
An Architecture for a General Purpose Multi-Algorithm
Recommender System

Jose C. Cortizo, Francisco M. Carrero and Borja Monsalve
BrainSins

http://www.brainsins.com
Madrid, Spain

{josecarlos.cortizo, francisco.carrero, borja.monsalve}@brainsins.com

ABSTRACT
Although the actual state-of-the-art on Recommender Sys-
tems is good enough to allow recommendations and person-
alization along many application fields, developing a gen-
eral purpose multi-algorithm recommender system is a tough
task. In this paper we present the main challenges involved
on developing such system and a system’s architecture that
allows us to face this challenges.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Algorithms

Keywords
General purpose recommendations, System architecture, API,
Multi-algorithm

1. INTRODUCTION
There is a lot of literature on Recommender Systems for
specific online domains like social software items [4], mu-
sic [1], queries (in search engines) [8], news [6], e-commerce
[7] or even for non online domains such as [5]. Those rec-
ommender systems employ specific techniques for specific
domains in order to produce the most accurate systems for
each single domain.

We wanted to integrate a recommender system in Wipley1,
our social network for videogamers launched by the end of
2009. With this purpose, we worked on a recommender sys-
tem for videogames using a collaborative filtering approach
with multidimensional and contextual features to fit this
particular domain. After that, we wanted to improve the
recommender with a content-based recommender system for

1http://www.wipley.es

PRSAT 2010. Copyright is held by the author/owner(s). Workshop on
the Practical Use of Recommender Systems, Algorithms and Technologies
(PRSAT 2010), held in conjunction with RecSys 2010. September 30, 2010,
Barcelona, Spain.

those games with none or few ratings and a social-based rec-
ommender system [3]. We also needed to adapt the resulting
system to other domains, beginning with image recommen-
dations to be integrated in FlickrBabel2, our multilingual
multimedia search engine. And, finally, we decided to use a
”Software as a Service” (SaaS) model to separete rommen-
dations from the rest of the platform.

Although there exist several commercial approaches to gen-
eral SaaS recommender systems, like Strands3 or Directed-
Edge4 there exist no literature focusing on the system’s as-
pects of general recommender systems. In this paper we de-
scribe our experience developing our general purpose multi-
algorithm recommender system, which is currently being
used to personalize our products and services at BrainSins
and will be used as experimental platform to compare and
evaluate our further research on recommender systems.

In the next section we describe the main challenges we found
in order to develop a general purpose multi-algorithm recom-
mender system. In section 3 we describe the general archi-
tecture of the system focusing on the elements that allowed
us to solve the main issues, and in section 4 we focus on our
recommender system API, which enables all our products
and services to interoperate with the recommender system.
Section 5 describes the next research works we will face, and
section 6 concludes the paper.

2. MAIN CHALLENGES FOR A GENERAL
PURPOSE MULTI-ALGORITHM RECOM-
MENDER SYSTEM

When designing a general purpose multi-algorithm recom-
mender system, we found several challenges that had to be
addressed in order to develop a useful system.

• Interoperability: Recommender systems are usually
created to access a specific database that uses a well-
known data structure. However, since our system had
to offer the possibility of being integrated into several
different existing platforms, we had to deal with the
problem of accessing sources with different data struc-
tures.

2http://www.flickrbabel.com
3http://recommender.strands.com
4http://www.directededge.com



• Configurability and easy of use: As one of the main
goals of this recommender system was to be able to
manage several recommender algorithms to provide
a particular recommendation, the system had to be
highly configurable. In these cases usability may be-
come a problem difficult to solve.

• Performance: Recommendations must be served in real
time, but users do not tolerate an increase in page
downloading time. However, when a system is de-
signed with a high degree of configurability, there are
always some issues that slow down performance. In our
particular case, the new system had to be as effective
as the recommender we already had on production.

• Disk usage: A highly configurable system also presents
disk space problems, due to the fact that data repre-
sentation cannot be optimized.

• Scalability: When applied to the web, the number of
items to be recommended and the number of users
to receive those recommendations often grow expo-
nentially. Therefore, a recommender system needs to
be scalable in order to grow at the same rate. How-
ever, being scalable also means that the system should
somehow hide the way it scales, so there should be
no need to code or rewrite configuration parameters in
the products and services that access the recommender
system.

After analyzing possible solutions for those challenges and
start designing and developing the system, we thought that
a key fact to achieve most of them was to conveniently sep-
arate recommendation process from the interface with the
clients, so interoperability became our first focus. Our goal
was to design a way to easily integrate the recommender sys-
tem while keeping recommender complexity hidden from its
clients, so we designed a REST API. REST APIs are easy to
use and to integrate in any product and service on the web,
and many developers are familiar to it. Furthermore, REST
API helps to hide the complexity of the recommender sys-
tem, and allows to transform the REST petitions into more
complex data structures needed to maintain the performance
and scalability of the recommender system.

To face configuration and performance issues we designed a
back-end architecture that enables us to define recommen-
dation algorithms as software modules that can be adapted
to any domain required by clients. The REST API also al-
lowed us to introduce configurability elements as optional
parameters in the petition.

3. GENERAL ARCHITECTURE
The input to our system are API requests, which can be
classified as online or batch:

• Online requests, which must be handled in real time.
Their processing can’t be delayed, because users are
waiting for a response. They are also utilized to update
the profile for new users and begin to provide them
with recommendations.

Figure 1: The request processor evaluates if a cer-
tain API request needs to be run online or it can be
batched.

• Batch requests, which may be stored and processed
only at given time periods. Now requests processing
can be delayed and attended when the system is not
at full capacity. These requests are used to upload the
initial data from a client and also to update informa-
tion concerning users with a wide user profile.

Figure 1 shows how API requests are being processed. Each
API request generates an HTTP request to a certain end-
point where the Request Processor evaluates it and deter-
mines whether it must be processed at that moment or it
can be delayed until more requests reach the system (for a
more optimum processing) or until certain batch process is
programmed to be run.

Requests can also be classified as update or retrieval:

• Retrieval requests just ask the system to return some
kind of information, such as a recommendation.

• Update requests have the objective to update the pro-
file of the source user.

When an update request begins to be processed there are
two steps that must be taken to produce recommendations
for the user. As we wanted to be able to process several
types of recommendations (collaborative filtering, content
based, social recommendations), the system had to be gen-
eral enough to process data in several ways. So we defined
those steps in a way that enabled the use of any possible
recommender algorithm (see Fig. 2):

• Update user profile. This can be done by re-calculating
simmilarity with other users, re-calculating trust or
updating a content-based profile.

• Update user recommendations. This step uses the val-
ues obtained from the previous task as input for the
recommendation algorithm and produces a new rank
of recommendations for the user.

As a first approach we coded 3 different recommender algo-
rithms:



Figure 2: Main modules of the recommender sys-
tem.

Figure 3: Entities describes every possible data used
by the recommender algorithms.

• Collaborative filtering. A standard method that pro-
duces collaborative recommendations when using a col-
laborative similarity measure, or social recommenda-
tions when using trust.

• Information retrieval based recommender used for con-
tent based recommendations.

• Machine learning based recommender also used for con-
tent based recommendations.

From the data point of view, the system only stores entities
and relationships among entities. Each possible data point
(user, group, content or product), is represented by an en-
tity (see Fig. 3). Relationships (see Fig. 4) among entities
represent actions (ratings, comments, reviews) or behaviors
(buy a product, pageview, joining a group). This data rep-
resentation allows enough degree of data abstraction for the
interoperability, and it also stands near enough to data rep-
resentation used by the different recommender algorithms.

4. INTEROPERABILITY: A GENERAL API
A Representational State Transfer (REST) API [2] is a style
of software architecture for distributed systems like the Web
where clients initiate requests and the servers process re-
quests and return appropriate responses. Requests and re-
sponses are built around the transfer of resources. REST is
described in the context of HTTP, although it can be used
in other contexts.

Figure 4: Relationships describes actions and be-
haviors.

Figure 5: Integration of the recommendations in
Wipley, our social network for videogamers.

A client request is described by an HTTP request to a cer-
tain resource. For instance, for one of our domains, we may
want videogames recommendations for a certain user (user
id=2). With our REST API, the client must make an HTTP
request to a certain URI5. The first part of the URI de-
scribes the endpoint where our API server is running6. Next
part shows that a recommendation (and the recommenda-
tion’s type) is requested (’/recomm’) for a certain entity type
(’/player’) considering a relation of ownership with another
entity type (’/has/videogame’). The user id is ’2’ and the
response format is ’.xml’. The server must return an XML
file containing the recommendations.

Figure 5 shows our integration on Wipley, our social network
for videogamers, where XML responses are processed with
PHP in order to generate a more visual interface.

In Wipley we have configured our system to serve differ-
ent types of recommendations for a user, such as products,
users and groups. They can be requested just modifying
the URI. In order to update the information that the rec-
ommender system manages internally, we have designed a
XML based specification, which allows to update informa-
tion about any entity (data points, see Fig. 6) or action
(relationships among entities, see Fig. 7).

5http://webservices.brainsins.com/api/recomm/player/has/
videogame/2.xml
6http://webservices.brainsins.com/api



Figure 6: Example XML containing a description of
an entity (videogame).

Figure 7: Example XML containing a description of
an action (user rating a videogame).

5. FUTURE WORK
We have developed this general purpose multi-algorithm rec-
ommender system and we have integrated it into Wipley
with great results, given that videogames recommendations
are considered by our users as one of the top features. Our
future work is defined in several lines:

• Test the performance of the general recommender sys-
tem in terms of running time and disk usage. Our first
impressions make us think that generalizing the rec-
ommender system does not introduces computational
overhead, since processing the REST requests repre-
sents only a 3-4% of the total running time of a rec-
ommendation, but we need to run a larger set of ex-
periments to evaluate the final performance.

• Scalability. As the REST API give us a lot of in-
dependence of the clients from the implementation,
we are actually re-coding the recommender algorithms
through a map-reduce perspective using Apache Ma-
hout7, which will allow the platform to be really scal-
able.

• Experimental platform. One of our main goals is to
obtain an experimental platform to test the perfor-
mance of our recommender systems implementations.
We are starting to measure several metrics related to
web analytics such as CTR. We expect to obtain real
feedback about what recommender algorithms and set-
tings works better for different domains. We are also
developing a web based backend which will allow us
to define the experiments and measure several aspects
related to the effectivity of the recommendations.

7http://lucene.apache.org/mahout/

There are no references in the recommender systems litera-
ture describing a general purpose recommender system be-
ing used to test several recommender algorithms within sev-
eral domains with the aim to produce an extensive exper-
imental comparison of recommender algorithms. We have
developed a general recommender system which encapsu-
lates several recommender algorithms (collaborative filter-
ing, content based recommender, and social recommender)
with the main purpose of producing an extensive compari-
son of recommender algorithms in a real environment. We
have also integrated this general recommender system in a
real social network that represents an experimental setup
with real users in real conditions.

6. ACKNOWLEDGMENTS
The research described in this paper has been partially sup-
ported by the Madrid autonomous region, IV PRICIT, S-
0505/TIC/0267.

7. REFERENCES
[1] O. Celma and P. Lamere. If you like the beatles you

might like...: a tutorial on music recommendation. In
MM ’08: Proceeding of the 16th ACM international
conference on Multimedia, pages 1157–1158, New York,
NY, USA, 2008. ACM.

[2] R. T. Fielding. Architectural Styles and Architectural
Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California,
Irvine, 2000.

[3] J. Golbeck. Tutorial on using social trust for
recommender systems. In RecSys ’09: Proceedings of
the third ACM conference on Recommender systems,
pages 425–426, New York, NY, USA, 2009. ACM.

[4] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel,
S. Yogev, and S. Ofek-Koifman. Personalized
recommendation of social software items based on
social relations. In RecSys ’09: Proceedings of the third
ACM conference on Recommender systems, pages
53–60, New York, NY, USA, 2009. ACM.

[5] J. F. McCarthy. The challenges of recommending digital
selves in physical spaces. In RecSys ’07: Proceedings of
the 2007 ACM conference on Recommender systems,
pages 185–186, New York, NY, USA, 2007. ACM.

[6] O. Phelan, K. McCarthy, and B. Smyth. Using twitter
to recommend real-time topical news. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 385–388, New York, NY,
USA, 2009. ACM.

[7] J. B. Schafer, J. Konstan, and J. Riedi. Recommender
systems in e-commerce. In EC ’99: Proceedings of the
1st ACM conference on Electronic commerce, pages
158–166, New York, NY, USA, 1999. ACM.

[8] Z. Zhang and O. Nasraoui. Mining search engine query
logs for query recommendation. In L. Carr, D. D.
Roure, A. Iyengar, C. A. Goble, and M. Dahlin, editors,
WWW, pages 1039–1040. ACM, 2006.


