowledge
concerning the (unknown) distribution of all items and users
into our training objective function, the posterior probabil-
ity of the model.

In our second contribution, we conduct elaborate experi-
ments on the Netflix Prize data [1] and test several models
under different hypothetical scenarios concerning the miss-
ing ratings in Section 4. These different scenarios serve as a
sensitivity analysis, as the ground truth of the missing data-
mechanism is unknown due to lack of data. These experi-
ments are based on our popularity-stratified recall measure,
which we define in Section 3.

As the third contribution of this paper, we generalize this
probabilistic approach as to account for possibly multiple ob-
served rating values for a user-item pair in Section 5. This
general framework subsumes several applications in addi-
tion to the one outlined in Section 2. Two of which are
outlined in Section 5: while the training objective function
for a recommender system concerning TV programs seems
motivated in an ad-hoc manner in [5], we show that it can
be understood and improved naturally in a Bayesian frame-
work; apart from that, we also provide a Bayesian approach
for making aggregate recommendations, e.g., recommending
an artist or concert to a user based on the ratings given to
individual songs.

2. MODEL TRAINING
In this section, we outline a probabilistic framework that

allows us to incorporate background knowledge when train-
ing recommender systems on available data. The use of
background knowledge in addition to the available training
data can significantly improve the accuracy of recommender
systems on performance measures like top-k hit rate, recall,
precision, area under the ROC curve, etc. This was demon-
strated for implicit feedback data in [5, 10], and for explicit
feedback data in [3, 17]. Like in [17], we use background
knowledge that missing rating values tend to reflect negative
feedback, as experimentally observed in [9, 8]; i.e., negative
feedback tends to be missing from the available data with a
larger probability than positive feedback does.

The Bayesian approach lends itself naturally to this task.
We consider the rating matrix R as a matrix of random
variables: each element Ri,u concerning item i = 1, ..., i0
and user u = 1, ..., u0 is a random variable with normal
distribution, where i0 denotes the number of items and u0

is the number of users.

2.1 Model
We take a collaborative filtering approach, and use a low-

rank matrix-factorization model, which has proven success-
ful in many publications. Like the rating matrix, we consider
our model as a matrix of random variables, M . Each random
variable Mi,u corresponds to the rating of item i assigned by
user u. In matrix notation, it reads

M = roffset + PQ> (1)

where roffset ∈ R is an offset value, and P , Q are low-rank
matrices of random variables with dimensions i0 × d0 and
u0 × d0, respectively, where rank d0 � i0, u0. We use upper
case symbols to denote random variables (with a Gaussian
distribution), and lower case symbols to denote values.

2.2 Prior over Matrix Elements
In our Bayesian approach, we first define the usual prior

over model parameters, concerning each entry of the low
rank matrices P and Q (see also [12]):

p(M |σ2
P , σ2

Q) =

(Y
i

Y
d

N (Pi,d|0, σ2
P,i)

)

·

(Y
u

Y
d

N (Qu,d|0, σ2
Q,u)

)
(2)

The vectors of variances σ2
Q = (σ2

Q,u)u=1,...,u0 and σ2
P =

(σ2
P,i)i=1,...,i0 for all users u = 1, ..., u0 and items i = 1, ..., i0

are free parameters of the zero-mean normal prior distribu-
tion, denoted by N . There are several ways of defining the
standard deviations in Eq. 2, eventually resulting in differ-
ent kinds of regularization. The obvious choice is to assume
that σP,i = σQ,u = 1/

√
2λ′ ∀ i, u, with λ′ ∈ R. This results

in the regularization term

log p(M |σ2
P , σ2

Q) = −λ′
`
||P ||22 + ||Q||22

´
+ c1,

where || · ||2 denotes the Frobenius norm of a matrix, and c1

is an irrelevant constant when training our model.
When optimizing root mean square error on observed data

(like in the Netflix Prize competition [1]), however, numer-
ous experimental works reported significant improvements
by using a different regularization. This is obtained by
choosing the standard deviations σP and σQ as follows: σP,i =

1/
p

2λ′ · u0(i) , σQ,u = 1/
p

2λ′ · i0(u), where i0(u) de-
notes the number of items rated by user u, and u0(i) is the
number of users who rated item i. This results in the pop-
ular regularization term

log p(M |σ2
P , σ2

Q)

= −λ′
 X

i

u0(i)
X

d

P 2
i,d +

X
u

i0(u)
X

d

Q2
u,d

!
+ c2

= −λ′

0@ X
observed (i,u)

 X
d

P 2
i,d + Q2

u,d

!1A+ c2, (3)

where c2 denotes again an irrelevant constant when train-
ing our model. Note that this choice increasingly regularizes
the model parameters related to the items and users with a
larger number of observed ratings. This may seem counter-
intuitive at first glance. A theoretical explanation for this
empirical finding was recently provided in [14].

2.3 Informative Background Knowledge
We now incorporate the following background knowledge

into our sequential Bayesian approach: absent rating val-
ues tend to be lower than the observed ratings on average
(see [17]). We insert this knowledge into our approach by
means of a virtual data point for each pair (i, u): a virtual

rating value rprior
i,u with small confidence (i.e., large variance

σ2
prior,i,u). Then the likelihood of our model in light of these

virtual data points reads (assuming i.i.d. data):

p(rprior|M, σ2
prior) =

Y
all i

Y
all u

p(Ri,u = rprior
i,u |Mi,u, σ2

prior,i,u),

(4)

where rprior denotes the matrix of virtual data points rprior
i,u ,

and σ2
prior the matrix with elements σ2

prior,i,u. We assume
that the probabilities in this likelihood are determined by
normal distributions with mean Mi,u and variance σ2

prior,i,u.
The log likelihood then reads

log p(rprior|M, σ2
prior) = −

X
all i

X
all u

wprior
i,u

“
rprior

i,u −Mi,u

”2

+c3

(5)
where we defined the weights of the virtual data points as
wprior

i,u = 1/(2σ2
prior,i,u); c3 is again an irrelevant constant

when training our model.
With Bayes rule, we obtain the posterior distribution of

the model in light of these virtual data points:

p(M |rprior, wprior) =
p(rprior, wprior|M)p(M)

p(rprior, wprior)
. (6)

This equation combines our prior concerning the elements
in the matrices P and Q (for regularization) with our back-
ground knowledge on the expected rating values. This serves
as our prior when observing the actual rating values in the
training data.

2.4 Training Data
Now we use the rating values actually observed in the

training data. The likelihood of the model in light of ob-
served rating values robs

i,u reads (assuming i.i.d. data):

p(robs|M, σ2
obs) =

Y
observed (i,u)

p(Ri,u = robs
i,u |Mi,u, σ2

obs,i,u)

Again assuming a normal distribution, the log likelihood
reads:

log p(robs|M, σ2
obs) = −

X
observed (i,u)

wobs
i,u (robs

i,u −Mi,u)2 + c4

(7)
where we defined the weights of the observed rating values
as wobs

i,u = 1/(2σ2
obs,i,u); c4 is again an irrelevant constant

when training our model.

2.5 Posterior
The posterior after seeing the observed ratings is again

obtained by Bayes rule (we omit the weights wobs, wprior for
brevity of notation here):

p(M |robs, rprior) =
p(robs|M, rprior)p(M |rprior)

p(robs)

∝ p(robs|M, rprior)p(rprior|M)p(M)(8)

where we assumed in the denominator that the observed
ratings are independent of the chosen prior ratings, i.e.,
p(robs|rprior) = p(robs). Substituting Eqs. 3, 5, 6 and 7
into Eq. 8, we obtain the following log posterior:

log p(M |robs, rprior, wobs, wprior, λ) =

−
X

obs.(i,u)

wobs
i,u

(
(robs

i,u −Mi,u)2 + λ
X

d

ˆ
P 2

i,d + Q2
u,d

˜)

−
X

all(i,u)

wprior
i,u

(
(rprior

i,u −Mi,u)2 + λ
X

d

ˆ
P 2

i,d + Q2
u,d

˜)
+c5 (9)

We found that using a prior that involves also the regular-
ization term of P and Q in the third line in Eq. 9 leads
to a slight improvements in our experimental results. The
weights wobs

i,u and wprior
i,u as well as λ′ are absorbed in λ; this

is a slight but straight-forward generalization of the prior in
Section 2.2; c5 is again an irrelevant constant for training.

Eq. 9 serves as our training objective function. For sim-
plicity, we choose the same value for all virtual rating values
rprior. For computational efficiency, we choose our model
offset to equal the prior rating values: roffset = rprior. Its
main effect is that this retains the sparsity of the observed
rating matrix. Apart from that, it also leads to the simpli-
fication: (rprior

i,u −Mi,u)2 = ((PQ>)i,u)2. For simplicity, we

set wobs
i,u = 1 for all observed pairs (i, u), and also choose all

prior weights to be identical: wprior = wprior
i,u for all (i, u). In

summary, the three tuning parameters in Eq. 9 are wprior,
rprior and λ, which can be chosen as to optimize the perfor-
mance measure on cross-validation data.

2.6 MAP Estimate of Model
For computational efficiency, our training aims to find

the maximum-a-posteriori (MAP) parameter estimate of our

model, i.e., the MAP estimates P̂ and Q̂ of the matrices P
and Q. We use the alternating least squares approach. The
idea is that one matrix can be optimized exactly while the
other one is assumed fixed. A local maximum of the log
posterior can be found by alternating between the matrices
P̂ and Q̂. While local optima exist [16], we did not find this
to cause major computational problems in our experiments.
The update equation for each row i of P̂ is (for fixed Q̂):

P̂i,· = (r̄i,· − rprior)(W̃ (i) + wpriorI)Q̂ ·h
Q̂>(W̃ (i) + wpriorI)Q̂ + λ(tr(W̃ (i)) + wprioru0)I

i−1

(10)

where r̄i,u = (robs
i,u wobs

i,u +rpriorwprior
i,u)/(wobs

i,u +wprior
i,u) denotes

the average rating; we defined wobs
i,u = 0 if rating at (i, u)

is missing; note that r̄i,· − rprior = 0 if rating is missing for
(i, u); W̃ (i) is a diagonal matrix containing the ith column of

the weight matrix wobs; the trace is tr(W̃ (i)) =
P

u∈Si
wobs

i,u ,
where Si is the set of users who rated item i; I denotes
the identity matrix; and u0 is the number of users. This
equation can be re-written for efficient computations, e.g.,
see [17]. The update equation for Q̂ is analogous.

3. MODEL TESTING
A key challenge in testing recommender systems is that

the observed ratings in the available data typically provide a
skewed picture of the (unknown) true distribution concern-
ing all ratings [9, 8]. This may be caused by the fact that
users are free to choose what items to rate, and they tend
to not rate items that would otherwise receive a low rating.
If the ratings are missing not at random (MNAR), it is not
guaranteed that correct or meaningful results are obtained
from testing a recommender system on the observed ratings
only. The latter is, however, common practice in the lit-
erature or recommender systems, using measures like root
mean square error or nDCG [4, 6, 7, 11, 13, 18].

The top-k hit-rate / recall of relevant items is a particu-
larly useful performance measure for assessing the accuracy
of recommender systems [17]. An item i is relevant to user
u if s/he finds this item interesting or appealing [17]. For
instance, in the Netflix data [1] we consider items i with a
5-star rating, robs

i,u = 5, as relevant to user u.
Recall can be calculated for a user by ranking the items

according to their scores predicted by the recommender sys-
tem, and determining the fraction of relevant items that are
among the top-k items, i.e., the k items with the highest
scores. The value of k ∈ N has to be chosen, e.g., as the
number of items that can be recommended to a user. Only
small values of k are important in practice. The goal is to
maximize recall for the chosen value of k.

Recall has two interesting properties in this context [17]:
it is proportional to precision on fixed data and fixed k when
comparing different recommender systems with each other.
In other words, the recommender system with the larger

recall also has the larger precision. More interestingly, how-
ever, recall can be calculated from the available MNAR data
and provides an unbiased estimate for the recall concern-
ing the (unknown) complete data (which comprises all rat-
ing values of all users) under the following assumption: the
relevant ratings are missing at random, while an arbitrary
missing-data mechanism may apply to all other rating values
(as long as they are missing with a larger probability than
the relevant ones) [17]. This assumption is much milder
than the one underlying the popular approach of ignoring
missing ratings, i.e., assuming that all ratings are missing
at random.

The expected performance on the (unknown) complete
data is important because it is directly related to user ex-
perience: the recommender system has to pick a few items
from among all items the user has not rated yet (and which
may hence be new to the user); one can expect the dis-
tribution on all unrated items to be well-approximated by
the distribution on all (rated and unrated) items under the
(mild) assumption that only a small fraction of the relevant
ratings has been observed.

Given that ground truth (i.e., the complete data) is typi-
cally not available (at low cost), the validity of the assump-
tion in [17] cannot be verified in practice. For this reason,
we carry out a sensitivity analysis in the following. We re-
lax this assumption even further and determine its effect
on the recall test-results for different models. Note that
the assumption in [17] allows for an arbitrary missing-data
mechanism concerning all ratings, except for the relevant
ratings; only the latter are assumed to be missing at ran-
dom. For this reason, the following is concerned with the
relevant ratings only.

We consider the case that the probability of observing
a relevant rating depends on the popularity of items. We
define the popularity of an item by the number N+

complete,i

of relevant ratings it obtained in the (unknown) complete
data. Let N+

obs,i be the number of relevant ratings observed
in the available data; then the probability of observing a
relevant rating regarding item i is

pobs(i) =
N+

obs,i

N+
complete,i

. (11)

Assuming that there are no additional (possibly hidden) fac-
tors underlying the missing data mechanism concerning the
relevant ratings, we obviously obtain an unbiased estimate
for recall on the (unknown) complete data by calculating the
popularity-stratified recall (for user u),

recallu(k) =

P
i∈S

+,k
u

siP
i∈S+

u
si

(12)

on the available MNAR data; S+
u denotes the set of relevant

items of user u; S+,k
u is the subset of relevant items ranked in

the top k items based on the predictions of the recommender
system; the popularity-stratification weight for each item i
is

si =
1

pobs(i)
.

If we choose the stratification weights si = 1 for all items
i, we obtain the usual recall measure. Given that complete
data is unavailable (at low cost), pobs in Eq. 11 cannot be
calculated in practice. For this reason, we now examine dif-
ferent choices for pobs and their effects on recall in Eq. 12.

In the first scenario, pobs may take only two values: it is
small for unpopular items, and large for popular items. If
the ratio of these two values approaches infinity, this results
in si → 0 for popular items. Removing the relevant rat-
ings of the most popular items from the test set is indeed
common practice, e.g., in [3]. In the second scenario, we con-
sider the case where pobs is a smooth function of the items’
popularities. We assume the polynomial relationship

pobs(i) ∝
`
N+

complete,i

´γ
(13)

with γ ∈ R. This is consistent with the power-law behavior
of the observed relevant ratings (see Figure 1 a) in the sense
that also the (unknown) complete data then follows a power-
low distribution concerning the relevant ratings. This results
in the stratification weights

si ∝ 1/(N+
obs,i)

γ/(γ+1).

Note that the unknown proportionality factor cancels out in
Eq. 12, so that it provides an unbiased estimate of the re-
call concerning the complete data for the correct polynomial
degree γ (and assuming that there are no additional factors
underlying the missing data mechanism). If γ = 0, the rel-
evant ratings are missing at random; if γ = 1, the probabil-
ity of observing relevant ratings increases linearly with item
popularity (N+

complete,i). The extreme case when γ →∞ has
several interesting properties: first, one observes in the avail-
able data only relevant ratings of the item with the largest
popularity in the complete data, which does not agree with
empirical evidence. Second, as γ/(γ + 1) → 1, the stratifi-
cation weights si are inversely proportional to the number
of observed relevant ratings N+

obs,i; this means that every
item has the same weight in the recall-measure in Eq. 12,
independent of its number of observed relevant ratings. This
means that, once an item obtains its first relevant rating, it
is weighted the same as all other items that may have ob-
tained thousands of relevant ratings. This obviously entails
low robustness against statistical noise as well as against
manipulation and attacks. As this is the limiting case of
γ, we nevertheless provide experimental results for this ex-
treme scenario in Section 4. The (unknown) realistic case
can be expected to be less extreme.

If the test set is a random subset of the observed data,
then N+

obs,i can be determined from the test set. Given that
the training set is typically much larger than the test set,
it might be more robust to determine N+

obs,i based on all
the available data, i.e., the training and test set combined.
We use the latter in our experiments reported in the next
section, but the former choice of N+

obs,i leads to very similar
results.

Finally, we define recall(k) =
P

u wurecallu(k) as the aver-
age recall over all users, with normalized weights,

P
u wu =

1, like in [17]. In our experiments, we choose wu ∝
P

i∈S+
u

si,

as a generalization of the definition in [7, 17].
Obviously, stratification like in Eq. 12 carries over analo-

gously to other measures, like ATOP [17] or the area under
the ROC curve.

4. EXPERIMENTS
This section summarizes our results on the Netflix Prize

data [1]. These data contain 17,770 movies and almost half
a million users. About 100 million ratings are available.
Ratings are observed for about 1% of all possible movie-

102 104 106100

105

5−star ratings

m

ov
ie

s

(a)

0 5 10 15 200

0.2
0.4
0.6

k

re
ca

ll

 MF: wprior=0.005, λ=0.04
MF: wprior=0.0005, λ=0.04
MF: wprior=0.00005, λ=0.06
MF: wprior=0, λ=0.07
SVD
BS

(b)

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.70.7

k

re
ca

ll

(c)

0 5 10 15 200

0.1

0.2

0.3

0.4

k

re
ca

ll

(d)

0 5 10 15 200

0.05

0.1

0.150.15

k

re
ca

ll

(e)

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

k

re
ca

ll

(f)

Figure 1: Netflix data [1]: (a) the number of relevant (i.e., 5-star) ratings per movie in the training data
shows a close to power-law distribution (i.e., straight line in the log-log plot); (b) legend of models (see text
for details); (c)-(f) show recall on probe set for different hypothetical missing-data mechanisms concerning
the relvant (i.e., 5-star) ratings (while an arbitrary missing-data mechanism is allowed for the other ratings):
(c) relevant ratings are missing at random (γ = 0 in Eq. 13); (d) relevant ratings observed with probability
increasing linearly with item popularity (γ = 1 in Eq. 13); (e) unrealistic extreme case where γ → ∞ in
Eq. 13; (f) relevant ratings of the 10% most popular items removed. As a result, for all these missing-data
mechanisms, recall test-results are improved by using an appropriate small prior weight wprior > 0 during
training, compared to the popular approach of ignoring the missing-data mechanism (wprior = 0) during
training.

user-pairs. The ratings take integer values from 1 (worst) to
5 (best). The provided data are already split into a train-
ing and a probe set. We removed the probe set from the
provided data as to obtain our training set.

We consider 5-star ratings as relevant to a user (as defined
above), and use the popularity-stratified recall, as outlined
in Section 3, as our performance measures on the Netflix
probe set. For all experiments, we chose rank d = 50 of our
low-rank matrix factorization (MF) model (Eq. 1). In the
following, we compared our MF model, trained with different
prior weights wprior > 0, against the popular MF approach
that ignores the missing-data mechanism (i.e., wprior = 0 in
our notation). The latter achieved a root mean square error
on the observed ratings in the probe set of 0.922. Addition-
ally, we compared to singular value decomposition (SVD),
where we used the svds function of Matlab, which implicitly
imputes a zero value (with unit weight) for all missing rat-
ings; and to the bestseller list (BS), which ranks the items
according to the number of ratings in the training set. The

values of tuning parameters in our training objective func-
tion (log posterior) in Eq. 9 are summarized in Figure 1 (b).
Like in [17], we chose the prior rating value rprior = 2 in Eq.
9.

Figures 1 (c)-(f) shows the performance of these mod-
els under different test scenarios, concerning our popularity-
stratified recall measure for the practically important range
of small k values. For computational efficiency, we computed
recall by randomly sampling, for a user, 1,000 unrated items
for each relevant rating in the test set, like in [3]. The only
difference to the test procedure used in [7, 17] is that we
sample from unrated items only, rather than from all items.
This is more realistic. It also results in slightly higher recall
values compared to the procedure used in [7, 17].

When comparing the different graphs, it is obvious that
the performance of all the models depends on the (unknown)
missing-data mechanism concerning the relevant ratings. In
particular, when pobs of relevant ratings is assumed to in-
crease more rapidly with growing popularity (N+

complete,i),

the expected recall on the (unknown) complete data de-
creases for all models, cf. Figures 1 (c)→(d)→(e), and
(c)→(f).

As pobs of relevant ratings increases more rapidly with
item popularity (compare Figures 1 (c)→(d)→(e)), the dif-
ference in recall among the various MF models decreases.
Training with smaller but positive weights wprior > 0 results
in the best recall on the test set, even in the unrealistic ex-
treme limit in Figure 1 (e). This suggests that, compared
to the popular approach of ignoring the missing-data mech-
anism when training MF models, recall can be improved
by using a small prior weight wprior > 0; its value is up-
per bounded by the value that optimizes the (usual) recall
measure on the test set, i.e., under the assumption that the
relevant ratings are missing at random, like in [17].

The bestseller list (BS) and SVD perform surprisingly well
if relevant ratings are missing at random, see Figure 1 (c),
while the popular MF model with wprior = 0 has low recall
in comparison. This was also found in [17, 3]. BS and SVD
perform rather poorly, however, if pobs increases rapidly with
item popularity, as shown in the extreme scenarios in Figure
1 (e) and (f). This suggests that not only BS, but also SVD
tend to recommend items that are popular in the available
training data. Their recommendations may hence result in
a relatively low degree of serendipity or surprise, relative to
our MF models trained with a small positive prior weight.

5. GENERALIZED APPROACH
This section outlines a generalization of the Bayesian ap-

proach given above. In our probabilistic approach, we con-
sider the rating matrix R as a matrix of random variables.
As each entry Ri,u is a random variable (rather than a
value), this naturally allows for possibly multiple values con-
cerning each pair (i, u) in the data. This has several ad-
vantages over a matrix of values, which has typically been
considered in the literature of recommender systems. Af-
ter developing our generalized probabilistic framework, we
outline three special cases / applications in Section 5.2.

Let the given data set be D = {ri,u,j}i,u,j , where i =
1, ..., i0 is the index concerning items, u = 1, ..., u0 is the
index regarding users, and j = 1, ... is the index over possi-
bly multiple observed ratings for the same pair (i, u). The
likelihood of the model in light of i.i.d. data reads

p(D|M) =
Y
i,u,j

p(Riu = ri,u,j |M). (14)

Assuming again a normal distribution of the ratings (with
standard deviations σi,u,j , or equivalently weights wi,u,j =
1/(2σ2

i,u,j)), the log likelihood of the model is

log p(D|M) = −
X
i,u

X
j

wi,u,j(ri,u,j −Mi,u)2 + c5

= −
X
i,u

X
v

wi,u,v(v −Mi,u)2 + c5 (15)

where the second line is obtained by switching–for each pair
(i, u)–from index j (over multiple ratings in the data) to
the actual rating values v; the cumulative weight is wi,u,v =P

j wi,u,jIri,u,j=v, where indicator function Iri,u,j=v = 1 if
ri,u,j = v and 0 otherwise.

Combining this likelihood with the same kind of prior over
the model parameters as in Eq. 2, we obtain the log posterior

of our model:

log p(M |D) = −
X
i,u

X
v

wi,u,v(v −Mi,u)2

−
X

i

1

2σ2
P,i

X
d

P 2
i,d −

X
u

1

2σ2
Q,i

X
d

Q2
u,d + c6 (16)

The standard deviations σQ,i and σP,i may be chosen as to
achieve the desired variant of regularization, as discussed in
Section 2.2.

5.1 MAP Estimate of Model
For computational efficiency, we focus on optimizing the

log posterior in Eq. 16. The maximum-a-posteriori (MAP)

parameter estimate of our model, i.e., the MAP estimates P̂
and Q̂ of the matrices P and Q, can be determined by alter-
nating least squares, which alternately optimizes one matrix
while the other one is assumed fixed. Using the usual nec-
essary condition for the optimum of Eq. 16, we equate its
partial derivative to zero, and obtain the following update
equation for each row i of P̂ (for fixed Q̂):

P̂i,· = (v̄i,· − roffset)W̃ (i)Q̂ ·

"
Q̂>W̃ (i)Q̂ +

1

2σ2
P,i

I

#−1

, (17)

where I denotes the identity matrix, and W̃ (i) is a diagonal
matrix containing the ith row of the aggregate weight matrix
with elements

wi,u =
X

v

wi,u,v,

and v̄i,u is the average rating value

v̄i,u =

 X
v

vwi,u,v

!
/wi,u.

Analogously, the update equation for each row u of Q̂ is:

Q̂u,· = (v̄·,u − roffset)W̃ (u)P̂

"
P̂>W̃ (u)P̂ +

1

2σ2
Q,u

I

#−1

,

(18)

where W̃u is the diagonal matrix containing the uth column
of the aggregate weight matrix.

This derivation shows that optimizing Eq. 16 is equivalent
to optimizing

log p(M |D) = −
X
i,u

wi,u(v̄i,u −Mi,u)2

−
X

i

1

2σ2
P,i

X
d

P 2
i,d −

X
u

1

2σ2
Q,i

X
d

Q2
u,d + c6 (19)

where multiple rating values for an item-user pair are re-
placed by their mean value v̄i,u and their aggregate weight
wi,u.

5.2 Applications
This generalized probabilistic approach subsumes several

applications as special cases. In addition to the use of virtual
ratings in the prior, as outlined in Section 2, we present two
additional applications in the following.

5.2.1 Aggregate Recommendations
The universe of all items available for recommendation

may have a structure that goes beyond a flat list. Items can

often be arranged in a hierarchical manner. For instance,
songs may be grouped by artist, album, genre, etc. Possibly,
there are several layers of hierarchy. Now let us consider
the problem that data are available where users have rated
individual songs, but the task is to recommend an artist to a
user. This problem arises in several situations. For instance,
the recommender system may want to suggest a concert to
the user, based on the data on individual songs. Another
scenario is the release of a new song by an artist: this cold
start problem may be overcome by recommending the new
song to users who like the artist.

The ratings matrix concerning songs and users can be used
to construct a rating matrix regarding artists and users by
aggregating the songs of each artist. As a user may have
rated several songs of an artist, we now have possibly multi-
ple rating values for an entry in the artist-user matrix. This
is exactly the problem solved by our general approach in
Section 5. Our framework also shows that, for each user,
the rating of each artist can be determined as the weighted
average of the ratings of his/her songs, and the weight is the
sum of the weights of the songs, as one may have intuitively
expected.

5.2.2 Recommendation of TV Shows
IP-TV is much more interactive than traditional TV. Con-

cerning recommender systems, it allows one to collect infor-
mation on the users’ TV consumption. This can be used
to learn preferences of users to TV programs, as to make
accurate recommendations of TV shows. Unlike the pre-
vious applications described in this paper, we now use im-
plicit feedback data (time spent watching a TV show) in
place of the ratings. Our approach carries over immedi-
ately. This problem can be cast in our general probabilistic
framework as follows: we divide the length of each show
into nmax time intervals (of equal length), where nmax is the
same large integer for all shows. We consider each time in-
terval associated with a random experiment; a show hence
comprises nmax repetition of the experiment. The random
variable Ri,u takes the value 1 if user u watched show i
for a time-interval, and 0 otherwise. So, if user u watches
ni,u ∈ {1, ..., nmax} out of nmax intervals of show i, then
we have ni,u observations of value 1 for the random vari-
able Ri,u, and nmax−ni,u observations of value 0; as shown
in Section 5, these multiple observations can be substituted
equivalently in our least-squares objective function in Eq.
16 by the aggregate weight nmax and the averaged value
of the observations: r̄i,u = ni,u/nmax, i.e., the fraction of
the show watched. In addition, if a show comprises several
(e.g., weekly) episodes, then we assume that the above ap-
plies to each episode; the total weight of the show is then
ti,unmax, where ti,u ∈ N is the number of episodes of show
i watched by user u. Then the averaged observed value is

r̄i,u =
Pti,u

j=1 r̄i,u,j/ti,u, where r̄i,u,j is the fraction of episode
j watched (analogous to above). This results in the log like-
lihood (with an irrelevant constant c7 in our optimization
problem):

log p(D|M) = −nmax

X
(i,u)∈S

ti,u(r̄i,u −Mi,u)2 + c7,

where the set S contains all pairs (i, u) with shows i that
have been watched at least partially by user u. Concerning
all shows, we additionally incorporate background knowl-
edge that users tend to not like shows with some small con-

fidence / weight. This weight is small, as it can also be
interpreted as the variance of our prior, which is large as
there are many reasons for not watching a show. Analo-
gously to Section 2, we use virtual observations of value 0,
with weight wprior. This results in the log likelihood in light
of the virtual data points Dprior:

log p(Dprior|M) = −nmaxw
prior

X
all (i,u)

(0−Mi,u)2 + c8

Combining these two likelihoods, together with the prior
over the model parameters in Eq. 2 (first variant), we obtain
the log posterior

log p(M |D, Dprior) ∝

−
X

(i,u)∈S

ti,u(r̄i,u −Mi,u)2 − wprior
X

all (i,u)

(0−Mi,u)2

−λ
X

d

"X
i

P 2
i,d +

X
u

Q2
u,d

#
+ c9, (20)

where we replaced the standard deviations in the prior by
λ ∈ R; the proportionality is due to omitting nmax, which is
an irrelevant constant when optimizing the posterior; c9 is
an irrelevant additive constant in our optimization problem.

In [5], the following objective function was experimentally
found to result in the best recommendation accuracy from
among several variants (re-written, but equivalent to Eq. 3
in [5]): X

(i,u)∈S

(1 + αnt
i,u)(1−Mi,u)2 +

X
(i,u) 6∈S

(0−Mi,u)2

+λ
X

d

"X
i

P 2
i,d +

X
u

Q2
u,d

#
, (21)

where nt
i,u =

P
j ni,u,j is the total time spent by user u

watching show i (including all episodes j); S denotes again
the set of pairs (i, u) where show i is at least partially watched
by user u; α takes essentially the role of wprior.

Interestingly, their objective function is similar to ours.
The main difference, however, is in the least squares term,
where we fit our model to the fraction r̄i,u of the show
watched, while the indicator value 1 is used in [5]. We at-
tribute to this difference the fact that our model performs
slightly better in our preliminary experiments on our (pro-
prietary) IP-TV data [2], see below. Besides the experimen-
tal improvement, our theoretical framework also provides a
clear understanding of the assumptions underlying our ap-
proach, while the approach in [5] appears to be found ex-
perimentally in a somewhat ad-hoc manner.

Preliminary Experiments: We used a (proprietary)
IP-TV data set [2] concerning TV consumption of N =25,777
different shows by 14,731 users (living in 6,423 households)
in the UK over a 6 month period in 2008/2009 (see also
[15] for a more detailed description). In our collaborative
filtering approach, we used only implicit feedback data con-
cerning TV consumption (user ID, program ID, the length of
the program and the time the user spent on this program),
and ignored the available explicit user profiles and content
information for simplicity. We randomly split these data
into a training and a disjoint test set, with 10 shows per
user assigned to the test set. In the test set, we considered
shows interesting or relevant to users if they watched at least

model k′= 1% k′= 2% k′= 3% k′= 4% k′= 5%

ours 0.671 0.763 0.819 0.856 0.882
[5] 0.624 0.723 0.785 0.828 0.857
Nbr 0.547 0.642 0.704 0.760 0.804

Table 1: Recall(k′) test results on IP-TV data.

80 % of them. We used these shows to evaluate the recom-
mender systems w.r.t. the performance measures recall (as
defined in Section 3 with γ = 0). Table 1 summarizes our
preliminary results in terms of recall(k′), where k′ = k/N
is normalized regarding the number N of available shows.
Again, we used rank d = 50 for the matrix factorization
models. We find that our new approach (with λ = 0.005)
and the approach in [5] (with λ = 0.02) give similar results,

compared to the neighborhood model (Nbr), sij =
rir′

j

‖ri‖‖rj‖
and r̂iu =

P
sijruj , which was also used in [5] for compar-

ison. Concerning recall, small values of k′ are particularly
important in practice, as only a small number of shows can
be recommended to a user; in this regime, our new approach
seems to perform better than the approach of [5]. We are
currently running more refined experiments to confirm this
finding.

6. CONCLUSIONS
This paper provides three contributions. First, we out-

lined a Bayesian framework that naturally allowed us to
insert background knowledge concerning the missing-data
mechanism underlying the observed rating data. The ob-
tained log posterior probability of the model is very similar
to the training objective function outlined in [17].

In our second contribution, we conducted experiments
where we considered several hypothetical missing-data mech-
anisms underlying the observed real-world data. Given that
the true missing-data mechanism is unknown in the ab-
sence of ground truth data, this sensitivity analysis pro-
vided valuable information. Our key insight based on these
experiments is that the top-k hit-rate or recall can be im-
proved considerably by training recommender systems with
an appropriately chosen small positive prior weight concern-
ing background knowledge on the missing-data mechanism.
This is in contrast to the popular approach in the literature,
which only considers observed ratings.

As third contribution, we provided a generalized prob-
abilistic framework for factorizing a user-item-matrix that
possibly has multiple observed rating values associated with
each user-item pair. We discussed three important special
cases / applications: besides training a top-k recommender
system by using virtual data points, we outlined how ratings
can be aggregated when items are grouped in a hierarchical
manner rather than in a flat list, and how recommendations
can be made using this hierarchical structure. Addition-
ally, this framework enabled us to derive the training objec-
tive function for a recommender system on sequential data
concerning TV consumption. This derivation not only pro-
vides a clear understanding of the assumptions underlying
the training objective function, but also led to improvements
in the top-k hit rate over state-of-the-art approaches in our
preliminary experiments.

Acknowledgements
We are greatly indebted to Tin Ho for her encouragement
and support of this work. We are also very grateful to the
anonymous reviewers for their valuable feedback.

7. REFERENCES
[1] J. Bennet and S. Lanning. The Netflix Prize. In

Workshop at SIGKDD-07, ACM Conference on
Knowledge Discovery and Data Mining, 2007.

[2] BARB: Broadcaster Audience Research Board.
http://www.barb.co.uk.

[3] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-N recommendation
tasks. In ACM Conference on Recommender Systems,
2010.

[4] S. Funk. Netflix update: Try this at home, 2006.
http://sifter.org/ simon/journal/20061211.html.

[5] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM, 2008.

[6] R. Keshavan, A. Montanari, and S. Oh. Matrix
completion from noisy entries, 2009. arXiv:0906.2027.

[7] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD,
2008.

[8] B. Marlin and R. Zemel. Collaborative prediction and
ranking with non-random missing data. In ACM
Conference on Recommender Systems (RecSys), 2009.

[9] B. Marlin, R. Zemel, S. Roweis, and M. Slaney.
Collaborative filtering and the missing at random
assumption. In Conference on Uncertainty in Artificial
Intelligence (UAI), 2007.

[10] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose,
M. Scholz, and Q. Yang. One-class collaborative
filtering. In ICDM, 2008.

[11] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In KDDCup,
2007.

[12] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, 2008.

[13] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
Boltzmann machines for collaborative filtering. In
ICML, 2007.

[14] R. Salakhutdinov and N. Srebro. Collaborative
filtering in a non-uniform world: Learning with the
weighted trace norm, 2010. arXiv:1002.2780.

[15] C. Senot, D. Kostadinov, M. Bouzid, J. Picault,
A. Aghasaryan, and C. Bernier. Analysis of strategies
for building group profiles. In Conference on User
Modeling, Adaption and Personalization (UMAP),
2010.

[16] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In ICML, pages 720–7, 2003.

[17] H. Steck. Training and testing of recommender
systems on data missing not at random. In KDD,
2010.

[18] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola.
Cofi rank - maximum margin matrix factorization for
collaborative ranking. In Advances in Neural
Information Processing Systems (NIPS), 2008.

