
 
 

Proceedings of the 

Workshop on the Practical Use of 

Recommender Systems, Algorithms and 

Technologies (PRSAT 2010) 

 

held at the 

4
th

 ACM Conference on Recommender Systems 

(RecSys 2010) 

 

30 September 2010 

Barcelona, Spain 

 

 

Jérôme Picault
1
, Dimitre Kostadinov

1
, Pablo Castells

2
,  

Alejandro Jaimes
3
 

1
 Bell Labs, Alcatel-Lucent, France 

2
 Universidad Autónoma de Madrid, Spain 

3
 Yahoo! Research, Spain 

 

 



 
 

 



i 
 

Preface 

User modeling, adaptation, and personalization techniques have hit the mainstream. The explosion of social 

network websites, on-line user-generated content platforms, and the tremendous growth in computational 

power of mobile devices are generating incredibly large amounts of user data, and an increasing desire of 

users to “personalize” (their desktop, e-mail, news site, phone). The potential value of personalization has 

become clear both as a commodity for the benefit or enjoyment of end-users, and as an enabler of new or 

better services – a strategic opportunity to enhance and expand businesses. 

An exciting characteristic of recommender systems is that they draw the interest of industry and businesses 

while posing very interesting research and scientific challenges. In spite of significant progress in the research 

community, and industry efforts to bring the benefits of new techniques to end-users, there are still important 

gaps that make personalization and adaptation difficult for users. Research activities still often focus on 

narrow problems, such as incremental accuracy improvements of current techniques, sometimes with ideal 

hypotheses, or tend to overspecialize on a few applicative problems (typically TV or movie recommenders – 

sometimes simply because of the availability of data). This restrains de facto the range of other applications 

where personalization technologies might be useful as well. 

This workshop contrived for a new uptake on past experiences and lessons learned. We proposed an analytic 

outlook on new research directions, or ones that still require substantial research, with a special focus on their 

practical adoption in working applications, and the barriers to be met in this path. 

The topics of interest were related to: 

 Limits of recommender systems: main bottlenecks, research dead ends and myths in recommender 

systems; missing technology pieces for wider adoption; social (privacy, culture) issues 

 Analytical view of personalization experiences: case studies of recommender system implementations 

& deployments; evaluation and user studies of recommender systems; scalability in large recommender 

systems; lessons learnt from your past experience; obstacles to massive deployment of recommendation 

solutions in industrial environments 

 Recommendation in broader systems 

 Next needs in recommender systems: new business models related to recommendation; new paradigms 

to provide recommendations; new areas for recommendations; users‟ expectations about future 

recommender systems  

This workshop brought together approximately 45 researchers and practitioners (including people from 

Microsoft, Amazon, Bloomberg, Telefónica, Netflix, Hitachi, eBay, YouTube, Strands, IBM, and many 

SMEs). Twelve papers were submitted to the workshop; nine were accepted, illustrating different facets of 

recommender systems that are important for a wider adoption, such as bringing more “realistic” algorithms 

that cope with problems related to feedback elicitation and serendipity, scalability, openness, handling 

multiple users, etc. The discussions sessions tried to confront the points of view of researchers and industry 

w.r.t. recommender systems. Several gaps in terms of concerns have been identified, among which user 

interfaces, scalability, and real-time issues, which are still under-represented topics in the research 

community. 

 

Jérôme Picault 

Dimitre Kostadinov
 

Pablo Castells 

Alejandro Jaimes  



ii 
 

Organising Committee 

Jérôme Picault Bell Labs, Alcatel-Lucent, France 

Dimitre Kostadinov Bell Labs, Alcatel-Lucent, France 

Pablo Castells Universidad Autónoma de Madrid, Spain 

Alejandro Jaimes Yahoo! Research, Spain 

Programme Committee 

David Bonnefoy Pearltrees 

Makram Bouzid Alcatel-Lucent Bell Labs 

Iván Cantador Universidad Autónoma de Madrid 

José Carlos Cortizo Universidad Europea de Madrid & BrainSins 

Alexander Felfernig Graz University of Technology & ConfigWorks 

Ido Guy IBM Haifa Research Lab 

Paola Hobson Snell 

Rubén Lara Telefónica I+D 

Kevin Mercer BBC 

Andreas Nauerz IBM Deutschland Research & Development GmbH 

Michael Papish Media Unbound, Inc. 

Igor Perisic LinkedIn Corporation 

Myriam Ribière Alcatel-Lucent Bell Labs 

Neel Sundaresan eBay Research Labs 

Marc Torrens Strands, Inc. 

Andreas Töscher Commendo Research & Consulting GmbH 

Xiaohui Xue SAP  

  



iii 
 

Table of Contents 

Keynote talk 

Marc Torrens 

Top 10 Lessons Learned Developing and Deploying Real World Recommender Systems .................................. 1 

Full papers 

Takayuki Akiyama, Kiyohiro Obara, Masaaki Tanizaki  

Proposal and Evaluation of Serendipitous Recommendation Method Using General Unexpectedness .............. 3 

Fatih Aksel, Ayşenur Birtürk  

Enhancing Accuracy of Hybrid Recommender Systems through Adapting the Domain Trends ........................ 11 

Friederike Klan, Birgitta König-Ries 

Supporting Consumers in Providing Meaningful Multi-Criteria Judgments ..................................................... 19 

Ludovico Boratto, Salvatore Carta, Michele Satta 

Groups Identification and Individual Recommendations in Group Recommendation Algorithms .................... 27 

Harald Steck, Yu Xin 

A Generalized Probabilistic Framework and its Variants for Training Top-k Recommender System .............. 35 

Short papers 

Alessandro Basso, Marco Milanesio, André Panisson, Giancarlo Ruffo 

From Recordings to Recommendations: Suggesting Live Events in the DVR Context ...................................... 43 

Michal Holub, Mária Bieliková 

Behavior Based Adaptive Navigation Support ................................................................................................... 47 

José Carlos Cortizo, Francisco Carrero, Borja Monsalve 

An Architecture for a General Purpose Multi-Algorithm Recommender System ............................................... 51 

Renata Ghisloti De Souza, Raja Chiky, Zakia Kazi Aoul 

Open Source Recommendation Systems for Mobile Application........................................................................ 55 

 

  



iv 
 

  



1 
 

Top 10 Lessons Learned Developing and Deploying Real 

World Recommender Systems 

Marc Torrens 
Strands, Inc. 

torrens@strands.com 

 

ABSTRACT 
Strands develops products that help people find information online that they want and need. Strands offers production recommendation 

services for eCommerce, interactive tools for personal finance management, and personal interest and lifestyle-oriented social 

discovery solutions. Strands also operates moneystrands.com, a personal finance management platform, and strands.com, a training log 

and information source for active people. In this talk, Strands Chief Innovation Officer, Marc Torrens, PhD, will discuss Strands‟ “Top 

10 Lessons Learned” from our experience building recommender systems and interactions with customers deploying our systems. The 

lessons learned will range from customer relations and marketing (“It must make „strategic‟ sense”), to business planning (“Don't wait 

too long to get ready to scale”), to technical (“Cold start? Be Creative”). As recommender technology becomes ubiquitous online, and 

even overshadows search in many commercials settings, Strands has found these “Top 10 Lessons Learned” continue to be valuable 

guidelines. 

  



2 
 

 



Proposal and Evaluation of Serendipitous 
Recommendation Method Using General Unexpectedness 

Takayuki Akiyama 
Hitachi, Ltd., Central Research 

Laboratory 
1-280, Higashi-Koigakubo, 

 Kokubunji-shi, Tokyo 
185-8601 Japan 

Tel: +81-42-323-1111 ext. 4302 

takayuki.akiyama.hv 
@hitachi.com 

Kiyohiro Obara 
Hitachi, Ltd., Central Research 

Laboratory 
1-280, Higashi-Koigakubo 

Kokubunji-shi, Tokyo 
185-8601 Japan 

Tel: +81-42-323-1111 ext. 3612 

kiyohiro.obara.pc 
@hitachi.com 

Masaaki Tanizaki 
Hitachi, Ltd., Central Research 

Laboratory 
1-280, Higashi-Koigakubo 

Kokubunji-shi, Tokyo 
185-8601 Japan 

Tel: +81-42-323-1111 ext. 4068 

masaaki.tanizaki.tj 
@hitachi.com 

 
 

ABSTRACT 
Recommender systems support users in selecting items and 
services in an information-rich environment. Although 
recommender systems have been improved in terms of accuracy, 
such systems are still insufficient in terms of novelty and 
serendipity, giving unsatisfactory results to users. Two methods of 
“serendipitous recommendation” are therefore proposed. However, 
a method for recommending serendipitous items accurately to 
users does not yet exist, because what kinds of items are 
serendipitous is not clearly defined. Accordingly, a human 
preference model of serendipitous items based on actual data 
concerning a user’s impression collected by questionnaires was 
devised. Two serendipitous recommendation methods based on 
the model were devised and evaluated according to a user’s actual 
impression. The evaluation results show that one of these 
recommendation methods, the one using general unexpectedness 
independent of user profiles, can recommend the serendipitous 
items accurately. 

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine Interface – Human 
factors, Human information processing.  

General Terms 
Human Factors 

Keywords 
Recommender systems, user preference, content-based, 
serendipity, unexpected. 

1. INTRODUCTION 
In recent years, the amount of information accessible to users is 
increasing and becoming more diversified because of the growth 
of information technology and the expansion of commercial use 
of IT. Under this circumstance, although users can select various 
items (such as information, TV programs, and books) they cannot 
select the best of those items from a vast amount of items 

including many useless items. 
To solve this problem, so-called “recommender systems”—for 
recommending suitable items to users by monitoring a user’s 
action and extracting information concerning a user’s 
preferences—are becoming necessary for “item-providing 
services” such as internet shopping sites and department stores. In 
the future, recommender systems will recommend items by 
monitoring all a user’s preferences. Users will get information 
suitable for their needs, and they will have an opportunity to 
discover new items. Moreover, service providers will be able to 
provide services continuously because users will use their systems 
more frequently. 
Recommendation technology is one way to retrieve information 
that suits a user’s preferences. In information-retrieval theory, 
useful information is categorized as two types: that which users 
recognize as useful, and that which users do not recognize as 
useful but is actually useful [1]. We suppose that the items users 
like are categorized as the same two types; accordingly, in this 
paper, the second type of items is defined as “serendipitous items.” 
In general, typical recommender systems use either of two 
strategies: a content-based approach or collaborative filtering [2]. 
The content-based approach recommends items similar to users 
selected items by calculating the similarity between items by 
using feature vectors generated by extraction of a user’s selection 
record. Collaborative filtering recommends items selected by 
multiple users whose selection histories are similar to the relevant 
user by calculating similarity between users’ records. 
These two methods recommend items similar to the ones that the 
user selected before. These items belong to the first type stated 
above because they are recognized as interesting items by users. 
For example, a typical recommendation recommends TV 
programs featuring actor A to users who frequently watch TV 
programs featuring actor A. Consequently, a user might get bored 
with typical recommendation because it always recommends 
similar items that a user already knows are interesting [2]. For that 
reason, recommending items belonging to the second type–
namely, serendipitous ones—become necessary. For example, 
serendipitous recommendation recommends educational programs 
featuring performer A to users who do not usually watch 
educational programs but frequently watch performer A. 

 

Copyright is held by the author/owner(s). Workshop on the Practical Use 
of Recommender Systems, Algorithms and Technologies (PRSAT 2010),
 held in conjunction with RecSys 2010. September 30, 2010, Barcelona, 
Spain. 

3



Nevertheless, typical recommendation methods cannot 
recommend such serendipitous items preferentially. 
The purpose of this study is to realize serendipitous 
recommendation. Accordingly, actual data that users recognized 
as “serendipitous” was collected, and a user-preference model was 
established first. Serendipitous recommendation methods based 
on that model were devised and evaluated with actual data. The 
results of this evaluation verified the effectiveness of a 
serendipitous recommendation method using “general 
unexpectedness” that is independent from a user’s profile. 

2. RELATED WORKS AND MOTIVATION 
In the early stage of developing recommendation systems, the 
accuracy of recommendation of the first-type items was improved. 
It was thought that this improved accuracy was enough to enhance 
user satisfaction. However, it is recognized that novelty and 
serendipity are important factors in satisfying a user, aside from 
simply suitability to a user’s preference [2, 3, 4, 5]. 
There are several related works on serendipitous recommendation. 
Ziegler et al. supposed that serendipitous items exist in 
recommendation lists of different items in different categories 
more than in the lists of similar items, and they proposed a 
recommendation method to increase diversity of recommendation 
lists [6, 7]. They defined “intra-list similarity” as the similarity 
between all items in a recommendation list by calculating 
similarity between two items. Moreover, they increased diversity 
by inserting low-similarity items. 
Approaches that recommend serendipitous items directly have 
also been proposed. Hijikata et al. proposed a method for 
improving novelty and serendipity by calculating the probability 
of known items by using the information about knowns or 
unknowns given explicitly by user [8]. Another method calculates 
the probability of “degree of interest” by using an evaluation of 
items selected by a user (namely, “interested” or “not interested”). 
The items whose degree-of-interest probabilities are nearly equal 
are taken as serendipitous and recommended [9]. 
Another proposed method considers the items that are different 
from the ones users use habitually as serendipitous and 
recommends those [10]. This method uses a preference model to 
predict items that users like and a habit model to predict items that 
users use habitually. It then recommends a recommendation list 
including serendipitous items by predicting the unexpectedness of 
items by calculating differences between the results of the 
preference model and the habit model. 
As mentioned above, the only serendipitous recommendation 
methods proposed until now are based on researchers’ own 
assumptions; no methods based on actual data regarding a user’s 
actual impression of selected items have been devised. Moreover, 
many works suppose that serendipitous items mean unexpected 
items, and they do not treat items that are unexpected and 
interesting. 
In this study, the authors clarified what kinds of items are actually 
serendipitous by collecting data concerning a user’s actual 
impressions, made assumptions based on that actual data, and 
devised two serendipitous recommendation methods based on 
those assumptions. 

3. MODELING SERENDIPITOUS ITEMS 

ACCORDING TO ANALYSIS OF ACTUAL 

DATA 

3.1 User-preference model 
The assumption of user preference was established first, and what 
kinds of items are serendipitous for users was verified by 
analyzing a user’s actual impressions collected by questionnaires 
based on this assumption. The user-preference model established 
before the questionnaires were given is explained in the following. 
Figure 1 shows the concept of the model. In this model, items are 
arranged in feature vector space generated by features of items. 
Although this feature vector space is highly dimensional, for 
simplicity, two-dimensional space is introduced in Figure 1. Items 
that a user selected before exist in the area near the feature vector 
that the user recognizes and knows are interesting (so-called 
“recognized items” below because the user recognizes them as 
interesting and not surprising if recommended). In a distant area 
from that area, serendipitous items (namely, surprising and 
interesting items) are supposed to exist. In an area far from the 
recognized area, not-interesting items are supposed to exist. 
Broadly speaking, it is supposed that each user has several 
recognized areas in the feature vector space, because there may be 
several reasons that the user selected certain interesting items; for 
example, the reasons for selecting a drama and a documentary 
program may be different. 

Items

Not interesting

recognized

serendipitous

recognized

serendipitous

recognized

serendipitous

 

Fig. 1: Concept of user-preference model 

3.2 Questionnaire 
To collect users’ actual impressions, a questionnaire was given to 
thirty users. The method is mentioned below. First, users read the 
information concerning a TV program selected randomly from TV 
programs over three months (31,433 programs), and then they 
classify these TV programs as recommended items into three 
categories:  “recognized program” (first-type item), “serendipitous 
program” (second type) and “not-interesting program.” An 
electric program guide (EPG) is used to provide the information 
concerning TV programs, which includes title, performer, and the 
other contents of programs. 
In the questionnaire, three categories are available for choice by 
users. “Recognized program” means programs that users can 
expect from their own preference, for example, programs that 
users frequently watch. “Serendipitous program” means programs 
that users feel are interesting and surprising when recommended, 

4



Fig. 2: Number of evaluated programs by each user 

Vertical axis: Number of evaluated programs, Horizontal axis: User ID 

for example, programs that users do not expect from their own 
preferences but are interested in. “Not-interesting program” means 
programs that users are not interested in even though 
recommended. 

Fig. 3: Ratio of recognized programs and serendipitous programs in all programs for users 

Vertical axis: Rate of each program in all programs, Horizontal axis: User ID 

∑
=

−=
N

n
jinji nPnPwPP

1
)()(),(distance

It takes much time to answer this questionnaire (about one minute 
per program evaluation), so each user answered the questionnaire 
over one month, from ten to one hundred answers per day. We 
supposed that a user’s preference does not change much over one 
month, because a series of TV programs lasts about three months. 
All users live in Japan, twenty six work at Hitachi, Ltd., Central 
Research Laboratory and four are university students. Twenty five 
are male, and five are female. Fifteen are from twenty to thirty 
years old, eleven from thirty to forty, and the other four from forty 
to fifty.  Each user evaluated about one thousand to five thousand 
programs. 

3.3 Analysis method 
The programs collected by questionnaire are first converted into 
term vectors extraction by morphological analysis of text 
information in the EPG. Each vector component contains two 
values, whether the EPG text includes the term or not. The 
recognized programs are then clustered to estimate the recognized 
area. For clustering, the distance between program Pi and program 
Pj is defined as 

 (1) 

where Pi(n) means the vector component of the nth term in 
program Pi, whether program Pi includes the nth term or not (1 or 
0), wn means the user’s weight (a metric of user’s preference) of 
the nth term. The user’s own distance between programs is 
determined by introducing user’s weight wn. 
Weight wn of nth term v is calculated by TFIDF (product of term 
frequency and inverse document frequency) [11]. TFIDF is a 
metric of weighting characteristic terms occurring in observed 
documents by frequency in observed groups and in all groups. 
This metric is introduced to weight a user’s preference as follows. 

)
)(

log()|(tf)|(tfidfn vN
NDvDvw all×==  (2) 

Here, D represents observed program, which means recognized 
programs here, tf(v|D) means the frequency that term v occurs in 
D, Nall means the total number of programs, and N(v) means the 
number of occurrences of term v in all programs. 

3.4 Results 
Figure 2 shows the number of programs evaluated by each user, 
and Figure 3 shows the ratio of recognized programs and 
serendipitous programs in all programs. Although each user has 

5



various ratios, it is clear the rates of recognized programs are very 
low and there are a lot of inefficient programs. It is also clear that 
users who frequently watch TV programs evaluate more programs 
as recognized rather than serendipitous. On the other hand, the 
users who rarely watch TV programs evaluate more programs as 
serendipitous rather than recognized. 

R
at

io
 o

f r
ad

iu
s

In regard to the questionnaire, most users said they feel 
serendipitous concerning the programs that they do not know 
before but are interesting (for example, interesting educational 
programs for users who do not watch educational programs) and 
the programs including an unexpected combination of interesting 
features (for example, educational programs featuring a 
comedian). However, surprising programs are not always 
unexpected programs, so the meanings of surprising would 
include other factors. Moreover, some users evaluated no 
programs as serendipitous, and some users cannot classify 
programs into the three types; consequently, it is difficult to 
evaluate their subjective impression quantitatively. 

Height

A clustering result of recognized programs is shown as 
dendrogram in Figure 4. The clustering method used is 
hierarchical clustering. The height of the cluster means average 
distance between programs belonging to the cluster and the cluster 
center calculated from Equation (1). The number of recognized 
areas is determined by cutting at a certain height of a cluster. 
Figure 5 shows the ratio of average distance of recognized 
programs (radius of recognized area) and average distance of not-
interesting programs (radius of not-interesting area) from the 
nearest center of the cluster with height of clusters. When the 
number of clusters increases, not-interesting programs are 
distributed outside of recognized area. On the other hand, when 
the number of clusters decreases, not-interesting programs are 
distributed inside the recognized area because the number of 
clusters is fewer than the true number of recognized areas. 
Figure 6 shows the ratio of average distance of serendipitous 
programs (radius of serendipitous area) and the radius of a 
recognized area from the nearest center of the cluster with height 
of clusters. As the number of clusters increases, serendipitous 
programs are distributed outside of the recognized area. 
Figure 7 plots the results from Figures 5 and 6. It is indicated that 
not-interesting programs are distributed outside the recognized 
area, and serendipitous programs are distributed far outside the 
recognized area. 

 

Fig. 4: Clustering result of recognized programs 

(leaf nodes: recognized programs; vertical axis: height of cluster) 

 

Fig. 5: Ratio of radiuses of recognized area and not-interesting 
area with height of cluster 

(Denomination: radius of not-interesting area) 

R
at

io
 o

f r
ad

iu
s

Height  

Fig. 6: Ratio of radiuses of recognized area and serendipitous area 
with height of cluster 

(Denomination: radius of recognized area) 

 

Fig. 7: Ratio of radiuses of not-interesting area, recognized area, 
and serendipitous area with height of cluster 

(Denomination: not-interesting area) 

14
37

5
23

32
9

18
97

8
20

69
0

21
24

2
24

43
5

13
77

2
26

54
7

15
27

7
22

88
6

10
10

5
25

56
6

17
48

5
23

90
6

23
20

9
25

54
2

22
20

7
24

81
9

27
32

9
12

59
8

14
55

6
22

88
3

23
55

1
25

51
5

10
91

4
14

19
3

15
23

3
24

75
6

25
59

9
24

82
3

25
26

9
24

14
0

24
46

5
25

04
3

23
45

0
25

87
0

23
73

4
23

25
9

25
50

2
23

64
5

22
94

3
24

74
5

28
02

2
16

73
18

36
1

15
92

5
17

85
7

18
95

4
22

49
9

21
75

3
21

20
6

22
58

0
26

52
3

27
84

6
28

68
6

26
91

6
27

48
6

22
46

7
25

62
3

24
19

7
23

96
2

24
13

2
24

42
7

24
74

6
24

04
0

24
27

4
23

59
0

23
81

5
24

27
5

24
72

6
23

86
4

24
16

1
24

91
9

25
05

3
24

68
7

24
73

2
22

96
0

24
54

4
22

91
1

24
71

5
27

80
7

18
84

1
17

68
7

19
00

5
17

93
0

18
70

4
21

85
2

22
12

3
20

56
2

19
26

3
19

30
4

16
13

5
18

51
8

17
62

0
17

00
6

17
96

2
28

34
8

18
40

1
91

98
97

69
28

98
5

12
93

1
15

45
8

23
26

4
23

93
6

25
84

4
15

44
6

12
16

5
12

56
2

12
85

6
15

75
1

17
96

0
13

53
19

05
11

45
9

11
64

4
20

27
5

18
19

5
88

11
43

93
84

57
19

69
4

20
28

50.
00

0.
02

0.
04

0.
06

hclust 

納得感のクラスター

(*, "average")
as.dist(x)

高
さHe

ig
ht

Recognized Programs

Recognized +
Serendipitous ×

R
at

io
 o

f r
ad

iu
s

Height

6



3.5 Model based on analysis results 
To summarize the results presented in this section, in the feature 
vector space generated by EPG texts, not-interesting programs are 
distributed outside the recognized area and serendipitous 
programs are distributed far outside the recognized area. This 
result does not support the assumption in Figure 1. We therefore 
suggest the structure of user preference as shown in Figure 8 
instead of that shown in Figure 1. 
Distance from the center of the recognized area means the number 
of terms in the program vector but not in the center because the 
program-vector components are described by only two values, 
whether each term in the contents of programs is included or not. 
In addition, the weight of terms is calculated as a user’s 
preference by TFIDF. Therefore, even though the item includes 
many low-weight terms and is rarely watched, the distance from 
the recognized area is not far. And if the program includes high-
weight terms belonging to the other recognized area, the distance 
from recognized area becomes far. Consequently, programs 
including many high-weight terms belonging to the other 
recognized area and not similar to the ones in the nearest 
recognized area are distributed in the intermediate region of 
recognized areas, and users treat them as serendipitous programs. 
This assumption expresses that “the contents makes users feel 
serendipity concerning an unexpected combination of program 
contents,” which some users commented in the questionnaire. 
Figure 9 shows the distribution of each type of program plotted 
against distance from one center of a recognized area. The solid 
line represents the distribution of not-interesting programs, the 
dotted line represents the distribution of serendipitous programs, 
and the dashed line represents distribution of recognized programs. 
The nearest peak of recognized programs to the origin represents 
the peak of the distribution of the recognized area, and the next-
nearest peak represents several recognized areas. As shown in Fig. 

7, not-interesting programs are distributed broadly both in the 
recognized area and the serendipitous area; consequently, it is 
difficult to distinguish only serendipitous programs accurately by 
distance between programs given by Equation (1). 

Items

recognized

recognized
recognized

Serendipitous

Not interestingNot interesting

Not interesting

 

Fig. 8: User-preference model based on analysis results 

 

4. PROPOSAL AND EVALUATION OF 

RECOMMENDATION METHODS 

4.1 Proposed methods 

4.1.1 Using distance between items 
The distance between items used in this method is calculated from 
Equation (1) reflecting a user’s preference. First, the proposed 

0.00 0.02 0.04 0.06 0.08 0.10

0
20

40
60

80
10

0
12

0

distance

de
ns

ity

0.00 0.02 0.04 0.06 0.08 0.10

0
20

40
60

80
10

0
12

0

distance

de
ns

ity

0.00 0.02 0.04 0.06 0.08 0.10

0
20

40
60

80
10

0
12

0

distance

de
ns

ity
de

ns
ity

distance
Fig. 9: Density of programs in each area with distance from center of recognized area 

(Vertical axis: density of programs, horizontal axis: distance from center of recognized area, 

solid line: not interesting programs, dotted line: serendipitous programs, dashed line: recognized programs)

7



recommender system learns features of programs according to the 
user’s viewing history. In the same way as described in section 3, 
program vectors are defined by a term vector, whose component 
has two values. Second, the system splits watched programs (i.e., 
recognized programs) into several clusters by hierarchical 
clustering and finds the centers of recognized areas. The number 
of recognized areas is defined as 7 to 10 according to the results 
from the questionnaire. The system then calculates the distance of 
each not-watched program from the nearest center, and 
recommends the 10 longest programs. In short, the system 
recommends 10 highest score programs calculated according to 

),(distance)(Score nearesti CPPi =   (3) 

Here, Cnearest means the center of the nearest recognized area with 
program Pi. 
This method may not recommend serendipitous programs 
accurately because not-interesting programs are distributed 
broadly. This method is referred to as the “first method” hereafter. 

4.1.2 Using general unexpectedness 
This method (hereafter, “second method”) introduces 
“unexpectedness of programs” in addition to the distance used in 
the first method in order to capture a “surprising” factor. The 
results of the questionnaire indicate that the serendipitous 
programs have an unexpected aspect for users, as shown in Fig. 8. 
It is assumed that “unexpectedness” means something is hard to 
predict the program contents. Regarding a program-
recommendation system, it is assumed that it is related to an 
unlikely combination of features. The second method treats highly 
unexpected and interesting programs as serendipitous programs. A 
general metric of difficulty of expecting programs for every user 
is defined by the sum of the tendencies of co-occurrence of the 
terms in the program. 

∑

∑

∈

∈

−+
=

=

i

i

Pwvi

Pwvi

i

NvwNwNv
Nvw

P

wv
P

,

,

1

),(occurrence-co ofTendency 1
P )(ssExpectedne

2),(distance)(Score nearestii CPP ×= α

      (4) 

Tendency of co-occurrence (v, w) means tendency of co-
occurrence of terms v and w in all programs. It makes it possible 
to evaluate quantitatively how unexpected a program is for users. 
Nv means number of programs including term v, and Nvw means 
number of programs including both term v and w. |Pi| means 
number of terms in program Pi and is a normalized factor. If the 
co-occurrence of the terms is low, expectedness will be low, and 
the program will be highly unexpected, so users would be unable 
to find it. Unexpectedness is defined as the inverse of 
expectedness (see Equation (6)), and 10 high-score programs 
(calculated according to the sum of squares of distance between 
programs and unexpectedness as below) are recommended. 

2)(nessUnexpected)1( iP×−+ α
   (5) 

)(sxpectednes
1)(nessUnexpected

i
i PE

P =       (6) 

Parameter α  controls the degree of combination of a user’s 
preference and unexpectedness of programs. Simply put, equation 
(5) is a very simple linear combination of squares of distance and 
unexpectedness. 

4.2 Evaluation method 

4.2.1 Dataset 
The results of the questionnaire implemented in the third section 
were used. Data of fourteen users who classified more than 100 
programs into recognized or serendipitous programs were selected, 
because it was supposed that serendipitous recommendation 
becomes necessary after watching TV programs for about one 
month. (It was assumed that users get bored with typical 
recommendation after about one month and most users watch fifty 
TV programs per month). Each user evaluated from 1000 to 5000 
programs, and the ratio of serendipitous programs in all evaluated 
programs is 7 to 8%. 

4.2.2 Procedure 
The three proposed methods are applied to each user. The 
procedure is mentioned below. First, the system learns recognized 
areas from fifty recognized programs. In this evaluation 
experiment, 50 recognized programs were prepared randomly as a 
training set from evaluated programs as recognized. Next, the 
system recommends ten high-score programs by using the 
proposed methods, random recommendation, and a method using 
only unexpectedness for each user from the remaining evaluated 
programs by using the recognized areas learned first. Random 
recommendation means recommending ten programs randomly, 
and the method using only unexpectedness calculates a program 
score according to unexpectedness only (α=0 in Equation (5)). 
This experiment was performed ten times, and each time different 
recognized programs were used and the accuracy of each method 
was compared. 

4.2.3 Evaluation metrics 
Our purpose is to recommend serendipitous programs. So we use 
detection rate and precision as evaluation metrics for the purpose 
of evaluating accuracy of the proposed methods to detect 
serendipitous programs. Detection rate means the probability of 
detecting a serendipitous program and precision means rate of 
serendipitous programs in recommendation list. 

4.3 Results 
Table 1 lists the evaluation results of the two proposed methods, 
random recommendation and only unexpectedness. Accuracy 
metrics are calculated as an average of users. Parameter α is set 
to 0.05, so the second method has the highest accuracy, . 
The results in Table 1 show that detection rate and precision of 
random recommendation are low, so it suggests how difficult it is 
to recommend serendipitous programs. On the other hand, the 
accuracy of the second method (i.e., using unexpectedness of 
programs) is higher than the other methods, detection rate is 
78.2% and precision is 21.6%. This result means that the second 
method recommends serendipitous programs accurately. 

8



Table 1: Accuracy results 

Method Random First Second Only 
unexpectedness

Detection 
Rate [%] 

51.9 49.8 78.2 32.8 

Precision [%] 7.98 7.51 21.6 5.21 

 
While accuracy of the first method (i.e., using distance only) is the 
same as that of the random method, accuracy of the second 
method is much higher than the random one, and accuracy of the 
unexpectedness-only method is lower than that of the random one. 
This result shows it is possible to recommend serendipitous 
programs by using both distance reflecting a user’s preference and 
unexpectedness of programs. 
The first method recommends programs including not-interesting 
ones, because it recommends items that are not similar to 
recognized programs.  On the other hand, the second method 
distinguishes “unexpected and interesting programs” and 
“unexpected but not-interesting programs” from programs with 
low similarity according to unexpectedness. Consequently, the 
accuracy of the second method is high.  
Figure 10 shows the concept of user preference by distance and 
unexpectedness inferred from these results. Serendipitous 
programs and not-interesting programs are distant from the 
recognized area. According to the result “only unexpectedness” in 
Table 1, serendipitous programs exist in extra high-
unexpectedness areas because they tend to have more 
combinations of terms whose tendency of co-occurrence is low. 
Moreover, in the right lower box, not-interesting programs may 
exist. It seems very possible that the user would already know the 
highly unexpected programs near to recognized programs and not 
select them, because “unexpectedness” is a general metric and 
does not depend on a user’s record. 

 
Fig. 10: Concept of user preference with distance and 

unexpectedness 
 
Unexpectedness of programs calculated from tendency of co-
occurrence of terms in the programs is introduced here. For 
example, users find programs by reading TV guides and EPGs on 
web sites. Therefore, programs that have rare contents in TV 
guides are supposed to be serendipitous. TV guides and EPG are 
not provided by users but by the surroundings of users, so we 
simply introduce unexpectedness independently from a user’s 

characteristics. Examinees in this experiment are deemed to live 
in similar environments. The influence of unexpectedness for 
users living in totally different environments (e.g., living in 
different countries) might be significant. Unexpectedness may 
therefore be a frequency of contact with items similar to the 
relevant item which a user contacts with so far, with or without 
intention. 
Finally, our proposed method is compared with the other related 
methods. It is hard to compare by accuracy because serendipity 
depends on user’s subjective impression, so we compare these by 
requirements in Table. 2. 

 

Table 2: Comparison of serendipitous recommendation 

Requirement Proposal
Different 

from 
Habit 

Different 
from 

Interesting & 
Not 

Collaborativ
e 

User’s 
Impression

Unneces
sary 

Unneces
sary Necessary Unnecess

ary 

Other user’s 
record 

Unneces
sary 

Unneces
sary Unnecessary Necessar

y 

User’s 
Habit 

Unneces
sary 

Necessa
ry Unnecessary Unnecess

ary 

Information 
of Programs

Necessa
ry 

Necessa
ry Necessary Unnecess

ary 

 
Related works require some information concerning users, one 
requires a user’s impression of recommended items, another 
requires other users’ records, and another requires user’s habits. 
The proposed recommendation method requires few evaluation 
values to learn a user’s preference and does not depend on user’s 
surroundings. On the other hand, it requires information 
concerning programs, but recently there is much information 
regarding programs on Internet reference sites like Wikipedia. In 
short, the proposal method has most broad utility regarding 
various systems because it is useful for both devices and servers. 
As for our future work, however, which method satisfies users 
must be verified by a user’s subjective evaluation. On the other 
hand, we suggest using suitable terms for each user. 

5. FUTURE WORK 
Although the accuracy of our proposal serendipitous 
recommendation method was verified, the following three tasks 
remain as future work: improve accuracy, evaluate by more users, 
and tune performance of actual system 
To improve accuracy, it is necessary to select the recognized area 
outside of which many serendipitous programs exist; in fact, there 
are some recognized areas outside of which serendipitous 
programs do not exist. By considering the radius and number of 
programs included in recognized areas, it is possible to select the 
best recognized area. Moreover, another approach to improving 
accuracy is to get rich information concerning programs via 
metadata and information on web sites. 
It is also necessary to satisfy users by capturing user context with 
their spatial temporal information; for example, a user does not 

di
st

an

Unexpectedness

ce

Not interesting

Recognized

Serendipitous

Not interesting

9



want to watch a program in the morning but in the evening instead. 
It is also important to capture time-dependent user preferences, for 
example, users feel serendipity if a recommended program was 
not watched recently but has been watched in the past. With our 
recommendation method, a user’s preference is described in a 
feature vector space generated by the user’s selection history, so 
the structure of the space and distribution of user preference 
depends on time. 
To make the user-preference model statistically strong, it is 
necessary to evaluate our proposed method by more users, 
because the concept of serendipity is supposed to depend strongly 
on user’s subjective impression. Moreover, it is important to 
establish methods for evaluating a user’s satisfaction 
quantitatively. 
To introduce our recommendation method in an actual system, it 
is necessary to design an optimal data structure and speed up the 
method. 
In this study, we verified the recommendation method by using 
TV programs, but this approach can be applied to recommend 
items like books and DVDs from a user’s record of selecting TV 
programs. We plan to use this approach to capture the meanings 
of users like and dislike by collecting and analyzing user’s records. 

6. CONCLUSION 
To realize serendipitous recommendation, a recommendation 
method for extracting a user’s preference was proposed and 
evaluated. In particular, based on actual data obtained by giving a 
questionnaire to thirty users, a user-preference model using 
distance between programs was established. Based on this model, 
a serendipitous recommendation method using the distance and 
unexpectedness of programs was proposed. This method 
recommends a serendipitous program accurately at a detection 
rate is 78.2%. Moreover, it was found that the impression of 
unexpectedness depends on a user’s living environment rather 
than his or her character. This result is an important fact in regard 
to understanding a user’s preference in principle. 

7. REFERENCES 
[1] E. Toms: Serendipitous Information Retrieval, Proc. of DELOS 

Workshop, 2000 
[2] Herlocker, J., et al.: Evaluating Collaborative Filtering Recommender 

Systems, ACM Transactions on Information Systems, Vol. 22, No. 1, 
pp. 5-53 (2004) 

[3] K. Swearingen and R. Sinha: Beyond Algorithms: An HCI Perspective 
on Recommender Systems, ACM SIGIR Workshop on Recommender 
Systems (2001) 

[4] S. M. McNee, J. Riedl, and J. A. Konstan: Making Recommendations 
Better: An Analysis Model for Human-Recommender Interaction, In 
proc. of ACM Special Interest Group on Computer-Human Interaction 
(ACM SIGCHI), pp. 997-1101 (2006) 

[5] S. M. McNee, J. Riedl, and J. A. Konstan: Being accurate is not 
enough: How accuracy metrics have hurt recommender systems, In 
proc. of ACM Special Interest Group on Computer-Human Interaction 
(ACM SIGCHI), pp. 997-1101 (2006) 

[6] C. N. Ziegler, G. Lausen, and L. S. Thieme: Taxonomy-driven 
Computation of Product Recommendations, In proc. of the 2004 ACM 
CIKM Conference on Information and Knowledge Management, pp. 
406-415 (2004) 

[7] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and George 
Lausen: Improving Recommendation Lists Through Topic 
Diversification, In proc. of World Wide Web Conference, pp. 22-32 
(2005) 

[8] Y. Hijikata, T. Shimizu, and S. Nishida: Discovery-oriented 
Collaborative Filtering for Improving User Satisfaction, In proc. of the 
14th ACM International Conference on Intelligent User 
Interfaces(ACM IUI 2009), pp. 67-76 (2009) 

[9] Leo Iaquinta, Macro de Gemmis, Pasquale Lops, Giovanni Semeraro, 
Michele Filannino, and Piero Molino: Introducing Serendipity in a 
Content-based Recommender System, Hybrid Intelligent Systems, 
2008. HIS '08. Eighth International Conference on 10-12 Sept. 2008, 
pages 168 – 173 

[10] T. Murakami, et al.: A Method to Enhance Serendipity in 
Recommendation and its Evaluation, Transactions of the Japanese 
Society for Artificial Intelligence, Vol. 24, Issue 5, pp. 428-436 (2009). 

[11]  Li-Ping Jing, et al.: Improved Feature Selection Approach 
TFIDF In Text Mining, Proceedings of the First International 
Conference on Machine Learning and Cybernetics (2002) 

 

10



Enhancing Accuracy of Hybrid Recommender Systems
through Adapting the Domain Trends

Fatih Aksel
Department of Computer Engineering

METU
fatih.aksel@ceng.metu.edu.tr

Ayşenur Birtürk
Department of Computer Engineering

METU
birturk@ceng.metu.edu.tr

ABSTRACT
Hybrid recommender systems combine several algorithms
based on their hybridization strategy. Prediction algorithm
selection strategy directly influence the accuracy of the hy-
brid recommenders. Recent research has mostly focused
on static hybridization schemes which are designed as fixed
combinations of prediction algorithms and do not change
at run-time. However, people’s tastes and desires are tem-
porary and gradually evolve. Moreover, each domain has
unique characteristics, trends and unique user interests. In
this paper, we propose an adaptive method for hybrid rec-
ommender systems, in which the combination of algorithms
are learned and dynamically updated from the results of
previous predictions. We describe our hybrid recommender
system, called AdaRec, that uses domain attributes to un-
derstand the domain drifts and trends, and user feedback
in order to change it’s prediction strategy at run-time, and
adapt the combination of content-based and collaborative
algorithms to have better results. Experiment results with
datasets show that our system outperforms naive hybrid rec-
ommender.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval - Information filtering, Retrieval
models, Selection process; I.2.6 [Artificial Intelligence]:
Learning

General Terms
Design, Experimentation, Algorithms

Keywords
Hybrid Recommender Systems, Switching Hybridization, De-
cision Tree Induction, Hybrid Recommender Framework,
Adaptive Recommender Systems

1. INTRODUCTION

Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain.

Content-based and collaborative filtering are the two major
recommendation techniques that have come to dominate the
current recommender system area. Content-based recom-
mender system uses the descriptions about the content of the
items (such as meta-data of the item), whereas collaborative
filtering system tries to identify users whose tastes are simi-
lar and recommends items they like. Other recommendation
technologies include hybrid techniques, knowledge-based ap-
proaches etc [6]. The popular Amazon item-to-item system
[7] is one of the well-known recommender system that uses
collaborative filtering techniques. NewsWeeder [12] and In-
foFinder [11] are the pure content-based recommender sys-
tems that analyze the content of items, in their recommen-
dation process.

Previous research in this area, has shown that these tech-
niques suffer from various potential problems-such as, spar-
sity, reduced coverage, scalability, and cold-start problems
[1, 6, 23]. For example; collaborative filtering techniques
depend on historical ratings of across users that have the
drawback, called cold start problem - an item cannot be rec-
ommended until it has been rated by a number of existing
users. The technique tends to offer poor results when there
are not enough user ratings. Content-based techniques can
overcome the cold start problem, because new items can be
recommended based on item features about the content of
the item with existing items. Unfortunately, content-based
approaches require additional information about the content
of item, which may be hard to extract (such as, movies, mu-
sic, restaurants). Every recommendation approach has its
own strengths and weaknesses. Hybrid recommender sys-
tems have been proposed to gain better results with fewer
drawbacks.

Most of the recommender system implementations focuses
on hybrid systems that use mixture of recommendation ap-
proaches [6]. This helps to avoid certain limitations of content-
based and collaborative filtering systems. Previous research
on hybrid recommender system has mostly focused on static
hybridization approaches (strategy) that do not change their
hybridization behavior at run-time. Fixed strategy may be
suboptimal for dynamic domains&user behaviors. Moreover
they are unable to adapt to domain drifts. Since people’s
tastes and desires are transient and subject to change, a
good recommender engine should deal with changing con-
sumer preferences.

In this paper, we describe an Adaptive Hybrid Recommender

11



System, called AdaRec, that modifies its switching strat-
egy according to the performance of prediction techniques.
Our hybrid recommender approach uses adaptive prediction
strategies that determine which prediction techniques (al-
gorithms) should be used at the moment an actual predic-
tion is required. Initially we used manually created rule-
based strategies which are static. These static hybridization
schemes have drawbacks. They require expert knowledge
and they are unable to adapt to emerging trends in the do-
main. We now focus on prediction strategies that learn by
themselves.

The paper is organized as follows. Related work is described
in Section 2. In Section 3, we present the adaptive predic-
tion strategy model for hybrid recommenders. We then de-
scribe our experimental recommender systems’ architecture
& learning module that dynamically adjusts recommenda-
tion strategy in response to the changes in domain. An ini-
tial evaluation of our approach, based on MovieLens dataset,
is presented in Section 6.

2. RELATED WORK
Personalization techniques have been investigated extensively
in several areas of computer science. Especially in the do-
mains of recommender systems, personalization algorithms
have been developed and deployed on various types of sys-
tems [1].

There have been several research efforts to combine different
recommendation technologies. The BellKor system [4], stat-
ically combines weighted linear combination of more than a
hundred collaborative filtering engines. The system uses the
model based approach that first learns a statistical model
in an offline fashion, and then uses it to make predictions
and generate recommendations. The weights are learned
by using a linear regression on outputs of the engine. The
STREAM [3] recommender system, which can be thought of
as a special case of the BellKor system, classifies the recom-
mender engines in two levels: called level-1 and level-2 pre-
dictors. The hybrid STREAM system uses run-time metrics
to learn next level predictors by linear regression. However
combining many engines level by level results performance
problems at run-time. Our approach combines different al-
gorithms on a single hybrid engine with an adaptive strategy.

Some hybrid recommenders choice the best suited recom-
mender engine for a specific case (user, item, input etc.).
For example, the Daily Learner system [5], which is a per-
sonal web-based agent, selects the best recommender engine
according to the confidence levels. But in order to han-
dle different engines in a common point, confidence scores
should be comparable.

The use of machine learning algorithms for user modeling
purposes has recently attracted much attention. In [13], the
authors proposed a hybrid recommender framework to rec-
ommend movies to users. The system uses a content-based
predictor to enhance existing user data, and then provides
personalized suggestions through collaborative filtering. In
the content-based filtering part of the system, they get ex-
tra information about movies from the IMDB1 and handle

1http://www.imdb.com/

each movie as a text document. User and item profiles are
built by using a Naive Bayes classifier that can handle vec-
tors of bags of words; where each ’bag-of-words’ corresponds
to a movie-feature (e.g. title, cast, etc.). The Naive Bayes
classifier is used to approximate the missing entries in the
user-item rating matrix, and a user-based collaborative fil-
tering is applied over this dense matrix.

In our system, we choice the Duine Framework2 for our rec-
ommendation engine component, which is an open-source
hybrid recommendation system [20]. The Duine framework
allows users to develop their own prediction engines for rec-
ommender systems. The framework contains a set of rec-
ommendation techniques, ways to combine these techniques
into recommendation strategies, a profile manager, and it
allows users to add their own recommender algorithm to
the system. It uses switching hybridization method in the
selection of prediction techniques. The result of a Duine pre-
diction engine is the retrieved set of information with added
data about how interesting each piece of information is for
the user [20, 17].

3. ADAREC: AN ADAPTIVE HYBRID REC-
OMMENDER SYSTEM

Hybrid recommendation systems combine multiple algorithms
and define a switching behavior (strategy) among them. This
strategy decides which technique to choose under what cir-
cumstances for a given prediction request. Recommender
system’s behavior is directly influenced by the prediction
strategy. The construction of accurate strategy that suits
in all circumstances is a difficult process. A well-designed
adaptive prediction strategy offers advantages over the tra-
ditional static one.

In our approach we use the switching hybridization in or-
der to decide which prediction technique is most suitable
to provide a prediction. Prediction techniques, also called
the predictors are combined into an upper prediction model
that is called prediction strategy. The central concept in
combining multiple predictors using the switching hybridiza-
tion method is the prediction strategy. Prediction Strategy,
which defines the algorithm selection strategy, changes the
behavior of the recommender engines at run-time.

Most of the currently available personalized information sys-
tems focus on the use of a single selection technique or a fixed
combination of techniques [20, 14]. However, application
domains are dynamic environments. Users are continuously
interacting with domain, new concepts and trends emerge
each day. Therefore, user interests might change dynami-
cally over time. It does not seem possible to adapt trends
by using a static approach (static prediction strategy). In-
stead of static methods dynamic methods that can adapt to
change on domains, could be more effective.

Different design approaches might be used for the predic-
tion strategy adaptation. Rule based, case based, artificial
neural networks or Bayesian are some of the learning tech-
niques. Each technique has its own strengths and weak-
nesses. In this paper, we introduce self adaptive prediction
strategy learning module which employs a strategy based on

2http://duineframework.org/

12



its attached learning technique. Learning module initializes
prediction engine according to the specified machine learn-
ing technique. This prediction strategy adapts itself to the
current context by using the previous performance results of
the techniques. Different machine learning algorithms that
induce decision trees or decision rules could be attached to
our experimental design.

4. PREDICTION STRATEGY LEARNING
Duine Recommender offers extensive options for configuring
various recommender algorithms. It provides a sample of
most common recommendation algorithms that can be com-
bined in algorithm strategies. In the Duine Recommender
the knowledge that designs the selection strategy is provided
manually by experts [8, 21]. However, the combination of
different techniques in a dynamic, intelligent and adaptive
way can provide better prediction results. The combina-
tion of techniques should not be fixed within a system and
that the combination ought to be based on knowledge about
strengths and weaknesses of each technique and that the
choice of techniques should be made at the moment a pre-
diction is required.

Hybridization of a recommender system employs using the
best prediction technique from the available ones. The main
purpose of a prediction strategy is to use the most appropri-
ate prediction technique in a particular context. Adaptive
prediction strategy depicts the selection rules of prediction
techniques. Figure 1 shows a sample prediction strategy
that decides when to use which predictors (gray nodes) by
using the threshold values (arrows).

Prediction strategy employs the selection rules of the avail-
able prediction techniques. Our experimental hybrid rec-
ommender system has plenty of pre-defined prediction tech-
niques. These prediction techniques are implemented by us-
ing different paradigms. Content-based and collaborative fil-
tering are the two principal paradigms for computing recom-
mendations [23]. In our system we have used content-based,
collaborative filtering, knowledge based and case-based pre-
diction techniques.

To make decisions about which predictor is suitable for the
current context, threshold values, predictors’ state and users
feedback are used by the adaptive prediction strategy. The
state of a predictor is described by the amount and at the
quality of knowledge that is available to the predictor. In
other words, the knowledge that is used by the prediction
technique is the basis of its predictions. One of the objectives
of the prediction strategy is to select the right prediction
technique according to the current states of the predictors.
The initial strategy is defined by using the expert knowledge.
System starts with an initial prediction strategy. Later on
the Learning Module adjusts the prediction strategy to the
current systems’ domain.

Decision trees and decision rules are model based strategies.
Each node in a decision tree represents some attributes and
each branch from a node corresponds to a possible value for
that attribute. When trying to classify a certain instance,
as seen in the Figure 1, one starts at the root of the decision
tree and move down the branches of the tree according to
the values of the attributes until a leaf node is reached. The

Figure 1: The Duine Recommender’s prediction
strategy depicted as decision tree. Grey nodes rep-
resent prediction algorithms and arrows represent
the attributes&threshold values.

leaf nodes represent the decisions of the tree [20].

Adaptive strategy can be designed using by rule sets or trees
that contain the knowledge on decisions. Decision rules can
also be expressed as decision trees. Experts often describe
their knowledge about a process using decision trees and
decision rules as they are easy to interpret by other people.
The decision trees are a good interface between experts and
the recommender systems.

Adaptive prediction strategy is in the form of a decision
tree. Another way to represent decision tree is using decision
rules. Decision rules generally take the form of IF . . . THEN
. . . rules, i.e. IF attribute1 = value1 AND attribute2 =

value2 THEN result2.

Depending on the nature of the domains (movie, music, book
etc.) different attribute-value combinations can be used for
prediction strategy design. In our proposed system, since
we tested on MovieLens dataset, we choice these specific
attributes that have meaningful correlations between movie
domain and prediction techniques. We believe that, by mea-
suring the changes on these attributes, we can capture the
domain drifts and trends

1. item ratings count, the number of ratings that the cur-
rent item has.

2. item similar user count, similar users count that have
already rated the current item.

3. similar item count, the number of similar items count
according to similarity measures.

4. main genre interest, main genre interest certainty of
the current item among the users items.

5. sub genre interest, sub genre interest certainty of the
current item among the users items.

13



Figure 2: Overall architecture of the AdaRec Sys-
tem.

Decision trees/decision rules are constructed using the com-
bination of the above five attributes. As shown in Figure
1 at each node of the decision tree a attribute is compared
with a value, which is called threshold value. These five at-
tributes are used to classify the prediction algorithms.

The Recommender System needs to work with the best suited
prediction technique for its domain and users. In our system,
we used and tested different prediction techniques. These
are; topNDeviation, userAverage, socialFiltering, CBR (Case
Based Reasoning), mainGenreLMS, subGenreLMS, infor-
mationFiltering. Because of the dynamic nature of the do-
main, these attributes create different forms of decision trees.

Each domain has unique characteristics including user be-
haviors, emerging trends etc. Recommender engine able to
adapt itself to the changes in the domain by analyzing the
changes. Also the system can capture the trends in the do-
main able to re-design its’ attached prediction strategy. In
our system, we used and tested different prediction tech-
niques.

The quality of a decision tree depends on both the classifi-
cation accuracy and the size of the tree[10]. After reviewing
and testing many of the options, we decided to use two de-
cision tree classifiers; J48 (pruned C4.5 decision tree)[18],
which is the WEKA’s3 implementation of the decision tree
learner based on the C4.5 decision tree algorithm, and BF-
Tree (best first-decision tree), which is a decision tree learner
that uses a best first method of determining its branches.
Also in order to compare the rule-based and tree induction
methods we plugged and tested the Conjunctive Rules clas-
sifier, which is a simple rule learner that learns a set of simple
conjunctive rules.

5. OVERVIEW OF THE ADAREC SYSTEM
Figure 2 depicts the architectural overview of the proposed
AdaRec system. Our experimental framework is an exten-
sion of the open-source Duine Framework. System consists

3Waikato Environment for Knowledge Analysis:
http://www.cs.waikato.ac.nz/ml/weka/

of two core parts, Recommender Engine and Learning Mod-
ule.

Recommender Engine is responsible for generating the pre-
dictions of items based on the previous user profiles and item
contents. It attempts to recommend information items, such
as movies, music, books, that are likely to be of interest to
the user. The recommender generate the predictions by us-
ing its attached prediction strategy. The implementation
here uses the open source Duine Framework for the recom-
mender engine.

Learning Module handles the new prediction strategy cre-
ation upon the previous instances and performance results
of the prediction techniques on each learning cycle. It al-
lows the building of new decision trees/decision rules based
on the previous recorded instances.

Learning cycle is a logical concept that represents the re-
design frequency of the prediction strategy. Each instance,
based on the indicated count, and prediction algorithm’s
performance results are collected between two learning cy-
cles. The learning module modifies the values of attributes
in decision rules, which is also called threshold values accord-
ing to the gathered results of the prediction techniques per-
formance. The old prediction strategy is modified by using
recommender engines’ machine learning algorithm (rule tun-
ing, rule adaptation, decision tree induction etc.). The mod-
ification of the threshold values allows recommender system
to analyze&adapt the nature of the users and the domain.

The learning module first tests the accuracy of the each pre-
dictor in the system. Than the prediction strategy is re-
designed by the learning module in order to improve proper
use of predictors. Adaptive prediction strategy improves its’
prediction accuracy by learning better when to use which
predictors. The learning module adapts the hybrid recom-
mender system to the current characteristics of domain.

Previous predictions and user feedbacks are fed to the train-
ing set of the next learning cycle. Inductive learning is used
in learning from the training set. In our experiments we
tested different (1K, 1.5K, 2K and 3K) instance sizes for
training sets. The training set contains the instances from
the previous learning cycle results. There are quite a few
inductive learning techniques to choose from, including in-
formation theoretic ones (e.g. Rocchio classifier), neural
networks (e.g. back-propagation), instance-based methods
(e.g. nearest neighbour), rule learners (e.g. RIPPER), deci-
sion trees (e.g. C4.5) and probabilistic classifiers (e.g. naive
Bayes) [14].

The User Profile, is the representation of the user in the
system. For each active user a user model is stored in the
user profile. User profile holds the knowledge (such as pref-
erences, feedbacks, feature weights etc.) about users in a
structured way. The Recommender Shell, encapsulates the
Recommender Engine’s interaction with other modules. The
shell serves the created prediction strategies to the engine.
The Prediction Parser, produces the performance results of
the prediction algorithms based on the analyzing of the col-
lected predictions & feedbacks. This module handles the
decomposition of the prediction results and generates the

14



training set of sample instances with current attributes.

User feedbacks and MAE (Mean Absolute Error) are the
main criteria, which describe the trends in the domain. Adap-
tive prediction strategy learns its domain trends over time
via unobtrusive monitoring and relevance feedback. In our
proposed system, we focused self adaptive prediction strat-
egy that classifies according to its’ attached machine learn-
ing technique. This prediction strategy adapts itself to the
current context by using the previous performance results of
the techniques. Different machine learning algorithms that
induce decision trees or decision rule sets could be attached
to our experimental design.The architecture is open and flex-
ible enough to attach different machine learning algorithms.

6. EXPERIMENTS
In this section we present a brief discussion of our experimen-
tal dataset, evaluation metric followed by the experimental
results and discussion.

In order to assess the impact of our proposed adaptive rec-
ommender and different machine learning algorithms, we
calculated prediction accuracy (MAE) of the system using
different configurations of the machine learning schemes.
Different MovieLens datasets are examined during the ex-
periments.

The datasets are divided into temporal subsets according to
their time-stamp values. Natural domain trends and changes
in user interests are handled by using the subsets of the
dataset.

6.1 Datasets
We used data for our recommender system from MovieLens4,
which is a web-based research recommender system that de-
buted in Fall 1997 [15].

In our experiments MovieLens one million ratings dataset
is used, with 6040 users and 3900 movies pertaining to 19
genres. MovieLens dataset contains explicit ratings about
movies and has a very high density. In order to train the
recommender system, the MovieLens dataset is divided in to
different temporal sets based on their distribution in time.
When testing the ratings of first sets are used for recom-
mender engine training [15, 9, 16].

6.2 Experimental Setup
Recommender systems researchers use a number of differ-
ent measures for evaluating the success of the recommenda-
tion or prediction algorithms [19, 22]. For our experiments,
we use a widely popular statistical accuracy metric named
Global Mean Absolute Error (MAE), which is a measure
of the deviation of recommendations from their true user-
specified values. The MAE is defined as the average differ-
ence between the predicted ratings and the real user ratings,
as defined within the test sets. Formally, MAE can be de-
fined as:

MAE =

PN
i=1 |pi, ri|

N
where pi is the predicted value for item i and ri is the user’s
rating.
4http://www.movielens.umn.edu

The aim of the experiments is to examine how the recom-
mendation quality is affected by our proposed learning mod-
ule. The present model of the Duine Framework is non adap-
tive but it supports predictor level learning. This original
state of the framework is referred to baseline. As shown
in the Figure 1, Duine recommender uses a static prediction
strategy as its’ hybridization scheme, which does not change
at run-time. We want to compare the prediction quality ob-
tained from the framework’s baseline (non adaptive) to the
quality obtained by our proposed experimental framework
(adaptive). The approach will be considered useful if the
prediction accuracy is better than the baseline. At the first
iterations both systems are initialized with the same strat-
egy, which is the default strategy of the Duine Framework.

The validation process is handled using the following proce-
dure:

1. The ratings provided by the dataset are fed to the
system one by one, in the logical order of the system
(ordered by timestamps).

2. When a rating is provided during validation, predic-
tion strategy is invoked to provide a prediction for the
current user and the current item. The average pre-
diction error can be used a performance indicator of
the attached prediction strategy.

3. After the error has been calculated, the given rating
is provided as feedback to the recommender system.
The adaptive system collects the feedback as well as
the current attributes of the system as instances.

4. Whenever the collected instances reached the learning
cycle’s instance count (1000 instances for example),
the prediction strategy of the system will be redesigned
by the adaptive system according to the instances.

This way, when the next learning cycle is processed, the
adaptive system has learned from all the previously pro-
cessed ratings. This process is repeated for all ratings at
both adaptive and non-adaptive (baseline) systems in the
test set. At the end MAE is calculated by averaging abso-
lute errors within the baseline and the adaptive system, as
described above.

6.3 Results & Discussion
Each prediction provided by the two different systems are
examined. The prediction accuracy and the prediction error
(MAE) are recorded. In experimenting with the MovieLens
dataset, we considered both the proposed method, called
adaptive system, and the existing method, called baseline.

In the experiments, different number of instances, such as
1K, 2K and 3K, are used. The purpose of different number
of instances was to compare the influence of the instance
size on algorithms at the same domain. In the adaptive
system, C4.5, BF-Tree and Conjunctive Rules classifier al-
gorithms are attached to the learning module and its results
are recorded. We tuned the algorithms to optimize and con-
figured to deliver the highest quality prediction without con-
cern for performance.

15



Figure 3: Quality of prediction (MAE) using
AdaRec (attached J48, BF-Tree and Conjunctive
Rules with 1000 instances) vs Baseline & Best.

Figure 4: Prediction accuracy comparison of the
AdaRec (attached J48, BF-Tree and Conjunctive
Rules) vs Baseline & Best for different instance
sizes.

We also plot the result of the best MAE (less is better) of the
hybrid recommender in the current context at each iteration.
The best MAE is referred as best at the charts. Therefore
it is possible to compare the performance of the algorithms
and the best possible result.

Figure 6 presents the prediction quality (average MAE) re-
sults of our experiments for the adaptive system as well as
the original system referred to baseline. J48 algorithm is
used in these experiments. In this chart, prediction quality
is plotted for each of the iterations. On each iteration adap-
tive system re-designs its prediction strategy according to
the previous iteration’s performance result (feedbacks and
results). It can be inferred from chart that, the predic-
tion quality of the adaptive system performs better than
the baseline. It can also be observed from the chart that the
adaptive system adapts itself to the changes in the domain
and users.

Figure 4 presents the prediction accuracy results of the dif-
ferent instance sizes. In the figure, we also plot the overall
performance of ML algorithms as average. It can also be ob-
served from the charts that as we increase the instance size
of algorithms the quality tends to be superior (decreased

MAE). In case of other algorithms it is expected that in-
creasing the number of instances would mean small MAE
values. The same trend is observed in the case of 2K and
3K instances.

Figure 5 presents the average MAE of hundred runs for 1K
instance size. In this experiment we evaluate the impact of
more runs for 1K instance size. It can be observed from the
chart that changes in the MAE show the similar trends for
both the baseline, adaptive and best systems. A harmony is
achieved through time. The curves are similar in such a way
that if one of them has a good prediction accuracy in one
run, the others also have the good accuracy for that run.

In order to determine the impact of the instance size, we
carried out an experiment where we varied the value of in-
stance size (1K, 1.5K, 2K and 3K). For each of these training
set/instance size values we run our experiments. Figure 6
presents the whole picture of the adaptive system’s perfor-
mance results. From the plot we observe that the quality of
MAE increases as we increase the instance size.

Figure 3 presents the accuracy results of all used ML tech-
niques for 1K instance size. It can be observed from the fig-
ure that the J48 attached AdaRec system performs better
than the other systems. Also BF-Tree seems good enough
to compete against the naive hybrid system. But BF-Tree
algorithm needs some domain depended configuration ad-
justments. From the figure we also observe that the Con-
junctive Rules algorithm underperforms among other ML
algorithms. The rule learner algorithm seems not stable as
the decision tree learners.

The results also show that, when using well tuned algo-
rithms, the adaptive system is stable (better than the base-
line) in obtaining the average prediction accuracy. This
durability, which can be called the impact of learning, is
established by the learning module. In order to adapt rec-
ommender engine to the current trends, the learning module
re-designs the prediction strategy. The learning ability sup-
ports the recommender system adaptation to the changes.

7. CONCLUSION & FUTURE WORK
In this paper, we introduced an adaptive hybrid recom-
mender system, called AdaRec, that combines several rec-
ommender algorithms in which the combination parame-
ters are learned and dynamically updated from the results
of previous predictions. Research study shows that tradi-
tional static hybrid recommender systems suffer from chang-
ing user preferences. In order to improve the recommenda-
tion performance, we handle domain drifts in our approach.
The Learning Module re-designs its prediction (switching)
strategy according to the performance of prediction tech-
niques based on user feedbacks. As a result, the system
adapts to the application domain, and the performance of
recommendation increases as more data are accumulated. In
the MovieLens dataset, the proposed adaptive system out-
performs the baseline (naive hybrid system).

Initial experimental results show its potential impacts. There-
fore, for the next step, we plan to further testing the learning
module with various heterogeneous datasets. It would be in-
teresting to examine the different domains other than movie

16



Figure 5: Quality of prediction using J48 (pruned C4.5), Baseline and Best according to 100 iterations.
Previous 1000 instances are used for learning on each iteration.

Figure 6: Comparison of the different instance sizes. 1K, 1.5K, 2K and 3K instances are used for learning
cycle. 3K learning cycles’ prediction quality yields better results than the others

17



(such as music, book, news etc. ). Also, our future work
will explore the effectiveness of other machine learning tech-
niques for use in learning module. In our experiments we
fixed the used attributes for domain monitoring. It would
be also interesting to use dynamic attributes, which means
to use different attributes on different iterations. We believe
that with this adaptive learning module, a traditional hybrid
recommender should have higher chance to allow its users
to efficiently obtain an accurate and confident decision.

8. ACKNOWLEDGMENTS
We would like to acknowledge the anonymous reviewers of
HaCDAIS’2010 and PRSAT’2010 workshops for their useful
comments. An earlier version of this study has appeared as
a short paper in the proceedings of HaCDAIS 2010 workshop
[2].

9. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[2] F. Aksel and A. Birturk. An Adaptive Hybrid
Recommender System that Learns Domain Dynamics.
International Workshop on Handling Concept Drift in
Adaptive Information Systems: Importance,
Challenges and Solutions (HaCDAIS-2010) at the
European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in
Databases 2010 (ECML PKDD 2010), page 49, 2010.

[3] X. Bao, L. Bergman, and R. Thompson. Stacking
recommendation engines with additional
meta-features. In Proceedings of the third ACM
conference on Recommender systems, pages 109–116.
ACM, 2009.

[4] R. Bell, Y. Koren, and C. Volinsky. The bellkor
solution to the netflix prize. KorBell Team’s Report to
Netflix, 2007.

[5] D. Billsus and M. Pazzani. User modeling for adaptive
news access. User Modeling and User-Adapted
Interaction, 10(2):147–180, 2000.

[6] R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, 2002.

[7] A. Gunawardana and C. Meek. A unified approach to
building hybrid recommender systems. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 117–124, New York, NY,
USA, 2009. ACM.

[8] J. Herlocker and J. Konstan. Content-independent
task-focused recommendation. IEEE Internet
Computing, pages 40–47, 2001.

[9] The internet movie database. http://www.imdb.com/.

[10] D. Jensen and P. R. Cohen. Multiple comparisons in
induction algorithms. In Machine Learning, pages
309–338, 1998.

[11] B. Krulwich and C. Burkey. Learning user information
interests through extraction of semantically significant
phrases. In Proceedings of the AAAI spring symposium
on machine learning in information access, pages
100–112, 1996.

[12] K. Lang. Newsweeder: Learning to filter netnews. In
In Proceedings of the Twelfth International Conference
on Machine Learning, 1995.

[13] P. Melville, R. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In Proceedings of the National
Conference on Artificial Intelligence, pages 187–192.
Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2002.

[14] S. E. Middleton. Capturing knowledge of user
preferences with recommender systems. PhD thesis,
University of Southampton, May 2003.

[15] Movielens dataset.
http://www.grouplens.org/node/73.

[16] Netflix dataset. http://www.netflixprize.com.

[17] Novay. Duine recommender — telematica
instituut-novay, 2010. [Online; accessed 1-July-2010].

[18] S. Salzberg and A. Segre. Book review: ”c4.5:
Programs for machine learning” by j. ross quinlan. In
Machine Learning. morgan kaufmann publishers, inc,
1994.

[19] B. M. Sarwar, J. A. Konstan, A. Borchers,
J. Herlocker, B. Miller, and J. Riedl. Using filtering
agents to improve prediction quality in the grouplens
research collaborative filtering system. pages 345–354.
ACM Press, 1998.

[20] M. V. Setten. Supporting People in Finding
Information- Hybrid Recommender Systems and Goal
Based Structuring. Telematica instituut fundamental
research series no:016, Telematica Instituut, November
2005.

[21] M. V. Setten, M. Veenstra, and A. Nijholt. Prediction
strategies: Combining prediction techniques to
optimize personalization. In Proceedings of the
workshop Personalization in Future TV, volume 2.
Citeseer, 2002.

[22] U. Shardanand and P. Maes. Social information
filtering: algorithms for automating “word of mouth”.
In CHI ’95: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 210–217,
New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

[23] C. Ziegler. Towards Decentralized Recommender
Systems. Freiburg i. br, Albert-Ludwigs-Universität
Freiburg,Germany, June 2005.

18



Supporting Consumers in Providing Meaningful
Multi-Criteria Judgments

Friederike Klan
Institute of Computer Science

Friedrich-Schiller-University of Jena
friederike.klan@uni-jena.de

Birgitta König-Ries
Institute of Computer Science

Friedrich-Schiller-University of Jena
birgitta.koenig-ries@uni-jena.de

ABSTRACT
The huge amount of products and services that are avail-
able online, makes it difficult for consumers to identify offers
which are of interest to them. Semantic retrieval techniques
for Web Services address this issue, but make the unreal-
istic assumption that offer descriptions describe a service’s
capabilities correctly and that service requests reflect a con-
sumer’s actual requirements. As a consequence, they might
produce inaccurate results. Alternative retrieval techniques
such as collaborative filtering (CF) mitigate those problems,
but perform not well in situations where consumer feedback
is scarce. As a solution, we propose to combine both tech-
niques. However, we argue that the multi-faceted nature
Web Services imposes special requirements on the under-
lying feedback mechanism, that are only partially met by
existing CF solutions. The focus of this paper is on how to
elicit consumer feedback that can be effectively used in the
context of Web Service retrieval and how to support users
in that process. Our main contribution is an algorithm that
suggests which service aspects should be judged by a con-
sumer. The approach effectively adjusts to user’s ability and
willingness to provide judgments and ensures that the pro-
vided feedback is meaningful and appropriate in the context
of a certain service interaction.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval; H.3.5 [Information Storage
And Retrieval]: On-line Information Services

General Terms
Algorithms, Human Factors, Measurement

Keywords
recommend what to judge, multi-criteria judgments, person-
alized feedback elicitation

Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain.

1. INTRODUCTION
The huge amount and heterogeneity of information, prod-

ucts and services that are available online, makes it difficult
for consumers to identify offers which are of interest to them.
Hence, new techniques that support users in the product
search and selection process are required. In the past decade,
semantic technologies have been developed and leveraged to
approach this issue [3]. They provide information with a
well-defined and machine-comprehensible meaning and thus
enable computers to support people in identifying relevant
content. This idea is not restricted to information, but also
applies to functionality provided via the web as services.
Semantic Web Services (SWS) provide a specific function-
ality semantically described in a machine-processable way
over a well-defined interface. Similarly, service requesters
may semantically express their service requirements. Hav-
ing both, a semantic description of a consumer’s needs as
well as the published semantic descriptions of available Web
Services, suitable service offers can be automatically discov-
ered by comparing (matching) the given service request with
available offer descriptions. Services might be automatically
configured and composed and finally invoked over the web.

Existing semantic matchmaking and service selection ap-
proaches evaluate the suitability of available service offers
exclusively by comparing the published offer descriptions
with a given request description. They implicitly assume
that offer descriptions describe a service’s capabilities cor-
rectly and that service requests reflect a consumer’s actual
requirements. The first assumption might have been valid in
a market with a small number of well-known and accredited
companies. However, it is no longer true in today’s market,
where easy and cheap access to the Internet and the emer-
gence of online marketplaces that offer easy to set up on-
line storefronts enable virtually everyone to provide his own
online shop accessible to millions of buyers. The situation
becomes even more critical, since due to the huge number of
offers, a hard competition and price war has been aroused
that might cause some providers to promise more than they
are able to provide. In our mind, the assumption that ser-
vice requests reflect a consumer’s actual requirements is also
not realistic. This is due to the fact that, though SWS ap-
proaches provide adequate means to semantically describe
service needs, they require the user to do this at a formal,
logic-based level that is not appropriate for the average ser-
vice consumer in an e-commerce setting. As a result, SWS
applications typically provide request templates for common
service needs. Those templates are then adjusted to fit to a
consumer’s requirements in a certain purchasing situation.

19



Though the resulting service requests might be a good esti-
mate of a consumer’s service needs, they cannot exactly met
his true requirements. As a consequence, service discovery
mechanisms that are purely based on the comparison of se-
mantic request and offer descriptions might produce inac-
curate results and thus lead to suboptimal service selection
decisions.

To mitigate those problems, alternative retrieval techniques
such as collaborative filtering [9] have been developed. Those
techniques do not rely on explicit models of consumer re-
quirements and product properties. They evaluate product
ratings of neighboring users, i.e. those that have a similar
taste, to recommend products or services that might be of
interest to a potential consumer. Though collaborative fil-
tering approaches are very effective in many domains, they
lack the powerful knowledge representation and matchmak-
ing capabilities provided by SWS and thus perform not well
in situations where feedback is scarce [9]. As a solution, we
propose to combine both techniques. More specifically, we
suggest to perform retrieval based on semantic service de-
scriptions and then use a collaborative feedback mechanism
to verify and refine those results. We think, that such a
hybrid approach can benefit from the best of both worlds
and thus has the potential to significantly improve the re-
trieval quality. Combining semantic retrieval with collab-
orative feedback mechanisms is not new (see for example
[8, 11]). However, we argue that simply re-using existing
techniques, as done in other approaches, will not tap the
full potential of this type of approach. This is due to the
fact, that the multi-faceted nature and the peculiarities of
SWS impose special requirements on the underlying feed-
back mechanism and in particular on the properties of the
consumer feedback that is required. In this paper, we will
analyze those requirements (Sect. 2) and will show that they
are only partially met by existing collaborative filtering so-
lutions (Sect. 3). The focus of this paper is on how to elicit
consumer feedback that can be effectively used in the context
of SWS retrieval and how to support users in that process
(Sects. 4 and 5). Our main contribution is an algorithm
that suggests which service aspects should be judged by a
consumer (Sect. 6). The approach accounts for a user’s abil-
ity and willingness to provide judgments and ensures that
the provided feedback is meaningful and appropriate in the
context of a certain service interaction. Our evaluation re-
sults show that the proposed procedure effectively adjusts to
a consumer’s personal judgment preferences and thus pro-
vides helpful support for the process of feedback elicitation
(Sect. 7). A detailed discussion on how to effectively use
consumer feedback to enhance SWS retrieval is published in
[6].

2. REQUIREMENTS
Various collaborative filtering mechanisms that allow to

retrieve products or services that are of interest to a con-
sumer [9] have been proposed. Those mechanisms are very
effective in many domains and seem to be very promising in
the context of our work. However, we argue that the multi-
faceted nature of SWS imposes special requirements on the
underlying feedback mechanism, that are only partially met
by existing CF solutions. In the following, we will specify
those requirements.

Consumer feedback is subjective, since it reflects a ser-
vice’s suitability as perceived through a certain consumer’s

eyes. Hence, feedback is biased by personal expectations and
preferences about the invoked service. Moreover, feedback
may refer to different services and to different request con-
texts. For example, a ticket booking service might have been
used to buy group tickets for a school class or to buy a sin-
gle ticket. However, the suitability of a service might differ
depending on the request context and hence the resulting
feedback also does. Feedback mechanisms should account
for those facts. To enable effective usage, feedback has to
be meaningful, i.e., the expectations and the context under-
lying a judgment should be clear. In addition, it should be
evident whether and how feedback made under one circum-
stance can be used to infer about a service’s suitability in
another situation.

We would also like to emphasize the necessity of feedback
to be as detailed as possible, i.e. comprising of judgments re-
ferring to various aspects of a service interaction. This is for
several reasons. Firstly, feedback, judging the quality of a
provided service as a whole, is of limited significance, since as
an aggregated judgment it provides not more than a rough
estimate of a service’s performance. Secondly, aggregated
feedback tends to be inaccurate. This is due to the fact, that
humans are bad at integrating information about different
aspects, as they appear in a multi-faceted service interac-
tion, in particular if those aspects are diverse and incompa-
rable [2, 10]. Finally, it has been shown in [4] that using
detailed consumer feedback allows to estimate user taste’s
more accurately and thus can significantly improve predic-
tion accuracy. In the context of detailed, i.e. multi-criteria,
consumer feedback, meaningful also means that the relation-
ship between different service aspects that might have been
judged is clear and that all relevant aspects characterizing
a certain service interaction have been judged. The latter is
due to the fact, that inferred judgments based on incomplete
information might be incorrect.

Another problem we encounter is feedback scarcity. Given
certain service requirements, a certain context and a par-
ticular service, feedback for exactly this set-up is rare and
typically not available at all. Hence, scarce feedback has to
be exploited effectively. In particular, service experiences
related to different, but similar contexts and those related
to other, but similar services have to be leveraged. However,
unfolding the full potential of consumer feedback, in partic-
ularly when using multi-aspect feedback, requires that users
provide useful responses. To ensure this, the feedback elic-
itation process should be assisted. In particular, it should
be taken care that elicited feedback is comprehensive and
appropriate in the context of a certain service interaction.
In addition, a consumer’s willingness to provide feedback
as well as his expertise in the service domain should be ac-
counted for. This is important, since asking a consumer for
a number of judgments he is not able and/or not willing to
provide will result in no or bad quality feedback. Finally,
it should also be ensured that all relevant information that
are necessary for effectively exploring consumer feedback are
recorded. This should happen transparently for the user.

Since the type of service interactions to be judged and
the kind of users that provide feedback are diverse and not
known in advance, even for a specific area of application, a
hard-wired solution with predefined service aspects to judge
is inappropriate. In fact, the process of feedback elicitation
should be customizable and should be automatically config-
urable at runtime.

20



3. RELATED APPROACHES
Aspects such as feedback scarcity and subjectivity of con-

sumer feedback are typically addressed in existing collabo-
rative filtering solutions [9]. Also, dealing with the context-
dependent nature of judgments has been an issue (see e.g.
[1]). However, existing solutions only partially address the
question of how to effectively use judgments made in one
context to infer about a service’s suitability in another con-
text. Multi-criteria feedback has been an issue in both aca-
demic [4] and commercial recommender systems. Typically,
the set of aspects that might be judged by a consumer is
either the same for all product types or specific per product
category. However, in the first case, this set of aspects is
either very generic, i.e. not product-specific, or not appro-
priate for all products. In the second case, this set has to
be specified manually for each new product. Moreover, typi-
cally the single aspect ratings are supplementary in the sense
that they do not have any influence on a product’s overall
rating. Alternatively, some reviewing engines such as those
provided by Epinions 1or Powerreviews2, offer more flexible
reviewing facilities based on tagging. Those systems allow
consumers to create tags describing the pros and contras of
a given product. These tags can then be reused by other
users. Tagging provides a very intuitive and flexible mech-
anism that allows for product-specific judgments. However,
the high flexibility of the approach is at the cost of the judg-
ments’ meaningfulness. This is due to the fact that tags do
not have a clear semantics. In particular, the relationship
between different tags is unknown and thus makes them in-
comparable. Moreover, those systems do not ensure that
all relevant aspects of a product or a service interaction are
judged. To summarize our findings, more flexible and adap-
tive mechanisms to elicit and describe multi-criteria feed-
back are required. In particular, the question of how to
describe this type of feedback meaningfully has been hardly
considered. To the best of our knowledge, the issue of assist-
ing consumers in providing comprehensive, appropriate and
meaningful feedback has not been addressed at all. Also, as-
pects such as a consumer’s ability and willingness to provide
judgments for specific aspects have been hardly considered
in existing solutions.

4. SEMANTIC WEB SERVICE RETRIEVAL
As a basis for further discussion, we introduce the seman-

tic service description language DSD (DIANE Service De-
scription) [7] and its mechanisms for automatic semantic
service matchmaking that underlie our approach. Similarly
to other service description approaches, DSD is ontology-
based and describes the functionality a service provides as
well as the functionality required by a service consumer by
means of the precondition(s) and the set of possible effect(s)
of a service execution. In the service request depicted in
Fig. 1, the desired effect is that a product is owned after
service execution. A single effect corresponds to a partic-
ular service instance that can be executed. While service
offer descriptions describe the individual service instances
that are offered by a service provider, e.g. the set of mobile
phones offered by a phone seller, service request descrip-
tions declaratively characterize the set of service instances
that is acceptable for a consumer. In the service request

1http://www.epinions.com
2http://www.powerreviews.com

in Fig. 1, acceptable instances are mobile phones that are
cheaper than 50$, are either silver or black, are of bar or
slider style and are from either Nokia or Sony Ericsson. As

price
Product

MobilePhoneType

Model

Owned

:ServiceProfile

productType

style colorphoneType

manufacturer model

product

effect

Battery

battery

...

Company
in {nokia[1.0], sonyEricsson[0.8]}

in {bar, slider}

MobilePhoneStyle Color
in {silver, black}

Price

Currency

==usd

Double

<=50

currency amount

MobilePhone

0.3 * (battery mul style mul color) +
0.7 * (phoneType mul battery mul color)

Figure 1: DSD service request

can be seen in the example, DSD utilizes a specific mech-
anism to declaratively and hierarchically characterize (ac-
ceptable) sets of service effects: Service effects are described
by means of their attributes, such as price or color. Each
attribute may be constrained by direct conditions on its val-
ues and by conditions on its subattributes. For instance,
the attribute phoneType is constrained by a direct condition
on its subattribute manufacturer, which indicates that only
mobile phones from Nokia or Sony Ericsson are acceptable.
The direct condition <= 50 on the price amount in Fig. 1
indicates that only prices lower than 50$ are acceptable.
Attribute conditions induce a tree-like and more and more
fine-grained characterization of acceptable service effects. A
DSD request does not only specify which service effects are
acceptable, but also indicates to which degree they are ac-
ceptable. In this context, a preference value from [0, 1] is
specified for each attribute value. The default is 1.0 (totally
acceptable), but alternative values might be specified in the
direct conditions of each attribute. For example, the pref-
erence value for the attribute manufacturer is 1.0 for Nokia
phones and 0.8 for mobile phones from Sony Ericsson.

As demonstrated in [7], DSD service and request descrip-
tions can be efficiently compared. Given a service request,
the semantic matchmaker outputs an aggregated overall pref-
erence value ∈ [0, 1] for each available service offer descrip-
tion. This value is called matching value and indicates how
ell a considered service offer fits to a consumer’s require-
ments encoded in the service request. Based on the match-
ing values, the best fitting service offer is determined and
invoked.

5. FEEDBACK ELICITATION
In the following, we will analyze what is required to make

detailed consumer feedback meaningful, comprehensive and
appropriate to characterize a certain service interaction. We
will demonstrate how semantic service descriptions can be
used to elicit feedback that fulfills those requirements. A
detailed discussion on how to effectively use the elicited con-
sumer feedback to enhance SWS retrieval is out of the scope

21



of this paper and is published in [6].

What is required to make consumer feedback appropri-
ate, comprehensive and meaningful.

We assume, that a service request at least covers all service
aspects that are important to the consumer. Potentially, all
service aspects in a request description might be rated by
a consumer. In order to be able to exploit these ratings,
we need to make sure that they are meaningful (i.e., con-
tain the rating context, e.g., which product a rating refers
to) and comprehensive (i.e., contain all relevant aspects, a
quality rating without information whether the price was ok
is not helpful). In addition, we need to know how different
service aspects relate to each other (e.g., how can a rating
about quality be gained from ratings on subaspects such as
usability and battery capacity?). The challenging question
is how to fulfill the identified requirements while still being
flexible in the choice of the aspects to rate.

Creating appropriate, comprehensive and meaningful
consumer feedback.

We propose the concept of a feedback structure to deal
with that issue. A feedback structure is a subtree of the
request tree, whose leaves correspond to the aspects that
may be rated by the user. Consider the example request
depicted in Fig. 1. The dotted part of the tree indicates
a possible feedback structure for that request, where the
aspects price, battery, style, color and phoneType have to be
rated by the consumer. Note that this structure contains
all information that are necessary to effectively utilize the
provided ratings. In particular, it encodes the context of
a rating in terms of the path from the request root to the
rated aspect, the other aspects that were judged and the
hierarchical relationship between the considered aspects.

To assure that the provided feedback is comprehensive,
the request subtrees rooted at the feedback structure’s leaves
should cover all leaves of the tree. This guarantees that all
service aspects considered in the request description are ei-
ther directly or indirectly (by providing an aggregated rat-
ing) judged by the service consumer. The feedback struc-
ture depicted in Fig. 1 fulfills this requirement and thus is
valid. Omitting, e.g., the aspect phoneType would result in
an invalid structure. Note, that we are still flexible in the
choice of the attributes to be rated, e.g. we could allow the
consumer to provide a single rating for productType instead
of asking him to judge battery, style, color and phoneType
separately. The feedback structure together with the con-
sumer provided ratings are propagated to other consumers
and might be used to infer knowledge about a service’s suit-
ability for consumers with other service requirements (see
[6] for details).

6. RECOMMENDING WHAT TO JUDGE
To ensure feedback quality, the feedback elicitation pro-

cess should be assisted and should account for a consumer’s
judgment preferences such as his willingness to provide rat-
ings as well as his expertise in the considered service domain.
However, those judgment preferences might differ from re-
quest to request, e.g. I might be an expert in judging the
quality of Personal Computers, but I do not know that much
about servers. As a consequence, I like to/I’m able to judge
the quality of a purchased computer, in case of a PC, but

I’m not willing to do that when purchasing a new server
for our working group. This aspect should be considered
during feedback elicitation. To achieve this, we propose the
following solution.

Assume, that given a certain service request, an appro-
priate service was selected and invoked and now its suit-
ability has to be judged by the consumer. In a first step,
we utilize the provided service request to determine possible
feedback structures as defined in the previous section. Sub-
sequently, the structure that is most suitable for the user,
i.e. in the context of the given request, fits best to the
consumer’s personal abilities and judgment preferences, is
selected and presented to the user. The required knowledge
about the user’s judgment requirements is learned from the
his behavior in previous judgment sessions. The presented
feedback structure represents a careful compromise between
the consumer’s competing judgment requirements and might
be adjusted to his actual judgment needs. This can be done
by expanding and/or hiding subtrees of the presented struc-
ture. For example, in the structure depicted in Fig. 1, we
might expand the leaf phoneType to judge its subaspects
manufacturer and model. Finally, the user judges all leaf at-
tributes of the structure, e.g. by providing a rating. Once,
the consumer submits his judgments, the system takes care
of storing all relevant feedback information and session data
for future recommendations. In particular, it is recorded
which and how many service aspects were judged by the
consumer and which service request lead to the judgment.
The acquired information are used later on to identify suit-
able feedback structures in future judgment sessions.

6.1 Feedback structure suitability
Given a consumer’s service request, typically many dif-

ferent feedback structures are possible. However, how to
measure the suitability of each feedback structure to iden-
tify one that fits best to the user’s personal abilities and
willingness to provide judgments? We have to consider two
aspects here. Firstly, comprise the feedback structure leaves
of those attributes that the consumer’s is able to judge and
secondly, is the consumer willing to judge all those aspects?

As a measure of a consumer’s willingness and ability to
judge a certain service aspect, we us the frequency with
which the user judged this aspect in the past. We also con-
sider the request context in which an aspect was judged.
More specifically, we consider how similar the request that
lead to the past judgment is to our request. Let r be the
service request that was posed by the consumer. Then the
consumer’s willingness and ability to judge service aspect
a is determined by wa(r) =

∑
r′∈Ra

sim(r′, r), where Ra

is the set of past service requests that lead to a judgment
of a. The value sim(r′, r) indicates how similar the service
requirements encoded in the past request r′ are to those in
current request r. A detailed discussion on how compute the
semantic similarity of two requests is provided in Sect. 6.3.

The suitability sattributes(fs, r) of a given feedback struc-
ture fs is determined by the consumer’s willingness and abil-
ity to judge its leaf aspects Afs. We propose to compute it
as the sum of its leaf attributes’ wi-values.

sattributes(fs, r) =

∑
i∈Afs

wi(r)∑
j∈Ar

wj(r)
(1)

The term is normalized by dividing it by the sum of the
wj-values of all attributes j ∈ Ar that are contained in the

22



given request r. Hence, sattributes(fs, r) ∈ [0, 1].
To measure a consumer’s willingness to judge k = |Afs|

leaf aspects Afs, we compare how similar the past requests
that also led to a judgment of k aspects are to the service
request r posed by the consumer. More specifically, the
suitability snumber(fs, r) of the feedback structure fs with
respect to the number of service aspects that have to be
judged is determined by

snumber(fs, r) = sim(Rk, r), (2)

where sim(Sk, r) is the mean request similarity of all past
service requests that lead to a judgment of k aspects. In
cases, where no previous requests lead to a number of k ser-
vice aspects to be judged, snumber(fs, r) is determined as
the mean of sim(Rk′ , r) and sim(Rk′′ , r), where k′ is the
largest k′ < k for which a past request with k′ judgments
exists and k′′ is the smallest k′′ > k for which a past re-
quest with k′′ judgments exists. In case, k′/k′′ did not ex-
ist, sim(R′

k, r)/sim(R′′
k , r) was assumed to be 1.0/0.0, i.e.

by default feedback structures with a low number of service
aspects to be judged are preferred. Assuming that sim(x, y)
is a value from [0, 1], snumber(fs, r) is also from [0, 1]. The
overall suitability s(fs, r) ∈ [0, 1] of a feedback structure fs
in the context of the posed request r is

s(fs, r) = α · sattributes(fs, r) + β · snumber(fs, r). (3)

The parameters α and β with α, β ∈ [0, 1] and α = 1 − β
determine the influence of the terms sattributes(fs, r) and
snumber(fs, r), respectively. The values α and β might vary
from user to user. In Sect. 6.4, we will demonstrate how
those values can be learned from a consumer’s past judgment
behavior.

6.2 Determining possible feedback structures
For a given request, the number of possible feedback struc-

tures might be high, whereas the number of those that have
the potential to be optimal (with respect to their suitabil-
ity s(fs, r) for the user) is low. Hence, we require a way
to determine potentially optimal feedback structures effec-
tively, i.e. without having to construct all possible struc-
tures. In the following, we propose an algorithm that per-
forms this task. It constructs potentially optimal feedback
structures recursively and drops non-optimal partial struc-
tures as soon as possible. Fig. 2 shows how the algorithm

0.0

0.3

0.2 0.2

0.05 0.05 0.05 0.050.05 0.05

0.0 0.0

{[1,0.05]} {[1,0.05]} {[1,0.05]} {[1,0.05]} {[1,0.05]}

{[1,0.05], [2,0.0]}

{[1,0.0]}{[1,0.0]}

{[1,0.2], [4,0.2], [5,0.2]}{[1,0.2], [2,0.1]}

{[1,0.3], [2,0.4], [5,0.4],[6,0.4],[3,0.3], [6,0.3], [7,0.3]}

{[1,0.3], [2,0.4], [5,0.4],[6,0.4],[3,0.3], [7,0.3]}

product

price productType

currency amount battery
style phoneType color

manufacturer model

Figure 2: Determining possible feedback structures

works, exemplary for the service request depicted in Fig. 1.

Each request node is associated with a list of entries, each
corresponding to one of the feedback structures that are
possible for the subtree rooted at that node. Let fs be
one of those structures and let [a, b] be its corresponding
entry. Then a is the number of aspects that have to be
judged in fs and b is sattributes(fs, r), where r is the re-
quest subtree rooted at the considered node. The algorithm
works as follows. First, it initializes each request node’s
list with an entry [1, sattributes(fs, r)], where fs is the feed-
back structure comprising only of the node itself and r is
the request subtree rooted at the considered node. For an
example, consider Fig. 2. The initial entry in each list is
highlighted. The number within each node indicates the
value sattributes(fs, r), which, for the sake of this example,
is arbitrarily chosen. Starting from the request leaves (high-
lighted request nodes), the algorithm recursively computes
lists for all parent nodes. Computing a node’s list is done in
three steps. First, the cross product C of the child nodes’
entry sets is computed. For example to determine possible
feedback structures for the product-node (Fig. 2), we have
to determine C = [1, 0.2], [2, 0.1]× [1, 0.2], [4, 0.2], [5, 0.2], i.e.
the cross product of the price and productType node’s entry
lists. Each element c of C gives rise to an entry [a, b] in the
product-node list, i.e. to a possible feedback structure fs of
this node’s subtree. Since a is the number of attributes to
judge in fs, it is computed as the sum of the a values in c.
The suitability b of fs with respect to the selection of at-
tributes that have to judged is computed as the sum of its
leaf attributes’ b values (Formula 1), i.e. the sum of the b
values in c. In a final step, we prune the computed list. This
is done by keeping only a single entry [a, b] for each differ-
ent value of a per node, where b = max{x|[a, x]isinthelist}.
Note, that in doing so, we keep only those feedback struc-
tures that have the potential to be optimal and hence reduce
the length of the node list to at most l, where l is the num-
ber of leaves of the subtree rooted at the considered node.
Finally, we end up with a list for the request root comprising
of entries for all possible feedback structures for the request,
that have the potential to be optimal. Those structures are
compared with respect to their suitability (Formula 3). The
most suitable is selected and presented to the user.

6.3 Request similarity
As mentioned earlier, a consumer’s judgment preferences

depend on the request context, i.e. the kind of service in-
teraction, that has to be judged. To allow for a compari-
son of the request contexts, in which judgments have been
made in the past, with the current request, we require a
measure for the semantic similarity of two requests, i.e. the
similarity of the service requirements they encode. In this
section, we will propose such a measure. It recursively com-
putes the similarity sim(r, r′) of two request trees r and r′

by computing the similarity of their root nodes’ ontolog-
ical type (simtype(root(r), root(r′))) and direct conditions
(simdc(root(r), root(r

′))) and the aggregated similarity of
their root nodes’ child trees (simattr(root(r), root(r′))). More
specifically, we define sim(r, r′) to be the mean of these three
values. In the remainder of the section, we will explain the
rationale between those three similarity values and particu-
larize on how to determine them. Possible similarity values
sim(r, r′) are from the interval [0, 1], where a similarity value
of 0.0 means ”not similar at all” and a value of 1.0 means
that the service requirements encoded by two requests are

23



identical.

Determining the type similarity.
The type similarity simtype(n, n′) ∈ [0, 1] of two nodes n

and n′ indicates how similar those nodes are with respect
to their ontological type. It is defined similar to Jaccard’s
index [5], that is often used to compare the sample sets,

simtype(n, n′) =
|An ∩An′ |
|An ∪An′ | (4)

where An is the set of attributes defined for the type of n
and An′ is the set of attributes defined for the type of n′.
The type similarity simtype(n, n′) for the root nodes of the

requests depicted in Fig. 3 is |{battery,phoneType,color}|
|{battery,phoneType,color,style}| =

0.75.

Determining the similarity of the direct conditions.
The similarity simdc(n, n

′) ∈ [0, 1] of two nodes n and n′

indicates how similar those nodes are with respect to their
direct conditions. As mentioned in Sect. 4, direct conditions
restrict acceptable values of a service attribute. For each
kind of direct condition that might be specified for a certain
attribute, we define a separate similarity measure. For ex-
ample, for direct conditions of type IN{. . .}, the similarity
is determined as the quotient of the number of common val-
ues divided by the number of values that are allowed for n
or n′. For direct conditions of type <= x and >= x, the
similarity is calculated as min{x, y}/max{x, y}, where x is
the upper/lower bound for the values of n and y for those of
n′. Accordingly, if only one of the nodes specified a certain
type of direct condition, the similarity is defined to be 0.0
and if both nodes do not specify any direct conditions, the
similarity is defined to be 1.0.

As an example, consider again the requests depicted in
Fig. 3. The Color-nodes both specify a direct condition
of type IN{. . .}. The similarity simdc(ncolor, n

′
color) with

respect to this direct condition is 1/2 = 0.5. The Bat-
tery-nodes both do not specify any direct conditions, hence
simdc(nbattery, n

′
battery) = 1.0.

Determining and aggregating the similarity of the root
nodes’ child trees.

The similarity value simattr(n, n′) ∈ [0, 1] indicates how
similar two nodes n and n′ are with respect to their child
trees. Let A be the set of attributes defined either for
the type of n, the type of n′ or for both types and let
{sim(ra, r

′
a)|a ∈ A} be the similarity values for correspond-

ing attribute subtrees ra and r′a of n and n′. Again, in-
spired by Jaccard’s index, the aggregated similarity of two
nodes’ child trees is defined as the sum of the similarity val-
ues {sim(ra, r

′
a)|a ∈ A} divided by the sum of the maximal

similarity values that can be achieved for each attribute, i.e.
|A|.

simattr(n, n′) =

∑
a∈A sim(ra, r

′
a)

|A| (5)

Since attributes in A are not necessarily defined for both, the
type of n and n′, we set sim(ra, r

′
a) = 0.0, if the attribute

a is not defined for one type. Attributes in A might also
not be specified in one or both of the nodes. If an attribute
a is not specified in both nodes, we set sim(ra, r

′
a) = 1.0,

else, if a is specified in just one of the nodes, sim(ra, r
′
a)

is defined to be sim(ra, t
′) resp. sim(t, r′a), where t is a

tree comprising of a single node, having the most generic
type defined for a in the ontology. We illustrate the pro-

MobilePhoneType

productType

style colorphoneType

Battery

battery

...

in {bar, slider}

MobilePhoneStyle Color
in {silver, black}

MobilePhone

...

productType

colorphoneType

Battery

battery

...

Color
in {black}

Phone

request r:

request r':

Figure 3: Determining the similarity of two requests
r and r′

cedure for the root nodes of the two request fragments de-
picted in Fig. 3. The type of r’s root node is MobilePhone
and that of r′’s root node is Phone. Assume, that the on-
tology defines the attributes battery, phoneType and color
for the type Phone and an additional attribute style for
the type MobilePhone, which is a subtype of Phone. The
similarity simattr(n, n′) of the requests’ root nodes n and
n′ is determined by the similarity of their corresponding
child trees for the attributes A = {battery, phoneType, color,
style}. The attributes battery and color are specified in both
requests, hence the similarity values sim(rbattery, r

′
battery)

and sim(rcolor, r
′
color) can be computed by determining the

request similarity for the request subtrees rooted at the
Battery-nodes and the subtrees rooted at the Color-nodes.
The attribute style is only defined for the type MobilePhone,
hence sim(rstyle, r

′
style) = 0.0. The attribute phoneType is

defined for both types, MobilePhone and Phone, but only
specified in r. Hence, r′phoneType has to be replaced by a
node t′ having the most generic type defined for the at-
tribute phoneType. Let PhoneType be this type. This means
that the type of the node that describes the attribute phone-
Type has to be PhoneType or one of its subtypes. Presume
that MobilePhoneType is a subtype of PhoneType. The simi-
larity sim(rphoneType, r

′
phoneType) is determined by comput-

ing sim(rphoneType, t
′), where rphoneType is the subtree of r

rooted at the MobilePhoneType-node.

6.4 Dynamically adjusting α and β

As discussed earlier, the parameters α and β that weight
the influence of the terms sattributes(fs, r) and snumber(fs, r),
might vary from user to user. In this section, we will demon-
strate how those values can be learned from a consumer’s
past judgment behavior. Initially, i.e. without having in-
formation about a user’s previous judgment behavior, we
do not know anything about those parameters’ values, so α
could be any value from the interval [0, 1] and β = 1 −

24



α. Hence, for the purpose of computing the suitability
s(fs, r) of possible feedback structures, we set α to the
midpoint of this interval, i.e. α = 0.5 = β. Once hav-
ing determined the most suitable feedback structure fs, we
present it to the consumer, who has the opportunity to
change it by expanding/collapsing nodes. Finally, the con-
sumer provides judgments for the resulting structure’s leaf
nodes. Obviously, the resulting feedback structure fs’ was
more suitable to the user than the structure fs that was
recommended. Hence, we conclude that s(fs′, r) should be
larger than s(fs, r). Using Formula 3, we get that s(fs, r)−
snumber(fs′, r)/sattributes(fs′, r) − snumber(fs′, r) < α for
sattributes(fs′, r) > snumber(fs′, r) and> α for sattributes(fs′, r)
< snumber(fs′, r). Using those information, we can adjust,
i.e. shrink the range of α correspondingly. For example, if
we get α < 0.8, we adjust the interval to [0, 0.8). In case,
the consumer’s judgment behavior is inconsistent, e.g. hav-
ing α ∈ (0.5, 0.7), we get α < 0.8, we simply ignore those
information. To ensure, that the most recent information
have the most influence, we process session data in the or-
der of increasing age.

7. EVALUATION
In the evaluation of our approach, we wanted to find out

how fast the recommendation algorithm proposed in Sect. 6
adjusts to different judgment preferences.

Test setting.
For that purpose, we created a set of DSD service requests

covering typical requirements of consumers looking for com-
puter items from different categories, such as desktop PCs,
PDAs, servers, notebooks or organizers. For our tests, we
created 48 service requests, 6 per category. Requests within
each category varied in the selection of attributes that were
specified and in the range of attribute values that were ac-
ceptable for the user. All request types shared common at-
tribute types, e.g. for all kinds of requests an attribute color
and an attribute price could be specified.

Using this requests we performed several tests with a sin-
gle test user. The basic procedure for each test was as fol-
lows. Starting with no information about previous judgment
behavior, several judgment sessions were performed. Dur-
ing each session, one of the 48 requests was selected. After
that, the system proposed a feedback structure using the al-
gorithm proposed in Sect. 6 with knowledge about the user’s
judgment behavior in the previous judgment sessions. After
being provided with the recommended feedback structure,
the user had the opportunity to change this structure. For
that purpose, the consumer was allowed to expand/collapse
feedback structure nodes. By clicking on a particular node,
all its direct children were expanded/collapsed. The quality
of the proposed feedback structure was measured as the edit
distance between the proposed feedback structure and the
actual feedback structure that was used. More formally, we
counted the number of expand/collapse operations the user
had to perform to get the structure whose leaves he finally
judged. The rationale behind this measure is, that the edit
distance is a direct measure of the users effort to get to the
desired structure and thus, in our opinion, is a good measure
for the quality of the recommended structure. For each of
the test, we looked at whether and how fast the edit distance
decreased with the number of judgment sessions.

Test runs and results.
We performed test runs with different judgment prefer-

ences and different sets of requests that were posed during
a sequence of sessions. In a first series of tests, the requests
within each sequence of sessions were different, but chosen
from a single (computer) category, e.g. just notebook re-
quests. This test setting served as a baseline and was chosen
to evaluate the performance of our approach in the absence
of any context effects. We performed three kinds of tests
differing in the judgment preferences of the judging user.
In test A1, the consumer always judged a certain number
of aspects. However, the types of aspects that were judged
differed. In test A2, the user judged a different number of
attributes during each session, but required that the set of
attributes to judge contained a certain set of attributes. For
example, a user might require to always judge the price of
a product, but is also willing to rate other service aspects.
Finally, we performed a test A3, were the consumer had spe-
cific requirements on both, the number and kind of aspects
to judge. The tests A1-A3 were performed with request
sets from different categories. The plot depicted in Fig.4
(A2) is representative for all test runs and all types of tests
in this series. It shows the results for test A2 performed
with requests from the category digital watches. As can be
seen, the adaptation of the recommendation algorithm to
the consumers judgment preferences is very fast. The initial
edit distance decreases to 0 after just one session. This is
due to the fact, that request similarity does not play a role
in those tests and hence the values of α and β can be arbi-
trarily chosen. The depicted behavior was observed for all
three kinds of tests (A1-A3).

0

1

2

3

4

1 5 10

session number

ed
it 

di
st

an
ce

0

1

2

3

4

1 5 10

ed
it 

di
st

an
ce

session number

A2

B1

Figure 4: Results of the tests A2 and B1

In a second series of tests, we evaluated how fast the pro-
posed recommendation algorithm adjusts to a consumers
judgment preferences, if those depend on the request con-
text. For that purpose, we performed judgment sessions,
were the user posed requests from different categories and
exhibited a different judgment behavior for each category.
We run three types of tests. In test B1, similarly to test

25



0

1

2

3

4

1 5 10

ed
it 

di
st

an
ce

session number

0

1

2

3

4

1 5 10

ed
it 

di
st

an
ce

session number

B2

B3

Figure 5: Results of the tests B2 and B3

A1, the user always judged a particular number of aspects.
However, this number differed for each request category. For
example, a user might always judge 3 aspects when asking
for desktop PCs, but is willing to judge 5 service aspects,
when asking for notebooks. Analogously to test A2, the
user in test B2 required the set of aspects to be judged to
contain a particular set of aspects. However, this set var-
ied for different request categories. Finally, we performed
a test B3, were the consumer had specific requirements on
both, the number and kind of aspects to judge. Those re-
quirements were different for each request category. Fig. 4
(B1) exemplary shows the results for tests of type B1. In
the depicted test, we alternated sessions based on a request
for a desktop PC (continuous line), where the user judged
11 service aspects, with those based on a request for a PDA
(dotted line), where the consumer judged only one aspect.
As can be seen, the adjustment to the consumer’s judgment
preferences for PDAs takes 3 sessions. This is due to the
fact, that at the beginning both terms sattributes and snumber

are equally weighted. Since for desktop PCs many aspects
are judged and since most of those aspects are also shared
by PDA requests, term sattributes dominates the suitability
value and thus favors improper feedback structures. This
changes when α and β adjust over time. Fig. 5 (B2) ex-
emplary shows the results for tests of type B2. Again, we
alternated desktop PC requests with those for a PDA. While
when judging desktop PCs, we had a set of two aspects that
had to be judged in any case, it was only one specific aspect
when judging PDAs. Again, it required 4 sessions to adjust
α and β appropriately. Finally, Fig. 5 (B3) exemplary shows
the results for tests of type B3. In this test, we alternated
three types of requests (desktop PC, PDA and digital watch
requests). As can be seen, the algorithm propose appro-
priate feedback structures after just 1 session of each type.
This is due to the fact, that for the three request types, the
consumer’s judgment behavior differed much in terms of the
number and types of aspects to be judged. Hence, though
α and β are not yet adjusted, the correct feedback structure

can be identified.

8. CONCLUSION
In this paper, we demonstrated how detailed consumer

feedback, that is meaningful and appropriate in the context
of a service interaction, can be elicited and how users can be
supported in that process. Our main contribution is an al-
gorithm that suggests service aspects that might be judged
by a consumer. Our evaluation results show, that the pro-
posed procedure effectively adjusts to a user’s ability and
willingness to provide judgments.

9. REFERENCES
[1] G. Adomavicius. Incorporating contextual information

in recommender systems using a multidimensional
approach. ACM Transactions on Information Systems,
23(1):103, 2005.

[2] R. M. Dawes. The robust beauty of improper linear
models in decision making. American Psychologist,
34(7):571–582, 1979.

[3] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn,
M. Stollberg, D. Roman, and J. Domingue. Enabling
Semantic Web Services: The Web Service Modeling
Ontology. Springer, 2007.

[4] Y. K. Gediminas Adomavicius. New recommendation
techniques for multi-criteria rating systems. IEEE
Intelligent Systems, 22(3), 2007.

[5] P. Jaccard. Étude comparative de la distribution
florale dans une portion des alpes et des jura. Bulletin
de la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[6] F. Klan and B. König-Ries. Enabling trust-aware
semantic web service selection - a flexible and
personalized approach. Jenaer Schriften zur
Mathematik und Informatik, Math/Inf/02/10,
Friedrich-Schiller-University Jena, August 2010.

[7] U. Küster, B. König-Ries, M. Klein, and M. Stern.
Diane - a matchmaking-centered framework for
automated service discovery, composition, binding and
invocation. In Proceedings of the 16th International
World Wide Web Conference (WWW2007), Banff,
Alberta, Canada, May 2007.

[8] U. S. Manikrao and T. V. Prabhakar. Dynamic
selection of web services with recommendation system.
In Intl. Conf. on Next Generation Web Services
Practices, pages 117–121, Washington, DC, 2005.
IEEE Computer Society.

[9] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The
Adaptive Web: Methods and Strategies of Web
Personalization, volume 4321 of Lecture Notes in
Computer Science, pages 291–324. Springer, Berlin,
Heidelberg, 2007.

[10] P. Slovic. Limitations of the Mind of Man:
Implications for decision making in the nuclear age.
Los Alamos Scientific Laboratory, 1972.

[11] H. C. Wang, C. S. Lee, and T. H. Ho. Combining
subjective and objective qos factors for personalized
web service selection. Expert Syst. Appl.,
32(2):571–584, 2007.

26



Groups Identification and Individual Recommendations in
Group Recommendation Algorithms ∗ †

Ludovico Boratto
Dipartimento di Matematica e

Informatica, Università di
Cagliari

Via Ospedale 72
09124 Cagliari, Italy

ludovico.boratto@unica.it

Salvatore Carta
Dipartimento di Matematica e

Informatica, Università di
Cagliari

Via Ospedale 72
09124 Cagliari, Italy

salvatore@unica.it

Michele Satta
Dipartimento di Matematica e

Informatica, Università di
Cagliari

Via Ospedale 72
09124 Cagliari, Italy

michele_satta@hotmail.com

ABSTRACT
Recommender systems usually deal with preferences previ-
ously expressed by users, in order to predict new ratings
and recommend items. To support recommendation in so-
cial activities, group recommender systems were developed.
Group recommender systems usually consider predefined/a
priori known groups and just a few existing approaches are
able to automatically identify groups.

When groups are not already formed, another key aspect
of group recommendation is related to groups identification.
In this paper a novel algorithm able to identify groups of
users and produce recommendations for each group is pre-
sented. The algorithm uses individual recommendations and
a classic clustering algorithm to identify and model groups.
Experimental results show how this approach substantially
improves the quality of group recommendations with respect
to the state-of-the-art.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; H.4 [Information Systems Applications]: Mis-
cellaneous; M.4 [Knowledge Modeling]: Miscellaneous

General Terms
Algorithms, Experimentation, Performance

Keywords
∗This work is partially funded by Regione Sardegna un-
der project CGM (Coarse Grain Recommendation) through
Pacchetto Integrato di Agevolazione (PIA) 2008 “Industria
Artigianato e Servizi”.
†Copyright is held by the author/owner(s). Workshop on
the Practical Use of Recommender Systems, Algorithms and
Technologies (PRSAT 2010), held in conjunction with Rec-
Sys 2010. September 30, 2010, Barcelona, Spain.

Group Recommendation, Collaborative Filtering, Cluster-
ing

1. INTRODUCTION
With the development of Web 2.0, the use of the web has be-
come increasingly widespread and users have had the chance
to express opinions about shared content updated daily. This
generates an incredible amount of data that can’t be han-
dled directly by the users. So finding relevant information
over the Internet nowadays is becoming more and more dif-
ficult [18].

Recommender systems have been developed to deal with in-
formation overload and produce personalized content for the
users by exploiting context-awareness in a domain. This is
done by computing a set of previously expressed preferences,
in order to recommend items that are likely of interest to a
user. Collaborative Filtering (CF) [11, 15, 19] is by far the
most successful recommendation technique. The main idea
of CF systems is to use the opinions of a community, in order
to provide item recommendations.

There are context and domains where classic recommenda-
tion cannot be used, because the recommendation process
involves more than a person and preferences have to be com-
bined in order to produce a single recommendation that sat-
isfies everyone (e.g., people traveling together or going to a
restaurant/museum together). Therefore, in order to sup-
port recommendations in social activities, algorithms able
to provide group recommendations were developed. Group
recommendations are provided according to the way a group
is modeled. Group modeling is the combination of the pref-
erences expressed by single users into a common group pref-
erence.

A special type of group recommendation is needed when
technological constraints limit the bandwidth available for
the recommendation. This is for example the case of Satel-
lite Systems, in which the number of channels is limited and
a personalized TV schedule cannot be produced.

Another useful application scenario in which limitations are
imposed in the recommendation process is the printing of
recommendation flyers that contain suggested items. Even if
a company has all the data to produce a flyer with individual
recommendations for each customer, the process of printing

27



a different flyer for everyone would be technically too hard
to achieve and costs would be too high. A possible solution
would be to print n different flyers that can be affordable in
terms of costs and that can satisfy users by recommending
interesting items to the recipients of the same flyer.

In both the scenarios described the first result that the al-
gorithm has to compute is a proper identification of groups,
in order to produce a recommendation that maximizes users
satisfaction. This preliminary phase of the group recom-
mendation process is not performed by the great part of
algorithms in literature, because they consider only how to
model already existing groups.

In this paper a novel approach for group recommendation
with automatic identification of groups is proposed.

To enhance the readability of the paper and the properties
of the proposed approach, a baseline version of the algo-
rithm is preliminarily presented (BaseGRA, Baseline Group
Recommendation Algorithm). BaseGRA uses a classic clus-
tering algorithm to identify groups, by exploiting past pref-
erences expressed by each user of the system. To model the
group, BaseGRA combines the preferences of each user with
the ratings predicted using a CF algorithm for the unrated
items.

Since the number of items evaluated by a user in a system is
usually much lower than the number of the items that can
be evaluated, we considered the fact that the clustering step
may be affected by the well-known problem of sparsity of
the available data.

The algorithm presented in this paper, named Improved-
GRA (Improved Group Recommendation Algorithm), has
been developed to overcome this potential problem and im-
prove the quality of clustering. This is done by using the
predictions of the missing ratings to complete the matrix of
the preferences already expressed by users. The algorithm
predicts individual recommendations, combines them with
the preferences explicitly expressed by users, and uses both
of them as input for a classic clustering algorithm. As high-
lighted by the experiments, this leads to an identification of
groups of users with similar preferences with a high quality
of the predicted results. Individual recommendations and
explicitly provided preferences are also used to model the
groups.

The proposed approach is the first that combines clustering
of the users with an aggregation of individual recommen-
dations. In fact none of the existing recommender systems
that automatically identify groups merges individual rec-
ommendations and the approaches that merge individual
recommendations deal with groups that have a predefined
structure.

Another scientific contribution of the approach relies in the
algorithm used to automatically identify groups, which mixes
recommendation and clustering algorithms, leading to a sub-
stantial improvement of the quality of the group recommen-
dations with respect to the state-of-the-art.

Moreover the paper presents an analysis of two more funda-

mental aspects of this kind of group recommendation: homo-
geneity of group size and homogeneity of recommendations
quality.

Considering the size of groups, it is evident that it should
be sufficiently homogeneous. In simple words, if the rec-
ommendation process involves 70000 users and 10 available
channels, it would not be acceptable to have a group with
61000 users and 9 groups with 1000 users. In fact it would be
a waste of bandwidth to produce recommendations for small
groups and, at the same time, it would be hard for a system
to produce recommendations that gather the preferences of
a large group.

Considering the quality of the predicted results, it should not
vary too much between the groups. In other terms, the sys-
tem should try to keep a sufficient quality of the predictions
for every group. Providing inadequate recommendations to
any group should always be avoided.

The rest of the paper is organized in the following way: sec-
tion 2 presents related work, considering both group recom-
mender systems able to automatically identify groups and
group recommender systems that build individual recom-
mendations; section 3 contains a detailed description of the
baseline group recommendation algorithm, BaseGRA; sec-
tion 4 will do the same for the improved algorithm Improved-
GRA; section 5 describes the experiments we conducted to
evaluate the proposed algorithm and outlines main results;
section 6 contains comments, conclusions and future devel-
opments.

2. RELATED WORK
As mentioned in the Introduction, group recommender sys-
tems were developed to support the recommendation process
in activities that involve more than a person.

In [13] and [5] the state-of-the-art in group recommendation
is presented. The existing systems were developed for differ-
ent domains like web/news pages, tourist attractions, music
tracks, television programs and movies. A classification of
those approaches can be made from two perspectives:

- the type of group considered;
- the way group recommendations are built.

Considering the first classification of the existing systems,
which is based on the type of groups considered, we can
identify four different types of groups, described below.

- Established group: a number of persons who explic-
itly choose to be part of a group, because of shared,
long-term interests;

- Occasional group: a number of persons who do some-
thing occasionally together, like visiting a museum. Its
members have a common aim in a particular moment;

- Random group: a number of persons who share an
environment in a particular moment, without explicit
interests that link them;

- Automatically identified group: groups that are
automatically detected considering the preferences of
the users and/or the resources available.

28



The second classification of the existing approaches can be
done considering the way group recommendations are built.
There are two ways to build group recommendations, de-
scribed in the list below.

- Merge of individual recommendations into a group rec-
ommendation.

- Merge of the individual preferences to build a group
profile and predict specific recommendations for the
group.

The approach described in this paper automatically iden-
tifies groups and merges individual recommendations. The
existing approaches for those two categories of group recom-
mender systems will now be described and differences with
our approach will be highlighted.

As a general consideration, please note that none of the ap-
proaches that automatically identify groups merges individ-
ual recommendations.

2.1 Approaches that automatically identify
groups

The approach proposed in [8] aims to automatically discover
Communities of Interest (CoI) (i.e., a group of individuals
who share and exchange ideas about a given interest) and
produce recommendations for them.

CoI are identified considering the preferences expressed by
users in personal ontology-based profiles. Each profile mea-
sures the interest of a user in concepts of the ontology. Users
interest is exploited in order to cluster the concepts.

User profiles are then split into subsets of interests, to link
the preferences of each user with a specific cluster of con-
cepts. Hence it is possible to define relations among users
at different levels, obtaining a multi-layered interest network
that allows to find multiple CoI. Recommendations are built
using a content-based CF approach.

The difference with our approach is that preferences of users
are not expressed through an ontology. Moreover, our rec-
ommendation technique is based on a CF user-based ap-
proach.

The system proposed in [6] generates group recommenda-
tions and automatically detects intrinsic communities of users
whose preferences are similar. Communities of users with
similar preferences are identified using a Modularity-based
Community Detection algorithm [4] and group recommen-
dations are predicted for each community. See 5.2 for a more
detailed description of the approach.

This approach, although it achieves exactly the same pur-
poses, differs from the one presented in this paper both in
the way group predictions are built and in the way groups
are identified. The approach was chosen for comparison with
the algorithm presented in this paper because of the men-
tioned similarities in several aspects.

2.2 Approaches that merge individual recom-
mendations

PolyLens [17] is a system built to produce recommendations
for groups of users who want to see a movie.

To produce recommendations for each user of the group a
CF algorithm is used. In order to model the group, a “least
misery” (LM) strategy is used: the rating used to recom-
mended a movie to a group is the lowest predicted rating
for that movie, to ensure that every member is satisfied.

In contrast with the LM strategy used by PolyLens, in our
approach group preferences are built combining individual
recommendations in a single value that averages the prefer-
ences of the single users.

We considered the use of a group modeling technique based
on the average of users ratings instead of using a LM strat-
egy because it seems more suited for an approach where
large groups are considered. A LM strategy is useful for
small groups and in fact Polylens handles groups with two
or three users. Even if groups are composed by people with
homogeneous preferences, using a LM strategy a low rating
expressed by a user for a movie would be enough to have a
low rating for that movie for the whole group. With large
groups such an approach would probably lead to extremely
low ratings for almost all the movies.

INTRIGUE (INteractive TouRist Information GUidE) [2, 3]
is a system that recommends sightseeing destinations using
the preferences of the group members. The approach merges
individual recommendations and, in order to build group
recommendations, some subgroups are considered more in-
fluential (e.g., disabled people).

In our approach we don’t consider a specific domain of ap-
plication and every individual recommendation is weighted
equally, so that group recommendations reflect all the users
preferences.

The approach presented in [1] computes group recommen-
dations by combining individual recommendations built for
every user and considering a consensus function, which com-
bines relevance of the items for a user and disagreement be-
tween members.

Since our approach automatically builds groups of users with
similar preferences, we don’t expect disagreement to be a
characterizing feature when computing group recommenda-
tions. Therefore this aspect was not considered in our ap-
proach.

The system proposed in [9, 10] presents a group recommen-
dation approach based on Bayesian Networks (BN). To rep-
resent users and their preferences a BN is built. The authors
assume that the composition of the groups is a priori known
and model the group as a new node in the network that
has the group members as parents. A collaborative recom-
mender system is used to predict the votes of the group
members. A posteriori probabilities are calculated to com-
bine the predicted votes and build the group recommenda-
tion.

The main difference with our approach is that, in order to
combine preferences and build group recommendations, we

29



don’t rely on a Bayesian Network and a posteriori probabil-
ities.

3. BASELINE GROUP
RECOMMENDATION ALGORITHM
(BASEGRA)

The baseline version of our algorithm identifies groups of
similar users considering the preferences expressed by each
user and models each group using individual recommenda-
tions built for each user of a group.

3.1 Overview of BaseGRA
The algorithm works in two steps:

1. Using a Ratings Matrix that contains the preferences of
each user, groups of similar users are detected through
the k-means clustering algorithm [14].

2. Once the groups have been detected, a group prefer-
ence is produced by aggregating the preferences of the
individual users.

3.2 Groups Identification
The input of the algorithm is a Ratings Matrix M that as-
sociates a set of users to a set of items through a rating.
A rating indicates the level of satisfaction of a user for a
considered item. So each value mui of the Ratings Matrix
is:

mui =

{
rui if user u expressed a preference for item i
∅ if user u didn’t express a preference for item i

A rating rui is always such that rmin ≤ rui ≤ rmax and
rui > 0. In other words, a rating value is always inside a
fixed range and its value is always positive.

The Ratings Matrix is used as input for the k-means clus-
tering algorithm [14]. Since the algorithm’s input are the
preferences expressed by each user, the output is a partition
in groups of users with similar preferences.

3.3 Groups Modeling
The objective of group modeling is to calculate, for each
item, a group rating which will be evaluated in order to
decide which items should be recommended to the group.
In order to model a group, the preferences of each user that
belongs to the group have to be combined.

An average is a single value that is meant to typify a list of
values. The most common method to calculate such a value
is the arithmetic mean, which also seems an effective way
to put together the preferences of each user in a group, in
order to reach our objective.

Combining just the preferences expressed by the users would
lead to a poor modeling of the group, since each user usually
gives an explicit preference to a small set of item. This is
especially true when modeling small groups. In fact group
preferences have to be extracted considering a small set of
preferences expressed by a small set of users.

In order to improve the efficiency of group modeling, our
algorithm completes the Ratings Matrix, adding individual

recommendations predicted for each user. The result is a
Predicted Ratings Matrix PR that associates each user u
with an item i either through an explicitly expressed rating
rui or through a predicted rating pui.

A predicted rating pui is calculated using a classic User-
Based Nearest Neighbor CF Algorithm, proposed in [20].
The algorithm predicts a rating pui for each item i that was
not evaluated by a user u, considering the rating rni of each
similar user n for the item i. A user n similar to u is called a
neighbor of u. Equation 1 gives the formula used to predict
the ratings:

pui = ru +

∑
n⊂neighbors(u) sim(u, n) · (rni − rn)∑

n⊂neighbors(u) sim(u, n)
(1)

Values ru and rn represent, respectively, the mean of the
ratings expressed by user u and user n. Similarity sim() be-
tween two users is calculated using the Pearson correlation,
a coefficient that compares the ratings of all the items rated
by both the target user and the neighbor (corated items).
Pearson correlation between a user u and a neighbor n is
given in Equation 2. CRu,n is the set of corated items be-
tween u and n.

sim(u, n) =

∑
i⊂CRu,n

(rui − ru)(rni − rn)√∑
i⊂CRu,n

(rui − ru)2
√∑

i⊂CRu,n
(rni − rn)2

(2)

4. IMPROVED GROUP
RECOMMENDATION ALGORITHM
(IMPROVEDGRA)

BaseGRA identifies groups of similar users using a Ratings
Matrix, i.e., a matrix that contains all the preferences ex-
pressed by users for the evaluated items.

However, the number of items rated by users is much lower
than the number of available items. This leads to the spar-
sity problem that is common in clustering.

ImprovedGRA was conceived to improve the quality of the
clustering step of BaseGRA. ImprovedGRA identifies groups
giving as input to the k-means algorithm not the original
Ratings Matrix M , that contains the ratings already ex-
pressed by users, but the complete Predicted Ratings Matrix
PR previously presented, where the predicted values of the
unrated items for each user are added.

In order to do so, the individual recommendations are pre-
dicted by ImprovedGRA at the beginning of the computa-
tion. Using more values as input for the clustering, the algo-
rithm should be able to identify better groups, i.e., groups
composed by users having more correlated preferences. This
should lead to a higher overall quality of the group recom-
mendations.

In conclusion, ImprovedGRA performs the same steps per-
formed by BaseGRA but computes individual recommen-

30



dations before clustering the users. This allows to cluster
the users using more preferences and identify better groups.
The preferences expressed by users and the individual rec-
ommendations are also used to model the group.

5. EXPERIMENTS
In this section we first describe the strategy and aims which
drove our experiments.

Then a state-of-the-art group recommender system that au-
tomatically identifies groups, chosen for comparison with the
proposed approach, is described.

Experiments setup and metrics used are then described and,
at the end of the section, results are shown and commented.

5.1 Experimental Methodology
In order to evaluate the quality of the system, three aspects
were considered: quality of the predicted ratings, distribu-
tion of the quality between the groups and homogeneity of
the groups size. The details of each experiment will be de-
scribed next.

5.1.1 Quality of the predicted ratings evaluation
The main objective of a recommender system is to produce
high quality predictions. The algorithm presented in this pa-
per produces group recommendations adapting to the band-
width available for the recommendation process.

In order to evaluate the quality of the predicted ratings for
different bandwidths, i.e., for different numbers of channels
that can be dedicated to the recommendation, we built three
different partitions of the users in groups. A partition is a
set of n groups in which users are subdivided. Of course,
if groups are homogeneous, the larger is n, the smaller are
the groups and the system can predict better ratings, be-
cause the preferences of a small amount of users have to be
combined.

In order to properly evaluate the performances of the pro-
posed algorithms, we compared them with the results ob-
tained considering a single group with all the users (predic-
tions are calculated considering all the preferences expressed
for an item), and the results obtained using no partition of
the users (i.e., quality of the individual recommendations is
calculated).

To measure the quality of the predicted ratings, we used the
Root Mean Squared Error (RMSE). This metric was chosen
because it is the most common in literature.

In order to analyze the quality of the predictions produced
by each algorithm for different partitions, we produced a
plot that shows the trend of RMSE for each partition in n
groups.

5.1.2 Distribution of quality between the groups eval-
uation

A second important aspect that has to be evaluated is how
the quality of the predicted results is distributed between
the groups of a partition.

In fact a group recommender system should be able to dis-
tribute the quality of the predicted results in a sufficiently
equal way, in order to satisfy the recommendation demand
for all the users of the system.

To analyze how RMSE is distributed between the groups
produced by ImprovedGRA, a table that contains the mean
value of RMSE for each partition and how many groups have
a RMSE value close/far to the mean is presented.

To compare the different algorithms, we measured the stan-
dard deviation of the RMSE values obtained for every group
of a partition.

5.1.3 Distribution of size between the groups evalu-
ation

The last aspect we evaluated is how homogeneous are the
groups in terms of size. Indeed, it is not acceptable to have
too large or too small groups. At the same time the clus-
tering step cannot create an homogeneity which is not in-
trinsically existent in users. To evaluate this trade-off we
measured the standard deviation of the size of the groups
present in a partition.

5.2 Benchmark algorithm:
ModularityBasedGRA

The technique selected for comparison with ImprovedGRA,
is the one proposed in [6]. From now on, the algorithm will
be called ModularityBasedGRA, because of the approach
used to identify groups (based on the Modularity function).

ModularityBasedGRA is an algorithm that generates group
recommendations and automatically detects intrinsic com-
munities of users whose preferences are similar. The input
is a Ratings Matrix that associates a set of users to a set
of items through a rating. Based on the ratings expressed
by each user, the algorithm evaluates the level of similar-
ity between users and generates a network that contains the
similarities.

A modularity-based Community Detection algorithm pro-
posed in [4] is run on the network in order to find partitions
of users in communities. For each community, ratings for all
the items are predicted using an item-based CF algorithm.

Since the Community Detection algorithm is able to produce
a dendrogram, i.e. a tree that contains hierarchical parti-
tions of the users in communities of increasing granularity,
the quality of the recommendations can be evaluated for the
different partitions.

To achieve the objectives previously outlined, i.e., detect
the communities and produce group recommendations for
them, ModularityBasedGRA computes four steps, described
below.

Users similarity evaluation In order to create commu-
nities of users, the algorithm takes as input a Ratings
Matrix and evaluates through a standard metric (co-
sine similarity) how similar the preferences of two users
are. The result is a weighted network where nodes rep-

31



resent users and each weighted edge represents the sim-
ilarity value of the users it connects. A post-processing
technique is then introduced to remove noise from the
network and reduce its complexity.

Communities detection In order to identify intrinsic com-
munities of users, a Community Detection algorithm
proposed by [4] is applied to the users similarity net-
work and partitions of different granularities are gen-
erated.

Ratings prediction for the items rated by the group
A group’s ratings are evaluated by calculating, for each
item, the mean of the ratings expressed by the users of
the group. In order to predict meaningful ratings, the
algorithm calculates a rating only if an item was eval-
uated by a minimum percentage of users in the group.
With this step it is not possible to predict a rating for
each item, so another step was created to predict the
remaining ratings.

Ratings prediction for the remaining items For some
of the items, ratings could not be calculated by the
previous step. In order to estimate such ratings, simi-
larity between items is evaluated, and the rating of an
item is predicted with a CF item-based algorithm that
considers the items most similar to it.

The choice to compare ImprovedGRA with this approach is
motivated by the fact that both approaches produce group
recommendations and automatically identify groups of users.
Moreover, both can be evaluated for different partitions of
users in groups. This allows a direct comparison between
the two approaches.

Let us also note that even if the aim of the two algorithms
is the same, the two techniques work in completely different
ways: ImprovedGRA clusters users with a classic algorithm
(k-means) after building individual recommendations and
then models the groups preferences, while ModularityBased-
GRA clusters users with a Community Detection algorithm
and then builds group recommendations.

5.3 Experiments Setup
The experimentation was made using the MovieLens-1M
dataset, which is composed of 1 million ratings, expressed by
6040 users for 3900 movies. In order to evaluate the quality
of the ratings predicted by each of the algorithms, around
20% of the ratings was extracted as a test set and the rest
of the dataset was used as a training set for the algorithm.

Each group recommendation algorithm was run with the
training set and, for each partition of the users in groups,
ratings were predicted.

The obtained values were used to conduct the experiments
previously described.

5.4 Evaluation metrics
This section will introduce the two metrics used to evaluate
different characteristics of our algorithm, the Root Mean
Squared Error (RMSE) and the Standard deviation. Both
metrics compare the obtained results with a comparison
value, in order to evaluate the quality of the system.

5.4.1 Root Mean Squared Error (RMSE)
The quality of the predicted ratings was measured through
the Root Mean Squared Error (RMSE). The metric com-
pares the test set with the predicted ratings: each rating rui
expressed by a user u for an item i is compared with the
rating pgi predicted for the item i for the group in which
user u is. The formula is shown below:

RMSE =

√∑n
i=0(rui − pgi)2

n

where n is the number of ratings available in the test set.

5.4.2 Standard deviation
The homogeneity of the groups size and the distribution of
RMSE between the groups was measured with the standard
deviation (considering respectively the size of the groups and
the RMSE values of the groups).

The metric evaluates how much variation there is from the
“average” value. A low standard deviation indicates that the
size of the groups/the RMSE obtained for the groups tend to
be close to the mean, while high values of standard deviation
indicate that the obtained values are scattered over a large
range of values.

σ =

√√√√ 1

N

N∑
i=1

(xi − x̄)2

5.5 Experimental results
The first experiment, presented in 5.1.1, aims to evaluate the
quality of the predicted values for a partition of the users in
groups. Figure 1 shows the trend of the RMSE values for
the different partitions of the users in groups.

Figure 1: RMSE values for each partition

For all the algorithms, we can notice that as the number of
groups grows, the quality of the recommendations improves,
since groups get smaller and the algorithms can predict more
precise ratings. We can see that the values of RMSE notably
decrease when the algorithms start grouping the users (i.e.,
there is a big difference of RMSE between 1 and 4 groups).
The RMSE values continue to decrease for the other parti-
tions, but the improvement in quality is lower.

32



Comparing the algorithms, we can see that BaseGRA and
ImprovedGRA outperform the benchmark algorithm Modu-
larityBasedGRA. Moreover, the performances of Improved-
GRA are much better than the performances of BaseGRA:
this proves that enhancing the Ratings Matrix with indi-
vidual recommendations leads to great improvements in the
quality of the predicted results.

The second experiment, presented in 5.1.2, was conducted
to evaluate how the quality of the predicted values is dis-
tributed between the groups. To do so we measured the
standard deviation of RMSE of the groups in each parti-
tion.

Partition Number of groups with RMSE r

4 groups r = 0, 85 r = 0, 89 r = 0, 95 r = 1, 04
x̄ = 0, 93 1 1 1 1

13 groups r < 0, 87 0, 87 ≤ r ≤ 1, 00 r > 1, 00
x̄ = 0, 93 3 7 3

40 groups r < 0, 90 0, 90 ≤ r ≤ 1, 00 r > 1, 00
x̄ = 0, 96 15 15 10

Table 1: Distribution of RMSE between the groups

Table 1 shows, for each partition, the mean of the RMSE
obtained for every group with ImprovedGRA and how the
RMSE is distributed between the groups. As we can see,
the majority of the groups in each partition has a RMSE
value sufficiently close to the mean. This means that RMSE
is distributed quite equally between the groups and our ap-
proach is able to satisfy the recommendation demand for all
the users.

Figure 2: Standard deviation of RMSE of the groups

Figure 2 compares the standard deviation of RMSE of the
groups for the different approaches. ImprovedGRA values
are slightly higher if compared to the other approaches.
However, it is important to remember that in this case there
is a trade-off between an equal distribution in terms of RMSE
and the similarity between the users in a group. In fact the
groups have to be intrinsic in order to improve the quality
of the predicted results. So it seems reasonable to loose a
bit of homogeneity in distribution of the quality in order
to improve the overall quality of the results predicted by
the system. This is the case of ImprovedGRA in which the

RMSE is distributed less equally between the groups but
the quality of the predictions compared with the other ap-
proaches is much higher.

The third experiment, presented in 5.1.3 was conducted to
evaluate how the size of the groups is distributed in each
partition (i.e., how homogeneous are the groups in terms of
size). To do so we measured the standard deviation of the
size of all the groups in each partition.

Partition Number of groups with size s

4 groups s = 633 s = 1334 s = 1807 s = 2266
x̄ = 1510 1 1 1 1

13 groups s < 300 300 ≤ s ≤ 540 s > 540
x̄ = 464, 62 3 7 3

40 groups s < 80 80 ≤ s ≤ 250 s > 250
x̄ = 151 9 26 5

Table 2: Distribution of size of the groups

Table 2 shows, for each partition, the mean of the size ob-
tained for every group with ImprovedGRA and how the size
is distributed between the groups. As the table shows, most
of the groups have size values close to the mean. This means
that the size is distributed in a sufficiently equal way be-
tween the groups and our algorithm is able to produce rec-
ommendations properly, i.e., without handling the prefer-
ences of too small/large groups.

Figure 3: Standard deviation of size of the groups

Figure 3 compares the standard deviation of the size of the
groups for the different approaches. It is important to notice
how the enhancement of the Ratings Matrix made for Im-
provedGRA leads to more homogeneous partitions in groups
compared with BaseGRA.

The values obtained by ImprovedGRA are slightly higher
than ModularityBasedGRA but also in this case there is a
trade of between homogeneity of the groups size and simi-
larity between the users. In fact it is important to find par-
titions of intrinsic groups with similar preferences that can
lead to a high quality of the predicted results. So, a little
loss in homogeneity of the size leads to great improvements
in the quality of the results.

33



6. CONCLUSIONS AND FUTURE WORK
In this paper we presented an algorithm that combines user
clustering with individual recommendations in order to iden-
tify and model groups of users with similar preferences and
improve the quality of group recommendations in systems
that automatically identify groups. In fact, BaseGRA and
ImprovedGRA outperform the benchmark algorithm Mod-
ularityBasedGRA.

Moreover, we can notice that ImprovedGRA, using an en-
hanced Ratings Matrix to identify and model the groups,
is able to produce sufficiently homogeneous groups in terms
of size and distribution of RMSE. Therefore, all the three
important objectives that should be achieved by a group rec-
ommender systems are reached by the proposed algorithm
ImproveGRA.

Future developments of the algorithm have been planned for
different steps performed by the algorithm. In [16] several
strategies for group modeling were presented. We are cur-
rently studying how different strategies affect the quality of
group recommendation with groups that are automatically
identified.

Recently [7, 12] highlighted how different metrics to evaluate
the quality of recommendation lead to completely different
results. As a future work we plan to evaluate our systems
with such metrics, in order to catch different aspects of our
system.

7. REFERENCES
[1] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and

C. Yu. Group recommendation: Semantics and
efficiency. PVLDB, 2(1):754–765, 2009.

[2] L. Ardissono, A. Goy, G. Petrone, and M. Segnan. A
multi-agent infrastructure for developing personalized
web-based systems. ACM Trans. Internet Technol.,
5(1):47–69, 2005.

[3] L. Ardissono, A. Goy, G. Petrone, M. Segnan, and
P. Torasso. Intrigue: Personalized recommendation of
tourist attractions for desktop and handset devices.
Applied Artificial Intelligence, 17(8):687–714, 2003.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. J. Stat. Mech., 2008(10):P10008+, October
2008.

[5] L. Boratto and S. Carta. State-of-the-art in group
recommendation and new approaches for automatic
identification of groups. In G. A. Alessandro Soro,
Eloisa Vargiu and G. Paddeu, editors, Information
Retrieval and Mining in Distributed Environments.
Springer Verlag. In press, 2010.

[6] L. Boratto, S. Carta, A. Chessa, M. Agelli, and M. L.
Clemente. Group recommendation with automatic
identification of users communities. In Web
Intelligence/IAT Workshops, pages 547–550. IEEE,
2009.

[7] E. Campochiaro, R. Casatta, P. Cremonesi, and
R. Turrin. Do metrics make recommender algorithms?
International Conference on Advanced Information
Networking and Applications Workshops, 0:648–653,
2009.

[8] I. Cantador, P. Castells, and E. P. Superior.
Extracting multilayered semantic communities of
interest from ontology-based user profiles: Application
to group modelling and hybrid recommendations. In
Computers in Human Behavior, special issue on
Advances of Knowledge Management and the
Semantic. Elsevier. In press, 2010.

[9] L. M. de Campos, J. M. Fernández-Luna, J. F. Huete,
and M. A. Rueda-Morales. Group recommending: A
methodological approach based on bayesian networks.
In ICDE Workshops, pages 835–844. IEEE Computer
Society, 2007.

[10] L. M. de Campos, J. M. Fernández-Luna, J. F. Huete,
and M. A. Rueda-Morales. Managing uncertainty in
group recommending processes. User Model.
User-Adapt. Interact., 19(3):207–242, 2009.

[11] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communication of the ACM, 35(12):61–70,
1992.

[12] A. Gunawardana and G. Shani. A survey of accuracy
evaluation metrics of recommendation tasks. J. Mach.
Learn. Res., 10:2935–2962, 2009.

[13] A. Jameson and B. Smyth. Recommendation to
groups. In P. Brusilovsky, A. Kobsa, and W. Nejdl,
editors, The Adaptive Web: Methods and Strategies of
Web Personalization. Springer, 2007.

[14] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In L. M. L. Cam
and J. Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297. University of
California Press, 1967.

[15] T. W. Malone, K. R. Grant, F. A. Turbak, S. A.
Brobst, and M. D. Cohen. Intelligent
information-sharing systems. Communication of the
ACM, 30(5):390–402, 1987.

[16] J. Masthoff. Group modeling: Selecting a sequence of
television items to suit a group of viewers. User
Modeling and User-Adapted Interaction, 14(1):37–85,
2004.

[17] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl.
Polylens: a recommender system for groups of users.
In ECSCW’01: Proceedings of the seventh conference
on European Conference on Computer Supported
Cooperative Work, pages 199–218, Norwell, MA, USA,
2001. Kluwer Academic Publishers.

[18] S. Ram. Intelligent agents and the world wide web:
Fact or fiction? Journal of Database Management,
12(1):46–49, 2001.

[19] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and
J. Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of
ACM 1994 Conference on Computer Supported
Cooperative Work, pages 175–186, Chapel Hill, North
Carolina, 1994. ACM.

[20] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In The
Adaptive Web: Methods and Strategies of Web
Personalization, volume 4321 of Lecture Notes in
Computer Science, chapter 9, pages 291–324. Springer,
2007.

34



A Generalized Probabilistic Framework and its Variants for
Training Top-k Recommender Systems

Harald Steck
Bell Labs, Alcatel-Lucent

Murray Hill, NJ
Harald.Steck@alcatel-lucent.com

Yu Xin
∗

CSAIL MIT
Cambridge, MA

YuXin@mit.edu

ABSTRACT
Accounting for missing ratings in available training data
was recently shown [3, 17] to lead to large improvements
in the top-k hit rate of recommender systems, compared
to state-of-the-art approaches optimizing the popular root-
mean-square-error (RMSE) on the observed ratings. In this
paper, we take a Bayesian approach, which lends itself natu-
rally to incorporating background knowledge concerning the
missing-data mechanism. The resulting log posterior distri-
bution is very similar to the objective function in [17]. We
conduct elaborate experiments with real-world data, testing
several variants of our approach under different hypotheti-
cal scenarios concerning the missing ratings. In the second
part of this paper, we provide a generalized probabilistic
framework for dealing with possibly multiple observed rat-
ing values for a user-item pair. Several practical applica-
tions are subsumed by this generalization, including aggre-
gate recommendations (e.g., recommending artists based on
ratings concerning their songs) as well as collaborative filter-
ing of sequential data (e.g., recommendations based on TV
consumption over time). We present promising preliminary
experimental results on IP-TV data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
Data Mining

General Terms
Algorithms

Keywords
Recommender Systems

∗This work was done while an intern at Bell Labs, Alcatel-
Lucent.

Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain.

1. INTRODUCTION
The idea of recommender systems is to automatically sug-

gest items to each user that s/he may find appealing. The
quality of recommender systems can be assessed with respect
to various criteria, including accuracy, diversity, surprise /
serendipity, and explainability of recommendations.

This paper is concerned with accuracy. The root mean
squared error (RMSE) has become the most popular accu-
racy measure in the literature of recommender systems–for
training and testing. Its computational efficiency is one of
its main advantages. Impressive progress has been made in
predicting rating values with small RMSE, and it is impos-
sible to name all approaches, e.g., [4, 6, 7, 11, 13]). There is,
however, also some work on optimizing the ranking of items,
e.g., measured in terms of normalized Discounted Cumula-
tive Gain (nDCG) [18]. Despite their differences, they have
in common that they were trained and tested on observed
ratings only. Obviously, these measures cannot immediately
be evaluated if some items have unobserved ratings.

In this paper, we consider the top-k hit rate–based on all
(unrated) items–as the natural accuracy measure for rec-
ommender systems, as only a few out of all unrated items
can be recommended to a user in practice (see Section 3
for exact definition of top-k hit rate). While this measure
is computationally tractable for testing the predictions of
recommender systems, unfortunately it is computationally
very costly for training recommender systems. For training,
we thus resort to appropriate surrogate objective functions
that are computationally efficient.

In recent work [3, 17], it was shown that the top-k hit
rate can be significantly improved on large real-world data
by accounting for the fact that the observed ratings provide
a skewed picture of the (unknown) distribution concerning
all (unrated) items and users.

Motivated by the results of [17], as the first contribution of
this paper, in Section 2 we present a probabilistic approach
that allows us to naturally include background knowledge
concerning the (unknown) distribution of all items and users
into our training objective function, the posterior probabil-
ity of the model.

In our second contribution, we conduct elaborate experi-
ments on the Netflix Prize data [1] and test several models
under different hypothetical scenarios concerning the miss-
ing ratings in Section 4. These different scenarios serve as a
sensitivity analysis, as the ground truth of the missing data-
mechanism is unknown due to lack of data. These experi-
ments are based on our popularity-stratified recall measure,
which we define in Section 3.

35



As the third contribution of this paper, we generalize this
probabilistic approach as to account for possibly multiple ob-
served rating values for a user-item pair in Section 5. This
general framework subsumes several applications in addi-
tion to the one outlined in Section 2. Two of which are
outlined in Section 5: while the training objective function
for a recommender system concerning TV programs seems
motivated in an ad-hoc manner in [5], we show that it can
be understood and improved naturally in a Bayesian frame-
work; apart from that, we also provide a Bayesian approach
for making aggregate recommendations, e.g., recommending
an artist or concert to a user based on the ratings given to
individual songs.

2. MODEL TRAINING
In this section, we outline a probabilistic framework that

allows us to incorporate background knowledge when train-
ing recommender systems on available data. The use of
background knowledge in addition to the available training
data can significantly improve the accuracy of recommender
systems on performance measures like top-k hit rate, recall,
precision, area under the ROC curve, etc. This was demon-
strated for implicit feedback data in [5, 10], and for explicit
feedback data in [3, 17]. Like in [17], we use background
knowledge that missing rating values tend to reflect negative
feedback, as experimentally observed in [9, 8]; i.e., negative
feedback tends to be missing from the available data with a
larger probability than positive feedback does.

The Bayesian approach lends itself naturally to this task.
We consider the rating matrix R as a matrix of random
variables: each element Ri,u concerning item i = 1, ..., i0
and user u = 1, ..., u0 is a random variable with normal
distribution, where i0 denotes the number of items and u0

is the number of users.

2.1 Model
We take a collaborative filtering approach, and use a low-

rank matrix-factorization model, which has proven success-
ful in many publications. Like the rating matrix, we consider
our model as a matrix of random variables, M . Each random
variable Mi,u corresponds to the rating of item i assigned by
user u. In matrix notation, it reads

M = roffset + PQ> (1)

where roffset ∈ R is an offset value, and P , Q are low-rank
matrices of random variables with dimensions i0 × d0 and
u0 × d0, respectively, where rank d0 � i0, u0. We use upper
case symbols to denote random variables (with a Gaussian
distribution), and lower case symbols to denote values.

2.2 Prior over Matrix Elements
In our Bayesian approach, we first define the usual prior

over model parameters, concerning each entry of the low
rank matrices P and Q (see also [12]):

p(M |σ2
P , σ2

Q) =

(Y
i

Y
d

N (Pi,d|0, σ2
P,i)

)

·

(Y
u

Y
d

N (Qu,d|0, σ2
Q,u)

)
(2)

The vectors of variances σ2
Q = (σ2

Q,u)u=1,...,u0 and σ2
P =

(σ2
P,i)i=1,...,i0 for all users u = 1, ..., u0 and items i = 1, ..., i0

are free parameters of the zero-mean normal prior distribu-
tion, denoted by N . There are several ways of defining the
standard deviations in Eq. 2, eventually resulting in differ-
ent kinds of regularization. The obvious choice is to assume
that σP,i = σQ,u = 1/

√
2λ′ ∀ i, u, with λ′ ∈ R. This results

in the regularization term

log p(M |σ2
P , σ2

Q) = −λ′
`
||P ||22 + ||Q||22

´
+ c1,

where || · ||2 denotes the Frobenius norm of a matrix, and c1

is an irrelevant constant when training our model.
When optimizing root mean square error on observed data

(like in the Netflix Prize competition [1]), however, numer-
ous experimental works reported significant improvements
by using a different regularization. This is obtained by
choosing the standard deviations σP and σQ as follows: σP,i =

1/
p

2λ′ · u0(i) , σQ,u = 1/
p

2λ′ · i0(u), where i0(u) de-
notes the number of items rated by user u, and u0(i) is the
number of users who rated item i. This results in the pop-
ular regularization term

log p(M |σ2
P , σ2

Q)

= −λ′
 X

i

u0(i)
X

d

P 2
i,d +

X
u

i0(u)
X

d

Q2
u,d

!
+ c2

= −λ′

0@ X
observed (i,u)

 X
d

P 2
i,d + Q2

u,d

!1A+ c2, (3)

where c2 denotes again an irrelevant constant when train-
ing our model. Note that this choice increasingly regularizes
the model parameters related to the items and users with a
larger number of observed ratings. This may seem counter-
intuitive at first glance. A theoretical explanation for this
empirical finding was recently provided in [14].

2.3 Informative Background Knowledge
We now incorporate the following background knowledge

into our sequential Bayesian approach: absent rating val-
ues tend to be lower than the observed ratings on average
(see [17]). We insert this knowledge into our approach by
means of a virtual data point for each pair (i, u): a virtual

rating value rprior
i,u with small confidence (i.e., large variance

σ2
prior,i,u). Then the likelihood of our model in light of these

virtual data points reads (assuming i.i.d. data):

p(rprior|M, σ2
prior) =

Y
all i

Y
all u

p(Ri,u = rprior
i,u |Mi,u, σ2

prior,i,u),

(4)

where rprior denotes the matrix of virtual data points rprior
i,u ,

and σ2
prior the matrix with elements σ2

prior,i,u. We assume
that the probabilities in this likelihood are determined by
normal distributions with mean Mi,u and variance σ2

prior,i,u.
The log likelihood then reads

log p(rprior|M, σ2
prior) = −

X
all i

X
all u

wprior
i,u

“
rprior

i,u −Mi,u

”2

+c3

(5)
where we defined the weights of the virtual data points as
wprior

i,u = 1/(2σ2
prior,i,u); c3 is again an irrelevant constant

when training our model.
With Bayes rule, we obtain the posterior distribution of

36



the model in light of these virtual data points:

p(M |rprior, wprior) =
p(rprior, wprior|M)p(M)

p(rprior, wprior)
. (6)

This equation combines our prior concerning the elements
in the matrices P and Q (for regularization) with our back-
ground knowledge on the expected rating values. This serves
as our prior when observing the actual rating values in the
training data.

2.4 Training Data
Now we use the rating values actually observed in the

training data. The likelihood of the model in light of ob-
served rating values robs

i,u reads (assuming i.i.d. data):

p(robs|M, σ2
obs) =

Y
observed (i,u)

p(Ri,u = robs
i,u |Mi,u, σ2

obs,i,u)

Again assuming a normal distribution, the log likelihood
reads:

log p(robs|M, σ2
obs) = −

X
observed (i,u)

wobs
i,u (robs

i,u −Mi,u)2 + c4

(7)
where we defined the weights of the observed rating values
as wobs

i,u = 1/(2σ2
obs,i,u); c4 is again an irrelevant constant

when training our model.

2.5 Posterior
The posterior after seeing the observed ratings is again

obtained by Bayes rule (we omit the weights wobs, wprior for
brevity of notation here):

p(M |robs, rprior) =
p(robs|M, rprior)p(M |rprior)

p(robs)

∝ p(robs|M, rprior)p(rprior|M)p(M)(8)

where we assumed in the denominator that the observed
ratings are independent of the chosen prior ratings, i.e.,
p(robs|rprior) = p(robs). Substituting Eqs. 3, 5, 6 and 7
into Eq. 8, we obtain the following log posterior:

log p(M |robs, rprior, wobs, wprior, λ) =

−
X

obs.(i,u)

wobs
i,u

(
(robs

i,u −Mi,u)2 + λ
X

d

ˆ
P 2

i,d + Q2
u,d

˜)

−
X

all(i,u)

wprior
i,u

(
(rprior

i,u −Mi,u)2 + λ
X

d

ˆ
P 2

i,d + Q2
u,d

˜)
+c5 (9)

We found that using a prior that involves also the regular-
ization term of P and Q in the third line in Eq. 9 leads
to a slight improvements in our experimental results. The
weights wobs

i,u and wprior
i,u as well as λ′ are absorbed in λ; this

is a slight but straight-forward generalization of the prior in
Section 2.2; c5 is again an irrelevant constant for training.

Eq. 9 serves as our training objective function. For sim-
plicity, we choose the same value for all virtual rating values
rprior. For computational efficiency, we choose our model
offset to equal the prior rating values: roffset = rprior. Its
main effect is that this retains the sparsity of the observed
rating matrix. Apart from that, it also leads to the simpli-
fication: (rprior

i,u −Mi,u)2 = ((PQ>)i,u)2. For simplicity, we

set wobs
i,u = 1 for all observed pairs (i, u), and also choose all

prior weights to be identical: wprior = wprior
i,u for all (i, u). In

summary, the three tuning parameters in Eq. 9 are wprior,
rprior and λ, which can be chosen as to optimize the perfor-
mance measure on cross-validation data.

2.6 MAP Estimate of Model
For computational efficiency, our training aims to find

the maximum-a-posteriori (MAP) parameter estimate of our

model, i.e., the MAP estimates P̂ and Q̂ of the matrices P
and Q. We use the alternating least squares approach. The
idea is that one matrix can be optimized exactly while the
other one is assumed fixed. A local maximum of the log
posterior can be found by alternating between the matrices
P̂ and Q̂. While local optima exist [16], we did not find this
to cause major computational problems in our experiments.
The update equation for each row i of P̂ is (for fixed Q̂):

P̂i,· = (r̄i,· − rprior)(W̃ (i) + wpriorI)Q̂ ·h
Q̂>(W̃ (i) + wpriorI)Q̂ + λ(tr(W̃ (i)) + wprioru0)I

i−1

(10)

where r̄i,u = (robs
i,u wobs

i,u +rpriorwprior
i,u )/(wobs

i,u +wprior
i,u ) denotes

the average rating; we defined wobs
i,u = 0 if rating at (i, u)

is missing; note that r̄i,· − rprior = 0 if rating is missing for
(i, u); W̃ (i) is a diagonal matrix containing the ith column of

the weight matrix wobs; the trace is tr(W̃ (i)) =
P

u∈Si
wobs

i,u ,
where Si is the set of users who rated item i; I denotes
the identity matrix; and u0 is the number of users. This
equation can be re-written for efficient computations, e.g.,
see [17]. The update equation for Q̂ is analogous.

3. MODEL TESTING
A key challenge in testing recommender systems is that

the observed ratings in the available data typically provide a
skewed picture of the (unknown) true distribution concern-
ing all ratings [9, 8]. This may be caused by the fact that
users are free to choose what items to rate, and they tend
to not rate items that would otherwise receive a low rating.
If the ratings are missing not at random (MNAR), it is not
guaranteed that correct or meaningful results are obtained
from testing a recommender system on the observed ratings
only. The latter is, however, common practice in the lit-
erature or recommender systems, using measures like root
mean square error or nDCG [4, 6, 7, 11, 13, 18].

The top-k hit-rate / recall of relevant items is a particu-
larly useful performance measure for assessing the accuracy
of recommender systems [17]. An item i is relevant to user
u if s/he finds this item interesting or appealing [17]. For
instance, in the Netflix data [1] we consider items i with a
5-star rating, robs

i,u = 5, as relevant to user u.
Recall can be calculated for a user by ranking the items

according to their scores predicted by the recommender sys-
tem, and determining the fraction of relevant items that are
among the top-k items, i.e., the k items with the highest
scores. The value of k ∈ N has to be chosen, e.g., as the
number of items that can be recommended to a user. Only
small values of k are important in practice. The goal is to
maximize recall for the chosen value of k.

Recall has two interesting properties in this context [17]:
it is proportional to precision on fixed data and fixed k when
comparing different recommender systems with each other.
In other words, the recommender system with the larger

37



recall also has the larger precision. More interestingly, how-
ever, recall can be calculated from the available MNAR data
and provides an unbiased estimate for the recall concern-
ing the (unknown) complete data (which comprises all rat-
ing values of all users) under the following assumption: the
relevant ratings are missing at random, while an arbitrary
missing-data mechanism may apply to all other rating values
(as long as they are missing with a larger probability than
the relevant ones) [17]. This assumption is much milder
than the one underlying the popular approach of ignoring
missing ratings, i.e., assuming that all ratings are missing
at random.

The expected performance on the (unknown) complete
data is important because it is directly related to user ex-
perience: the recommender system has to pick a few items
from among all items the user has not rated yet (and which
may hence be new to the user); one can expect the dis-
tribution on all unrated items to be well-approximated by
the distribution on all (rated and unrated) items under the
(mild) assumption that only a small fraction of the relevant
ratings has been observed.

Given that ground truth (i.e., the complete data) is typi-
cally not available (at low cost), the validity of the assump-
tion in [17] cannot be verified in practice. For this reason,
we carry out a sensitivity analysis in the following. We re-
lax this assumption even further and determine its effect
on the recall test-results for different models. Note that
the assumption in [17] allows for an arbitrary missing-data
mechanism concerning all ratings, except for the relevant
ratings; only the latter are assumed to be missing at ran-
dom. For this reason, the following is concerned with the
relevant ratings only.

We consider the case that the probability of observing
a relevant rating depends on the popularity of items. We
define the popularity of an item by the number N+

complete,i

of relevant ratings it obtained in the (unknown) complete
data. Let N+

obs,i be the number of relevant ratings observed
in the available data; then the probability of observing a
relevant rating regarding item i is

pobs(i) =
N+

obs,i

N+
complete,i

. (11)

Assuming that there are no additional (possibly hidden) fac-
tors underlying the missing data mechanism concerning the
relevant ratings, we obviously obtain an unbiased estimate
for recall on the (unknown) complete data by calculating the
popularity-stratified recall (for user u),

recallu(k) =

P
i∈S

+,k
u

siP
i∈S+

u
si

(12)

on the available MNAR data; S+
u denotes the set of relevant

items of user u; S+,k
u is the subset of relevant items ranked in

the top k items based on the predictions of the recommender
system; the popularity-stratification weight for each item i
is

si =
1

pobs(i)
.

If we choose the stratification weights si = 1 for all items
i, we obtain the usual recall measure. Given that complete
data is unavailable (at low cost), pobs in Eq. 11 cannot be
calculated in practice. For this reason, we now examine dif-
ferent choices for pobs and their effects on recall in Eq. 12.

In the first scenario, pobs may take only two values: it is
small for unpopular items, and large for popular items. If
the ratio of these two values approaches infinity, this results
in si → 0 for popular items. Removing the relevant rat-
ings of the most popular items from the test set is indeed
common practice, e.g., in [3]. In the second scenario, we con-
sider the case where pobs is a smooth function of the items’
popularities. We assume the polynomial relationship

pobs(i) ∝
`
N+

complete,i

´γ
(13)

with γ ∈ R. This is consistent with the power-law behavior
of the observed relevant ratings (see Figure 1 a) in the sense
that also the (unknown) complete data then follows a power-
low distribution concerning the relevant ratings. This results
in the stratification weights

si ∝ 1/(N+
obs,i)

γ/(γ+1).

Note that the unknown proportionality factor cancels out in
Eq. 12, so that it provides an unbiased estimate of the re-
call concerning the complete data for the correct polynomial
degree γ (and assuming that there are no additional factors
underlying the missing data mechanism). If γ = 0, the rel-
evant ratings are missing at random; if γ = 1, the probabil-
ity of observing relevant ratings increases linearly with item
popularity (N+

complete,i). The extreme case when γ →∞ has
several interesting properties: first, one observes in the avail-
able data only relevant ratings of the item with the largest
popularity in the complete data, which does not agree with
empirical evidence. Second, as γ/(γ + 1) → 1, the stratifi-
cation weights si are inversely proportional to the number
of observed relevant ratings N+

obs,i; this means that every
item has the same weight in the recall-measure in Eq. 12,
independent of its number of observed relevant ratings. This
means that, once an item obtains its first relevant rating, it
is weighted the same as all other items that may have ob-
tained thousands of relevant ratings. This obviously entails
low robustness against statistical noise as well as against
manipulation and attacks. As this is the limiting case of
γ, we nevertheless provide experimental results for this ex-
treme scenario in Section 4. The (unknown) realistic case
can be expected to be less extreme.

If the test set is a random subset of the observed data,
then N+

obs,i can be determined from the test set. Given that
the training set is typically much larger than the test set,
it might be more robust to determine N+

obs,i based on all
the available data, i.e., the training and test set combined.
We use the latter in our experiments reported in the next
section, but the former choice of N+

obs,i leads to very similar
results.

Finally, we define recall(k) =
P

u wurecallu(k) as the aver-
age recall over all users, with normalized weights,

P
u wu =

1, like in [17]. In our experiments, we choose wu ∝
P

i∈S+
u

si,

as a generalization of the definition in [7, 17].
Obviously, stratification like in Eq. 12 carries over analo-

gously to other measures, like ATOP [17] or the area under
the ROC curve.

4. EXPERIMENTS
This section summarizes our results on the Netflix Prize

data [1]. These data contain 17,770 movies and almost half
a million users. About 100 million ratings are available.
Ratings are observed for about 1% of all possible movie-

38



102 104 106100

105

# 5−star ratings

# 
m

ov
ie

s

(a)

0 5 10 15 200

0.2
0.4
0.6

k

re
ca

ll

 

 MF: wprior=0.005,     λ=0.04
MF: wprior=0.0005,   λ=0.04
MF: wprior=0.00005, λ=0.06
MF: wprior=0,            λ=0.07
SVD
BS

(b)

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.70.7

k

re
ca

ll

 

 

(c)

0 5 10 15 200

0.1

0.2

0.3

0.4

k

re
ca

ll

 

 

(d)

0 5 10 15 200

0.05

0.1

0.150.15

k

re
ca

ll

 

 

(e)

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

k

re
ca

ll

 

 

(f)

Figure 1: Netflix data [1]: (a) the number of relevant (i.e., 5-star) ratings per movie in the training data
shows a close to power-law distribution (i.e., straight line in the log-log plot); (b) legend of models (see text
for details); (c)-(f) show recall on probe set for different hypothetical missing-data mechanisms concerning
the relvant (i.e., 5-star) ratings (while an arbitrary missing-data mechanism is allowed for the other ratings):
(c) relevant ratings are missing at random (γ = 0 in Eq. 13); (d) relevant ratings observed with probability
increasing linearly with item popularity (γ = 1 in Eq. 13); (e) unrealistic extreme case where γ → ∞ in
Eq. 13; (f) relevant ratings of the 10% most popular items removed. As a result, for all these missing-data
mechanisms, recall test-results are improved by using an appropriate small prior weight wprior > 0 during
training, compared to the popular approach of ignoring the missing-data mechanism (wprior = 0) during
training.

user-pairs. The ratings take integer values from 1 (worst) to
5 (best). The provided data are already split into a train-
ing and a probe set. We removed the probe set from the
provided data as to obtain our training set.

We consider 5-star ratings as relevant to a user (as defined
above), and use the popularity-stratified recall, as outlined
in Section 3, as our performance measures on the Netflix
probe set. For all experiments, we chose rank d = 50 of our
low-rank matrix factorization (MF) model (Eq. 1). In the
following, we compared our MF model, trained with different
prior weights wprior > 0, against the popular MF approach
that ignores the missing-data mechanism (i.e., wprior = 0 in
our notation). The latter achieved a root mean square error
on the observed ratings in the probe set of 0.922. Addition-
ally, we compared to singular value decomposition (SVD),
where we used the svds function of Matlab, which implicitly
imputes a zero value (with unit weight) for all missing rat-
ings; and to the bestseller list (BS), which ranks the items
according to the number of ratings in the training set. The

values of tuning parameters in our training objective func-
tion (log posterior) in Eq. 9 are summarized in Figure 1 (b).
Like in [17], we chose the prior rating value rprior = 2 in Eq.
9.

Figures 1 (c)-(f) shows the performance of these mod-
els under different test scenarios, concerning our popularity-
stratified recall measure for the practically important range
of small k values. For computational efficiency, we computed
recall by randomly sampling, for a user, 1,000 unrated items
for each relevant rating in the test set, like in [3]. The only
difference to the test procedure used in [7, 17] is that we
sample from unrated items only, rather than from all items.
This is more realistic. It also results in slightly higher recall
values compared to the procedure used in [7, 17].

When comparing the different graphs, it is obvious that
the performance of all the models depends on the (unknown)
missing-data mechanism concerning the relevant ratings. In
particular, when pobs of relevant ratings is assumed to in-
crease more rapidly with growing popularity (N+

complete,i),

39



the expected recall on the (unknown) complete data de-
creases for all models, cf. Figures 1 (c)→(d)→(e), and
(c)→(f).

As pobs of relevant ratings increases more rapidly with
item popularity (compare Figures 1 (c)→(d)→(e)), the dif-
ference in recall among the various MF models decreases.
Training with smaller but positive weights wprior > 0 results
in the best recall on the test set, even in the unrealistic ex-
treme limit in Figure 1 (e). This suggests that, compared
to the popular approach of ignoring the missing-data mech-
anism when training MF models, recall can be improved
by using a small prior weight wprior > 0; its value is up-
per bounded by the value that optimizes the (usual) recall
measure on the test set, i.e., under the assumption that the
relevant ratings are missing at random, like in [17].

The bestseller list (BS) and SVD perform surprisingly well
if relevant ratings are missing at random, see Figure 1 (c),
while the popular MF model with wprior = 0 has low recall
in comparison. This was also found in [17, 3]. BS and SVD
perform rather poorly, however, if pobs increases rapidly with
item popularity, as shown in the extreme scenarios in Figure
1 (e) and (f). This suggests that not only BS, but also SVD
tend to recommend items that are popular in the available
training data. Their recommendations may hence result in
a relatively low degree of serendipity or surprise, relative to
our MF models trained with a small positive prior weight.

5. GENERALIZED APPROACH
This section outlines a generalization of the Bayesian ap-

proach given above. In our probabilistic approach, we con-
sider the rating matrix R as a matrix of random variables.
As each entry Ri,u is a random variable (rather than a
value), this naturally allows for possibly multiple values con-
cerning each pair (i, u) in the data. This has several ad-
vantages over a matrix of values, which has typically been
considered in the literature of recommender systems. Af-
ter developing our generalized probabilistic framework, we
outline three special cases / applications in Section 5.2.

Let the given data set be D = {ri,u,j}i,u,j , where i =
1, ..., i0 is the index concerning items, u = 1, ..., u0 is the
index regarding users, and j = 1, ... is the index over possi-
bly multiple observed ratings for the same pair (i, u). The
likelihood of the model in light of i.i.d. data reads

p(D|M) =
Y
i,u,j

p(Riu = ri,u,j |M). (14)

Assuming again a normal distribution of the ratings (with
standard deviations σi,u,j , or equivalently weights wi,u,j =
1/(2σ2

i,u,j)), the log likelihood of the model is

log p(D|M) = −
X
i,u

X
j

wi,u,j(ri,u,j −Mi,u)2 + c5

= −
X
i,u

X
v

wi,u,v(v −Mi,u)2 + c5 (15)

where the second line is obtained by switching–for each pair
(i, u)–from index j (over multiple ratings in the data) to
the actual rating values v; the cumulative weight is wi,u,v =P

j wi,u,jIri,u,j=v, where indicator function Iri,u,j=v = 1 if
ri,u,j = v and 0 otherwise.

Combining this likelihood with the same kind of prior over
the model parameters as in Eq. 2, we obtain the log posterior

of our model:

log p(M |D) = −
X
i,u

X
v

wi,u,v(v −Mi,u)2

−
X

i

1

2σ2
P,i

X
d

P 2
i,d −

X
u

1

2σ2
Q,i

X
d

Q2
u,d + c6 (16)

The standard deviations σQ,i and σP,i may be chosen as to
achieve the desired variant of regularization, as discussed in
Section 2.2.

5.1 MAP Estimate of Model
For computational efficiency, we focus on optimizing the

log posterior in Eq. 16. The maximum-a-posteriori (MAP)

parameter estimate of our model, i.e., the MAP estimates P̂
and Q̂ of the matrices P and Q, can be determined by alter-
nating least squares, which alternately optimizes one matrix
while the other one is assumed fixed. Using the usual nec-
essary condition for the optimum of Eq. 16, we equate its
partial derivative to zero, and obtain the following update
equation for each row i of P̂ (for fixed Q̂):

P̂i,· = (v̄i,· − roffset)W̃ (i)Q̂ ·

"
Q̂>W̃ (i)Q̂ +

1

2σ2
P,i

I

#−1

, (17)

where I denotes the identity matrix, and W̃ (i) is a diagonal
matrix containing the ith row of the aggregate weight matrix
with elements

wi,u =
X

v

wi,u,v,

and v̄i,u is the average rating value

v̄i,u =

 X
v

vwi,u,v

!
/wi,u.

Analogously, the update equation for each row u of Q̂ is:

Q̂u,· = (v̄·,u − roffset)W̃ (u)P̂

"
P̂>W̃ (u)P̂ +

1

2σ2
Q,u

I

#−1

,

(18)

where W̃u is the diagonal matrix containing the uth column
of the aggregate weight matrix.

This derivation shows that optimizing Eq. 16 is equivalent
to optimizing

log p(M |D) = −
X
i,u

wi,u(v̄i,u −Mi,u)2

−
X

i

1

2σ2
P,i

X
d

P 2
i,d −

X
u

1

2σ2
Q,i

X
d

Q2
u,d + c6 (19)

where multiple rating values for an item-user pair are re-
placed by their mean value v̄i,u and their aggregate weight
wi,u.

5.2 Applications
This generalized probabilistic approach subsumes several

applications as special cases. In addition to the use of virtual
ratings in the prior, as outlined in Section 2, we present two
additional applications in the following.

5.2.1 Aggregate Recommendations
The universe of all items available for recommendation

may have a structure that goes beyond a flat list. Items can

40



often be arranged in a hierarchical manner. For instance,
songs may be grouped by artist, album, genre, etc. Possibly,
there are several layers of hierarchy. Now let us consider
the problem that data are available where users have rated
individual songs, but the task is to recommend an artist to a
user. This problem arises in several situations. For instance,
the recommender system may want to suggest a concert to
the user, based on the data on individual songs. Another
scenario is the release of a new song by an artist: this cold
start problem may be overcome by recommending the new
song to users who like the artist.

The ratings matrix concerning songs and users can be used
to construct a rating matrix regarding artists and users by
aggregating the songs of each artist. As a user may have
rated several songs of an artist, we now have possibly multi-
ple rating values for an entry in the artist-user matrix. This
is exactly the problem solved by our general approach in
Section 5. Our framework also shows that, for each user,
the rating of each artist can be determined as the weighted
average of the ratings of his/her songs, and the weight is the
sum of the weights of the songs, as one may have intuitively
expected.

5.2.2 Recommendation of TV Shows
IP-TV is much more interactive than traditional TV. Con-

cerning recommender systems, it allows one to collect infor-
mation on the users’ TV consumption. This can be used
to learn preferences of users to TV programs, as to make
accurate recommendations of TV shows. Unlike the pre-
vious applications described in this paper, we now use im-
plicit feedback data (time spent watching a TV show) in
place of the ratings. Our approach carries over immedi-
ately. This problem can be cast in our general probabilistic
framework as follows: we divide the length of each show
into nmax time intervals (of equal length), where nmax is the
same large integer for all shows. We consider each time in-
terval associated with a random experiment; a show hence
comprises nmax repetition of the experiment. The random
variable Ri,u takes the value 1 if user u watched show i
for a time-interval, and 0 otherwise. So, if user u watches
ni,u ∈ {1, ..., nmax} out of nmax intervals of show i, then
we have ni,u observations of value 1 for the random vari-
able Ri,u, and nmax−ni,u observations of value 0; as shown
in Section 5, these multiple observations can be substituted
equivalently in our least-squares objective function in Eq.
16 by the aggregate weight nmax and the averaged value
of the observations: r̄i,u = ni,u/nmax, i.e., the fraction of
the show watched. In addition, if a show comprises several
(e.g., weekly) episodes, then we assume that the above ap-
plies to each episode; the total weight of the show is then
ti,unmax, where ti,u ∈ N is the number of episodes of show
i watched by user u. Then the averaged observed value is

r̄i,u =
Pti,u

j=1 r̄i,u,j/ti,u, where r̄i,u,j is the fraction of episode
j watched (analogous to above). This results in the log like-
lihood (with an irrelevant constant c7 in our optimization
problem):

log p(D|M) = −nmax

X
(i,u)∈S

ti,u(r̄i,u −Mi,u)2 + c7,

where the set S contains all pairs (i, u) with shows i that
have been watched at least partially by user u. Concerning
all shows, we additionally incorporate background knowl-
edge that users tend to not like shows with some small con-

fidence / weight. This weight is small, as it can also be
interpreted as the variance of our prior, which is large as
there are many reasons for not watching a show. Analo-
gously to Section 2, we use virtual observations of value 0,
with weight wprior. This results in the log likelihood in light
of the virtual data points Dprior:

log p(Dprior|M) = −nmaxw
prior

X
all (i,u)

(0−Mi,u)2 + c8

Combining these two likelihoods, together with the prior
over the model parameters in Eq. 2 (first variant), we obtain
the log posterior

log p(M |D, Dprior) ∝

−
X

(i,u)∈S

ti,u(r̄i,u −Mi,u)2 − wprior
X

all (i,u)

(0−Mi,u)2

−λ
X

d

"X
i

P 2
i,d +

X
u

Q2
u,d

#
+ c9, (20)

where we replaced the standard deviations in the prior by
λ ∈ R; the proportionality is due to omitting nmax, which is
an irrelevant constant when optimizing the posterior; c9 is
an irrelevant additive constant in our optimization problem.

In [5], the following objective function was experimentally
found to result in the best recommendation accuracy from
among several variants (re-written, but equivalent to Eq. 3
in [5]): X

(i,u)∈S

(1 + αnt
i,u)(1−Mi,u)2 +

X
(i,u) 6∈S

(0−Mi,u)2

+λ
X

d

"X
i

P 2
i,d +

X
u

Q2
u,d

#
, (21)

where nt
i,u =

P
j ni,u,j is the total time spent by user u

watching show i (including all episodes j); S denotes again
the set of pairs (i, u) where show i is at least partially watched
by user u; α takes essentially the role of wprior.

Interestingly, their objective function is similar to ours.
The main difference, however, is in the least squares term,
where we fit our model to the fraction r̄i,u of the show
watched, while the indicator value 1 is used in [5]. We at-
tribute to this difference the fact that our model performs
slightly better in our preliminary experiments on our (pro-
prietary) IP-TV data [2], see below. Besides the experimen-
tal improvement, our theoretical framework also provides a
clear understanding of the assumptions underlying our ap-
proach, while the approach in [5] appears to be found ex-
perimentally in a somewhat ad-hoc manner.

Preliminary Experiments: We used a (proprietary)
IP-TV data set [2] concerning TV consumption of N =25,777
different shows by 14,731 users (living in 6,423 households)
in the UK over a 6 month period in 2008/2009 (see also
[15] for a more detailed description). In our collaborative
filtering approach, we used only implicit feedback data con-
cerning TV consumption (user ID, program ID, the length of
the program and the time the user spent on this program),
and ignored the available explicit user profiles and content
information for simplicity. We randomly split these data
into a training and a disjoint test set, with 10 shows per
user assigned to the test set. In the test set, we considered
shows interesting or relevant to users if they watched at least

41



model k′= 1% k′= 2% k′= 3% k′= 4% k′= 5%

ours 0.671 0.763 0.819 0.856 0.882
[5] 0.624 0.723 0.785 0.828 0.857
Nbr 0.547 0.642 0.704 0.760 0.804

Table 1: Recall(k′) test results on IP-TV data.

80 % of them. We used these shows to evaluate the recom-
mender systems w.r.t. the performance measures recall (as
defined in Section 3 with γ = 0). Table 1 summarizes our
preliminary results in terms of recall(k′), where k′ = k/N
is normalized regarding the number N of available shows.
Again, we used rank d = 50 for the matrix factorization
models. We find that our new approach (with λ = 0.005)
and the approach in [5] (with λ = 0.02) give similar results,

compared to the neighborhood model (Nbr), sij =
rir′

j

‖ri‖‖rj‖
and r̂iu =

P
sijruj , which was also used in [5] for compar-

ison. Concerning recall, small values of k′ are particularly
important in practice, as only a small number of shows can
be recommended to a user; in this regime, our new approach
seems to perform better than the approach of [5]. We are
currently running more refined experiments to confirm this
finding.

6. CONCLUSIONS
This paper provides three contributions. First, we out-

lined a Bayesian framework that naturally allowed us to
insert background knowledge concerning the missing-data
mechanism underlying the observed rating data. The ob-
tained log posterior probability of the model is very similar
to the training objective function outlined in [17].

In our second contribution, we conducted experiments
where we considered several hypothetical missing-data mech-
anisms underlying the observed real-world data. Given that
the true missing-data mechanism is unknown in the ab-
sence of ground truth data, this sensitivity analysis pro-
vided valuable information. Our key insight based on these
experiments is that the top-k hit-rate or recall can be im-
proved considerably by training recommender systems with
an appropriately chosen small positive prior weight concern-
ing background knowledge on the missing-data mechanism.
This is in contrast to the popular approach in the literature,
which only considers observed ratings.

As third contribution, we provided a generalized prob-
abilistic framework for factorizing a user-item-matrix that
possibly has multiple observed rating values associated with
each user-item pair. We discussed three important special
cases / applications: besides training a top-k recommender
system by using virtual data points, we outlined how ratings
can be aggregated when items are grouped in a hierarchical
manner rather than in a flat list, and how recommendations
can be made using this hierarchical structure. Addition-
ally, this framework enabled us to derive the training objec-
tive function for a recommender system on sequential data
concerning TV consumption. This derivation not only pro-
vides a clear understanding of the assumptions underlying
the training objective function, but also led to improvements
in the top-k hit rate over state-of-the-art approaches in our
preliminary experiments.

Acknowledgements
We are greatly indebted to Tin Ho for her encouragement
and support of this work. We are also very grateful to the
anonymous reviewers for their valuable feedback.

7. REFERENCES
[1] J. Bennet and S. Lanning. The Netflix Prize. In

Workshop at SIGKDD-07, ACM Conference on
Knowledge Discovery and Data Mining, 2007.

[2] BARB: Broadcaster Audience Research Board.
http://www.barb.co.uk.

[3] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-N recommendation
tasks. In ACM Conference on Recommender Systems,
2010.

[4] S. Funk. Netflix update: Try this at home, 2006.
http://sifter.org/ simon/journal/20061211.html.

[5] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM, 2008.

[6] R. Keshavan, A. Montanari, and S. Oh. Matrix
completion from noisy entries, 2009. arXiv:0906.2027.

[7] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD,
2008.

[8] B. Marlin and R. Zemel. Collaborative prediction and
ranking with non-random missing data. In ACM
Conference on Recommender Systems (RecSys), 2009.

[9] B. Marlin, R. Zemel, S. Roweis, and M. Slaney.
Collaborative filtering and the missing at random
assumption. In Conference on Uncertainty in Artificial
Intelligence (UAI), 2007.

[10] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose,
M. Scholz, and Q. Yang. One-class collaborative
filtering. In ICDM, 2008.

[11] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In KDDCup,
2007.

[12] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, 2008.

[13] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
Boltzmann machines for collaborative filtering. In
ICML, 2007.

[14] R. Salakhutdinov and N. Srebro. Collaborative
filtering in a non-uniform world: Learning with the
weighted trace norm, 2010. arXiv:1002.2780.

[15] C. Senot, D. Kostadinov, M. Bouzid, J. Picault,
A. Aghasaryan, and C. Bernier. Analysis of strategies
for building group profiles. In Conference on User
Modeling, Adaption and Personalization (UMAP),
2010.

[16] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In ICML, pages 720–7, 2003.

[17] H. Steck. Training and testing of recommender
systems on data missing not at random. In KDD,
2010.

[18] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola.
Cofi rank - maximum margin matrix factorization for
collaborative ranking. In Advances in Neural
Information Processing Systems (NIPS), 2008.

42



From Recordings to Recommendations: Suggesting Live
Events in the DVR Context

Alessandro Basso, Marco Milanesio, André Panisson, Giancarlo Ruffo
Dipartimento di Informatica

Università degli Studi di Torino
Torino, Italy

{basso,milane,panisson,ruffo}@di.unito.it

ABSTRACT
Providing valuable recommendations in the DVR domain is
quite straightforward when enough information about users
and/or contents is known. In this work, we discuss the pos-
sibility of recommending future live events without knowing
anything else but past user programmed recording sched-
ules.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering ; J.4 [Computer
Applications]: Social And Behavioral Sciences

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Digital Video Recorders, TV Broadcasts, Recommendation
Systems, Collaborative Algorithms, Implicit Data

1. INTRODUCTION
A Digital Video Recorder (DVR) is a device aimed at record-
ing digital streams to a storage. DVRs can be either hard-
ware devices, such as set-top-boxes and portable media play-
ers, or software devices, such as web/PC-based Personal
Video Recorders (PVRs), managing all user interactions and
personalizations. By using DVRs, users are no longer bound
to the broadcaster’s schedule, but are free to define their
personal lists of programs at any time.

In order to provide a better user experience by means of fo-
cused advices (e.g., recommendation of new contents), the
arisen issues can be summarized in two main categories.
First, some logging activity must be done to find common
usage patterns on which identify potential users’ interests.
Users are not willing to offer an explicit profile when using
a DVR, thus we do have, possibly, only a set of observations
on their activity. This is an important challenge for many

Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain.

known recommendation algorithms, that exploit user pro-
files for increasing accuracy and take into account privacy
issues as well.
Second, differently from the Video on Demand domain, the
usage of an Electronic Program Guide (EPG) is not always
assured. This fact brings two consequences: (a) there is
no knowledge on the content the user is recording and/or
watching, and (b) there is no well defined one-to-one corre-
spondence between a recording and a broadcast event. This
leads to the impossibility of directly recommending record-
ings to users.

Taking into account these considerations brings us our re-
search question: in such a domain, is it possible to give
valuable live event recommendations to users, only consid-
ering their recording activity on the DVR? Users have to be
brought to contents of interest, but, differently from other
approaches, we are not using anything but collaborative fil-
tering technique on users’ activity. Thus, the main contri-
bution of our approach is the demonstration that this can be
achieved without any knowledge on what is being broadcast,
neither EPGs nor content classifications.

2. RELATED WORK
The task of recommending live events, such as TV shows,
has been already investigated in the past years. Proposed
methods can exploit different ways to collect the required
information for user profiling, as well as can make use of
various recommendation algorithms. In particular, some ap-
proaches, such as [6], explicitly ask the users about their
interests and build suggestions on top of the resulting user
profiles. A different idea, which is adopted in several works
[2, 9, 10], makes use of implicit feedbacks, i.e., information
derived from the analysis of the user behavior while using
the DVR. Other solutions, as [4, 12, 15], propose recom-
mender systems which make use of user’s view history as
well as both explicit and implicit feedbacks. According to
authors, such a mixed technique allows to obtain the best
performance.

Another feature to tell apart existing methods for live events
recommendation is the recommender algorithm used. A
common approach relies on the content of the programs
broadcast and it is therefore called content-based. Exam-
ples in this category can be found in [10, 12]. Some authors
devised recommenders that make use of multiple content-
based techniques, as in [3, 4].
A solution able to increase novelty of recommendations is

43



collaborative filtering, like the works in [2, 5]. Another in-
teresting method is proposed in [9] and exploits the latent
factor model.

In this work, we focus on implicit feedbacks only and we use
a collaborative filtering approach to compute recommenda-
tions. Our aim is to minimize the information required as
input of the recommender system, without sacrificing the
novelty. The real challenge is to be able to recommend pro-
grams to users without actually knowing anything about
what is broadcast on TV, since no EPG is used (differently
from existing methods).

3. DATASET
Faucet is a PVR integrated in a podcasting service1, which
allows the recording and further downloading of Italian TV
and Radio broadcasts [1]. The activity of the users is in-
crementally collected (hourly) into a log file containing the
scheduled recordings set in the past hour as well as the oc-
curred downloads. The resulting dataset is populated by real
users expressing their preferences through the recorded pro-
grams. The dataset is publicly available at http://secnet.
di.unito.it/vcast.
Each registered user can fix the desired settings for the
recording of interest. At the end of the process, her record-
ing is scheduled for the given time and will be further avail-
able for downloading purposes. Each recording ri, thus, is
defined as a tuple < ui, ci, ti, bi, ei, pi > with the following
notation: user ui sets up a recording on channel ci, starting
from time bi and ending at time ei, with a title ti and a pe-
riodicity pi (e.g., once, every Tuesday, mon-fri). In Faucet,
channels and periodicity values are fixed (users can choose
their ci and pi from a combobox), while all other fields are
completely up to the user.
After the end time expires, the recording is made available
to the user for downloading. In case of periodic events, the
recording step can occur an undefined number of times. Af-
ter each recording step, the respective download is made
available.

4. METHODOLOGY
In this section, we want to outline what our approach is.
Given no knowledge on the broadcasts, we collect the users
activity to compute what we call discrete events, to be used
for recommendation purposes and top chart list building.

4.1 From Recordings to Events
The extraction of meaningful information from the unstruc-
tured amount of data contained in the dataset is essential
to define a set of events which map the broadcast programs.
Through the event discovery phase, we can discretize the
continuous domain of timings defined by the recordings, cre-
ating the basis for the application of a recommender algo-
rithm. The basic procedure used in the discretization was
first introduced in [1] and covers a number of subsequent
steps:

Clustering. Recordings are clustered together by consider-
ing the channel, the periodicity and the difference between
starting and ending times. All recordings belonging to the
same cluster are thus equal as channel and periodicity, whilst

1http://www.vcast.it/

similar on timings. Specific values are used to define the
maximum clustering distance for the start and the end times.
The output of this activity is a set of clusters, each identi-
fying a single event. The centroid of the cluster, i.e., the
recording that minimizes the intra-cluster timing distances,
is considered the representative of the event.

Aggregation. As the clustering occurs periodically, this
operation aims to identify newly created events character-
ized by the same channel and periodicity of the formerly
created ones, but comparable timings. Such elements refer
to the same programs and are therefore merged into unique
events, whose properties are updated by taking into account
the values of all the similar ones.

Collapsing. A further refinement phase is required to grant
the consistency of the generated events. In fact, due to the
high variability of timings, especially when a new transmis-
sion appears, events which are initially considered as non
referring to the same transmission tend to slowly and inde-
pendently converge to more stable timeframes. This implies
the need of merging them into single events.

As a result of the processing phase, given a set of recording
clustered together, each one with the same channel ci and
the same periodicity pi, we compute a discrete event ei in
the form of: < {ui}, t, ci, b, e, pi >, where {ui} is the set of
users whose recordings were clustered together; t is the user
generated title most frequent among users in {ui}; b and e
are, respectively, the starting and ending time computed as
the median value of all the clustered recordings.

4.2 From Events to Recommendations
When future events are computed from scheduled record-
ings, we are thus able to propose them to users by means of
two different charts: (1) a global chart returning those events
computed starting from the largest groups of recordings, i.e.,
those chosen by the largest sets of users; and (2) a user-based
recommendation list, returning a set of new events of pos-
sible interest to each user requesting it, computed through
a similarity function over the whole population. We call
them Most Popular and Rec2 (Recordings times Recommen-
dations), respectively. Both charts are computed by means
of the memory based collaborative filtering approach named
k -Nearest Neighbors (kNN) [14]. We apply both variants
of the kNN algorithm: the user-based one [8], by identify-
ing users interested in similar contents; and the item-based
approach [7], by focusing on items shared by two or more
users.

In kNN, the weight (i.e., a measure of interest) of an element
ei for an user uk can be defined as:

w(uk, ei) =
∑

ua∈N(uk)

r(ua, ei) · c(uk, ua), (1)

where N(uk) are the neighbors of user uk and r(ua, ei) is
equal to 1 if user ua is associated to the event ei, and 0 oth-
erwise. The coefficient c(uk, ua) represents the neighbor’s
information weight for user uk. In most of the kNN-based
algorithms [8], the coefficient used is the similarity between
uk and ua.

44



Most Popular. The MostPopular algorithm can be defined
by means of eq. (1), assuming the number of neighbors un-
bounded, which impliesN(uk) = U, ∀uk ∈ U ; and c(ua, ub) =
1, ∀ua, ub ∈ U , with U as the set of all users. Thus, the
weight is modified as w(uk, ei) =

∑
ua

r(ua, ei).

After calculating the weight of all elements, they are sorted
in descendant order. In the MostPopular algorithm, as the
set of neighbors is independent of the user, all users re-
ceive the same recommended elements, i.e., the most popular
ones.

Rec2. In order to provide personal suggestions, we have to
define a similarity function for grouping similar users (items)
from which choosing the appropriate elements to recom-
mend. Our definition of similarity is based only on implicit
feedbacks, resulting from observing the behavior of users: if
she records something, then we assume that she is interested
in it; otherwise, we can not infer anything about the interest
of the user for that element. We are therefore considering
binary feedbacks.

Given two users u and v and the associated discrete events
Eu and Ev, we can choose the similarity metric, S(u, v),
considering several well known measures (e.g., Dice, Cosine
and Matching) [11]. After choosing a metric, ∀u we can
compute the subset Nu ⊆ U of neighbors of user u. A user
v such that Ev ∩ Eu 6= ∅ is thus defined as a neighbor of u.
Starting from the neighborhood of u, the similarity with u is
computed for each pair < u, v > such that v ∈ Nu. Finally,
if S(u, v) > 0, we consider u similar to v. The value S(u, v)
is used to weight such a relation, therefore determining a
similarity order among the neighborhood of u, from which
choosing new events to recommend to u.

Similarly, this approach can be adopted for the item-based
similarity: two events are considered similar if the share at
least a single user that is associated to both of them.

5. EVALUATION
In the following, we evaluate the obtained results in the
event extraction process and in the recommendation of new
events to users, both in Most Popular and in Rec2.

5.1 Event Extraction
As a remainder, we are dealing with several independent,
user generated recording schedules, that we cluster together
and from which we compute the discrete events. In Figure 1,
a view of the distribution of the recordings is given: for each
detected event, the number of recordings clustered together
changes according to users’ activity. As it turns out, most
recordings (and, thus, most users) tend to be clustered and
aggregated on very few events, while there are lots of events
with very few recordings. The Most Popular algorithm ex-
ploit these inner features of the resulting discrete events to
compute the top chart.

5.2 Computing Recommendation
We measure how accurate is the recommendation in predict-
ing the elements that users would program in terms of re-
call. These values are computed as the average of all users’
recall values using the top n recommended elements [13].

100 101 102 103 104

number of recordings

10-6

10-5

10-4

10-3

10-2

10-1

100

Pr
ob

ab
ili

ty
 th

at
 a

n 
el

em
en

t h
av

e 
x 

re
co

rd
in

gs

Figure 1: Number of recordings per event
(Probability density function)

We are giving particular emphasis on the recall measure; in
fact, since we do not have explicit feedbacks regarding the
user’s interest in those items which have not been consid-
ered (i.e., not programmed, nor downloaded), precision is
not very meaningful [9].

First, we choose different similarity functions to understand
whether similarity influences the results of the user-based
kNN algorithm. From Figure 2(a) it is clear that, in this
case, all chosen similarity metrics show nearly the same per-
formance.

The second step is to find the optimal value for k. Figure
2(b) shows the results with k ∈ {100, 300, 500, 700, 2000}
in user-based kNN (Dice similarity), and the MostPopu-
lar recommender. We omit the values of k = {500, 700}
since the results are almost equal to k = 300. Compared
to the MostPopular algorithm (i.e., unbounded neighbors),
a value k = 100 is not enough to outperform it, whilst for
k = 2000, kNN starts to converge to it. Considering the top
10 recommended elements, we can achieve the best results
for k = 300, whilst k = 500 is more suitable when taking
further elements. As in most cases 10 elements are sufficient
for a recommendation, k = 300 offers a good trade-off be-
tween valuable recommendations and resource consumption
for building the neighborhood.

A comparison among user/item-based kNN and MostPop-
ular is depicted in Figure 2(c). We can observe that the
latter is clearly outperformed by the other two algorithms,
especially when more than 7 recommended items are con-
sidered. The user-based algorithm performs slightly better
than the item-based one (more noticeable with more than
15 recommended items). In general, item-based algorithms
tend to perform better because usually the number of items
is considerably lower than the users [14], but this property
does not hold in our domain.

6. CONCLUSION
In this paper we show how to recommend live events to
users without any knowledge about the broadcast content

45



0 5 10 15 20 25 30
top selection

0%

5%

10%

15%

20%

25%

30%

35%

Re
ca

ll

Dice similarity
Cosine similarity
Matching similarity

(a) Comparison between similarity func-
tions in user-based kNN

0 5 10 15 20 25 30
top selection

0%

5%

10%

15%

20%

25%

30%

35%

40%

Re
ca

ll

Most Popular
k=2000
k=300
k=100

(b) Recall for user-based kNN

0 5 10 15 20 25 30
top selection

0%

5%

10%

15%

20%

25%

30%

35%

40%

Re
ca

ll

User-based KNN
Item-based KNN
Most Popular

(c) Recall for kNN (k = 300) wrt Most-
Popular

Figure 2: Comparison between recommenders and recall for kNN and Most Popular.

and user’s likes. Recommendations can be given both glob-
ally and personally. It is important to underline that the
most popular events are easier to predict since users tend to
naturally focus on them, even without any specific sugges-
tion. On the contrary, granting a high novelty in personal
recommendations is a more challenging goal due to the re-
duced amount of explicit information. Nevertheless, we can
obtain interesting results even exploiting a simple approach
as the kNN. We are currently attempting other approaches
to recommendation (e.g., latent factor model) with implicit
feedbacks, with the aim of improving the prediction accu-
racy.

7. REFERENCES
[1] A. Basso, M. Milanesio, and G. Ruffo. Events

discovery for personal video recorders. In EuroITV
’09: Proceedings of the seventh european conference on
European interactive television conference, pages
171–174, New York, NY, USA, 2009. ACM.

[2] P. Baudisch and L. Brueckner. Tv scout: Guiding
users from printed guides to personalized tv program.
In In Proceedings of the 2nd Workshop on
Personalization in Future TV (May 28, Malaga,
Spain), Universidad de Malaga, pages 151–160, 2002.

[3] Y. Blanco-Fernández, J. J. Pazos-Arias, A. Gil-Solla,
M. Ramos-Cabrer, B. Barragáns-Mart́ınez,
M. López-Nores, J. Garćıa-Duque, A. Fernández-Vilas,
and R. P. Dı́az-Redondo. A multi-agent open
architecture for a tv recommender system: A case
study using a bayesian strategy. Multimedia Software
Engineering, International Symposium on, pages
178–185, 2004.

[4] A. L. Buczak, J. Zimmerman, and K. Kurapati.
Personalization: Improving ease-of-use, trust and
accuracy of a tv show recommender. In in Proceedings
of the TV’02 workshop on Personalization in TV,
Malaga, pages 3–12, 2002.

[5] P. Cremonesi and R. Turrin. Analysis of cold-start
recommendations in iptv systems. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 233–236, New York, NY,
USA, 2009. ACM.

[6] D. Das and H. ter Horst. Recommender systems for
tv. In In Proceedings of AAAI, 1998.

[7] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

[8] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In SIGIR ’99: Proceedings of
the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 230–237, New York, NY, USA, 1999. ACM.

[9] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM ’08:
Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, pages 263–272,
Washington, DC, USA, 2008. IEEE Computer Society.

[10] S. G. Kaushal, S. Gutta, K. Kurapati, K. Lee,
J. Martino, J. Milanski, J. D. Schaffer, and
J. Zimmerman. Tv content recommender system. In
In Proceedings of the 17th National Conference on
Artificial Intelligence, pages 1121–1122. AAAI Press /
The MIT Press, 2000.

[11] B. Markines, C. Cattuto, F. Menczer, D. Benz,
A. Hotho, and G. Stumme. Evaluating similarity
measures for emergent semantics of social tagging. In
WWW ’09: Proceedings of the 18th international
conference on World wide web, pages 641–650, New
York, NY, USA, 2009. ACM.

[12] M. Rovira, J. Gonzàlez, A. López, J. Mas, A. Puig,
J. Fabregat, and G. Fernandez. Indextv: a mpeg-7
based personalized recommendation system for digital
tv. In ICME, pages 823–826. IEEE, 2004.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T.
Riedl. Application of dimensionality reduction in
recommender system - a case study. In In ACM
WebKDD Workshop, 2000.

[14] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T.
Riedl. Item-based collaborative filtering
recommendation algorithms. In WWW ’01:
Proceedings of the 10th international conference on
World Wide Web, pages 285–295, New York, NY,
USA, 2001. ACM.

[15] K. K. Srinivas, S. Gutta, D. Schaffer, J. Martino, and
J. Zimmerman. A multi-agent tv recommender. In In
Proceedings of the UM 2001 workshop
”Personalization in Future TV”, 2001.

46



Behavior Based Adaptive Navigation Support 
Michal Holub 

Institute of Informatics and Software Engineering 
Faculty of Informatics and Information Technologies 

Slovak University of Technology 
Ilkovičova 3, 842 16 Bratislava, Slovakia 

holub@fiit.stuba.sk 

Mária Bieliková 
Institute of Informatics and Software Engineering 

Faculty of Informatics and Information Technologies 
Slovak University of Technology 

Ilkovičova 3, 842 16 Bratislava, Slovakia 

bielik@fiit.stuba.sk 

 

 

ABSTRACT 

Web portals contain large amount of information. Users could 

really benefit from it if personalized presentation is used. For this 

to be accomplished the website needs to “know” its users. When 

surfing the Web users leave digital footprints in the form of 

navigational paths and actions taken. We present a method for 

adaptive navigation support and link recommendation. The 

method is based on an analysis of the user’s navigational patterns 

and behavior on the web pages while browsing through a web 

portal. We extract interesting information from a web portal and 

then recommend it. Finally, we provide our experience with 

a recommender system deployed on our faculty’s website, which 

recommends events by means of personalized calendar.   

Categories and Subject Descriptors 

H.5.4 [Information Interfaces and Presentation (e.g., HCI)]: 

Hypertext/Hypermedia Navigation. H.3.3 [Information Storage 

and Retrieval]: Information Search and Retrieval Relevance 

Feedback. 

General Terms 

Algorithms, Design, Experimentation, Verification. 

Keywords 

Adaptive navigation support, automatic interest estimation, 

behavior, link recommendation, navigational patterns. 

1. INTRODUCTION 
Web portals are being visited by various users pursuing different 

goals. However, most websites offer all groups of visitors the 

same content. Therefore the visitors are often presented 

information in which they have no interest [4].  

While browsing through a web portal some users can discover 

interesting pages that are hidden deeper in the hierarchy of the 

portal. If the users with similar goals knew about these pages they 

could find them interesting, too. Personalized navigation and 

recommendation based on monitoring user activities and social 

principles is a viable approach for such cases. In this paper we 

introduce a method of navigation adaptation and social 

recommendation of links among users with similar behavior. 

2. RELATED WORK 
People use different means of accessing information on a web 

portal. The most common way is to follow hyperlinks, which 

accounts for more than half of all possibilities [7]. This introduces 

a problem with improper navigation containing large number of 

links. The user has often a problem of deciding which link to use. 

Therefore a recommendation of links on the web page could bring 

significant improvement to user’s browsing experience. Other 

dominant mean of navigation is using the browser’s back button 

[12]. Accessing websites through the history, bookmarks and 

other means is insignificant. 

User’s habits can be derived from the navigational patterns found 

in the sequences of links he uses in a particular web portal. Four 

basic navigational patterns (path, loop, ring and spike) were 

described in [6]. From the prevailing patterns in browsing 

sessions different browsing strategies can be identified.   

User’s interests are often determined based on the content of 

documents the user has read [5]. The user model can be expressed 

by concepts or keywords extracted from these documents [2]. If 

we know what topics (usually expressed by the keywords) the user 

prefers, we can recommend him documents (web pages) with 

similar content. The disadvantage is that documents should be 

written in language which we can process (a translation can help). 

In [16] authors use rather different approach based on user 

behavior tracking to estimate his interest. For this we need to get 

a feedback from the user. There are several ways how to implicitly 

determine user’s interest. When links are well annotated (like on 

news portals where links to articles contain a short introduction) 

the event of clicking on the link is considered as positive interest 

[8, 14]. However, in general scenarios we cannot always consider 

clicking on a link as truly positive interest in the web page. 

To determine user’s interest we can also use actions he makes on 

a web page [11]. Printing the page or adding it to bookmarks 

show positive interest. Spending very short time reading it or even 

closing the browser prematurely shows negative interest [16]. 

With user’s interest determined navigation personalization as well 

as link recommendation can be done [9, 13]. In [10] authors 

propose a method of interesting link recommendation by 

highlighting the links. They extract keywords from the pages 

a user visits and recommend links that lead to other pages which 

 

 

 

 

 

 

Copyright is held by the author/owner(s). Workshop on the Practical 

Use of Recommender Systems, Algorithms and Technologies (PRSAT 

2010), held in conjunction with RecSys 2010. September 30, 2010, 

Barcelona, Spain. 

 

 

47



contain the same keywords. Adaptive system Web Watcher, which 

implements this approach, can also show similar pages to the page 

that is currently being viewed based on this principle. The system 

uses a proxy server to incorporate its toolbar into every web page. 

Other method is based on monitoring the context in which the 

links are being used [1]. This method consists of creating 

a knowledge base from the links each user has clicked on. Then 

the clusters of links, which are often used together, are built from 

the knowledge base. Links from a cluster with the largest overlap 

with the current session of the user are recommended to him. 

All methods mentioned share the same feature which is user 

interest estimation based on his actions. They prefer behavior of 

the users over content of the documents which they were shown. 

3. ADAPTIVE LINK RECOMMENDATION 
We propose a method for adaptive recommendation of interesting 

links in a particular web portal (which we may or may not own). 

For a specific user we select links that similar users found 

interesting. We also recommend links to this user based on his 

previous surfing sessions. Our recommender system extracts 

further information from the web pages, which is also shown to 

the user. The recommended links are shown in special sections 

added to each web page of the portal. 

When deciding which link to recommend we do not consider the 

content of web pages. We based our recommendations solely on 

the analysis of user’s behavior. Our method thus does not depend 

on the language of the website. We are able to analyze interest 

and patterns on different language versions of the same portal. 

Our method of adaptive link recommendation works in two steps: 

1. Mining web usage history for navigational patterns. 

2. Recommendation of links based on user’s behavior. 

In the first step we analyze the sequences of followed links from 

each user’s session. In these sequences we look for navigational 

patterns. We use the prevailing pattern to categorize users, as it 

determines user’s surfing habits on a particular web portal. As an 

output we get groups of users with similar navigational patterns. 

In the second step we monitor behavior of users on each visited 

web page of the portal. From their actions we automatically 

estimate their interest in that page. We then recommend links to 

interesting pages among users of each group from the step one. 

3.1 Discovering navigational patterns 
We find similar users based on comparison of navigational 

patterns they follow in a closed web portal. We believe that users 

who follow analogous paths should be recommended similar 

links. There are four basic navigational patterns according to [6]: 

 Path – a sequence in which nodes do not repeat. 

 Ring – a sequence that starts and ends in the same node. 

 Loop – a sequence that goes through already visited node. 

 Spike – a sequence that goes back through the same trail. 

In each session a user visits several pages of the web portal. This 

session is described by a vector whose elements are links to the 

web pages arranged in order they were visited. We consider 

a continuous sequence of links to be a session. For this purpose 

we use the referrer field of HTTP request message. If the URL of 

previously visited page equals referrer value of currently visited 

page, we consider the pages to be in the same session. 

The process of dividing users into groups is presented in Alg. 1. 

Similarity of users is expressed as Pearson correlation coefficient 

[15] commonly used in collaborative filtering. 

Algorithm 1 Group users according to their similarity. 

1: for each user u do 

2:  find patterns in clickstreams of u 

3:  put u to group according to prevailing pattern 

4: for each group g do 

5:  for each user u in group g do 

6: 
  

sort users in group g according to their 

similarity to u 

 

Every user ends up in exactly one group according to the most 

dominant pattern found in his surfing history. There is one more 

group for users with no dominant navigational pattern. The order 

of similar users from one group is unique for each user. 

Alg. 2 presents the process of recommending links among users. 

Algorithm 2 Recommend links for user u by similar users. 

1: similar = select top K similar users 

2: for each user v in similar do 

3:  for each page p visited by v and not visited by u do 

4:   predict interest of user in page (u, p) 

5: recommend top M pages with highest predicted interest 

 

Navigational patterns of users have to be of a certain minimal 

length (so that each sequence of two following pages does not 

represent a path pattern). After finding similar users to user u we 

select top K of them to form a recommendation group. The groups 

change according to new browsing sessions in which the users can 

behave differently. This reflects the evolution of user’s behavior 

in time. However, at each time the user belongs to exactly one 

group according to the most dominant pattern in browsing history. 

3.2 Determining interest of users 
In order to recommend links to a particular user we need to 

evaluate the interests of the users in his recommendation group. 

We can recommend pages which other users liked. To determine 

user’s interest in a particular web page we observe actions he 

makes on this page. These include time spent on a web page, 

number of scrolling events that occur and number of times he 

copies text into the clipboard. We chose these interest indicators 

because their tracking is platform independent. 

Our method is based on the comparison of current user’s behavior 

with the behavior of other users. We compare the values of time 

and scrolling with values from other people who visited the same 

page. If the value for the current user is more than X % higher 

than the average, we consider it as a sign of positive interest in 

the page. In contrast, when it is more than X % lower than the 

average we consider it as a sign of negative interest. When the 

value is around average (± X %) it is a sign of neutral interest. 

This way we can also consider other interest indicating actions. 

The exact value of X depends on the calibration for selected 

domain; in our experiments we used the value of 20 %.  

48



When no behavioral data for a particular web page is available we 

cannot estimate the user’s interest. This is a problem with newly 

added pages as well as with pages visited for the first time. 

We estimate the actual value of user’s interest in each page he 

visits according to Figure 1. We increase this value by 0.1 when 

the user also copied text into clipboard; otherwise we decrease it 

by 0.1. Resulting interest is in the interval <0,1> with 0 meaning 

no interest and 1 meaning total interest in the visited web page. 

3.3 Social recommendation of links 
We recommend web pages by predicting user’s interest in yet 

unseen pages using collaborative filtering method. We compute 

the predicted value of interest like this [15]: 

N

u ua

N

u uauiu

aia

S

Srr
rp

1 ,

1 ,,

,

)(
 

where pa,i means prediction of interest of user a in page i, ra is the 

average interest of user a in all visited pages, ru,i is the interest of 

user u in visited page i, Sa,u is the value of Pearson correlation 

coefficient [15] between users a and u determining the similarity 

of their interests, and N is the number of similar users. 

4. EVALUATION AND EXPERIMENTS 
To evaluate the proposed method for user’s interest estimation we 

developed software tools which support adaptive navigation by 

recommending information extracted from potentially interesting 

web pages to guests of particular web portal. We experimented 

with the web portal of our faculty (www.fiit.stuba.sk). 

We proposed client-server architecture with an adaptive proxy [3] 

in the middle as shown in Figure 2. Adaptive proxy can be 

extended to conduct various methods of web personalization on 

any web portal. We use proxy to put behavior tracking script into 

the web page. It sends logged behavioral data to the server when 

the user is active (i.e. when he uses the mouse). The user is aware 

of this when he agrees to use our proxy server. The data is 

anonymous – we only know a random ID associated with each 

user. The delay caused by the proxy server is imperceptible.   

One component (SpyImp) creates the domain model by analyzing 

web pages of selected web portal. Another server component 

(AdaptiveImp) is responsible for grouping of users, estimating 

their interests and making predictions for unseen pages. Then it 

selects the links to be recommended. The user model consisting of 

the session vectors and his behavior is being periodically updated. 

Our plug-in to the adaptive proxy (WebImp) modifies the web 

page by adding special sections with recommended links. One of 

those sections is personalized calendar. Many web pages on the 

web portal of our faculty inform about an upcoming event. We 

automatically extract dates from these pages and create events. 

Using proposed method we determine user’s interest in such page. 

Then, if the interest is positive, we add the event to user’s 

calendar. This way we also recommend events among users. 

We monitor the portal and capture every change in text of a web 

page (this could be for example a change in time and place of 

some event). Every changed page is marked as news and added to 

a special news section. We also recommend other potentially 

interesting links which are neither events nor news. Figure 3 

shows part of a web page enhanced with personalized sections. 

 
Figure 3. Calendar (shows recommended event on 10/05/2010), 

additional links and personal news sections. 

 

Figure 1. Estimation of user's interest from his actions. 

Adaptive Proxy Server

SpyImp

analyze pages
create events

AdaptiveImp

find navigational patterns
find similar users
estimate user’s interest

create recommendations

crawl

recommendations

pages, events

behavior, analyzed pages

response

web pages

request

modified response

personal calendar
recommended links

request

store actions
Web browser

Website
WebImp Plugin

add personalized content

Behavior Plugin

add tracking JavaScript

Domain

model

User model

data flow

control flow

 

Figure 2. Architecture of proposed link recommender system. 

49



We provided a series of experiments on our faculty website. 

Actions of 24 users on a modified website were monitored for 3 

weeks. We compared our calculations with their explicit feedback.  

Results indicate that time actively spent on a web page is the best 

interest indicator. Scrolling proved to indicate positive interest as 

well. However, when the user does not use scrolling, it does not 

always mean he is not interested in the page. The accuracy of our 

interest estimation method was 62 %.  

The sections with recommended links – especially calendar – 

were attractive (according to answers from questionnaire) and the 

users found 55 % of recommended links and events interesting.  

Some users were not satisfied with the recommendations. The 

problem was that they visited the website for the first time. Hence 

their user model was empty and we could not provide suitable 

recommendations. This is a common problem with recommender 

systems and new users. We tried to overcome it by recommending 

the most interesting events (links) according to behavior of all 

users. However, this is not always a suitable solution. 

5. CONCLUSION AND FUTURE WORK 
We have presented a method for adaptive recommendation of 

interesting links. Our approach is based on collaborative filtering, 

which has a potential to be used in unusual ways. We presented 

one of them when considering data about user’s actions instead of 

content of pages. This way we are able to predict user’s interest 

for unvisited pages. Our method achieves solid results and can be 

further improved in a recommender system which will combine 

content analysis with behavior, which is our plan for future work. 

In this paper we presented a useful application of our method by 

creating personalized calendar of events on our faculty’s website. 

Using this method we can also personalize other sections of a web 

page as well. In our opinion recommender systems should bring 

added value to users by doing further analysis of the domain 

which is being adapted. On the web they should recommend 

particular objects (e.g. events) instead of simply listing potentially 

interesting links to web pages. In order to accomplish this we 

need to use more text processing algorithms in our recommender 

systems so that they “understand” the meaning of text on the web. 

We ran up against a problem with incorporating the sections with 

personalized content into a website. In order to do this we need to 

know the semantics of the website’s structure. This is also useful 

during page analysis and content extraction. We consider the 

special tags in HTML5 (e.g. nav, footer) to be insufficient so we 

came up with a descriptive XML file which pairs HTML tags and 

their IDs with their predefined meaning (left menu, right menu, 

etc.). This way our recommender system understands the structure 

of a website and can alter some sections. We think that there is a 

need for further development of this format and we see an 

opportunity for its adoption by other recommender systems.  

6. ACKNOWLEDGEMENTS 
This work was supported by grants VG1/0508/09, KEGA 028-

025STU-4/2010 and the Foundation of Tatrabanka. It is a partial 

result of the Research & Development Operational Program for 

the project SMART II, ITMS 25240120029, co-funded by ERDF. 

We wish to thank members of PeWe group, pewe.fiit.stuba.sk for 

valuable discussions and their help in experimental evaluation. 

7. REFERENCES 
[1] Baraglia, R., et al. 2006. A Privacy Preserving Web 

Recommender System. In Proc. of the ACM Symposium on 

Applied Computing, (Dijon, France). ACM Press, 559-563. 

[2] Barla, M. and Bieliková, M. 2009. On Deriving 

Tagsonomies: Keyword Relations coming from the Crowd. 

In LNAI 5796, Proc. of Int. Conf. on Computational 

Collective Intelligence, ICCCI 2009, Springer, 309–320. 

[3] Barla, M. and Bieliková, M. 2010. Ordinary Web Pages as a 

Source for Metadata Acquisition for Open Corpus User 

Modeling. In IADIS Int. Conf. WWW/Internet. To appear. 

[4] Barla, M., Tvarožek, M. and Bieliková, M. 2009. Rule-based 

User Characteristics Acquisition from Logs with Semantics 

for Personalized Web-based Systems. Computing and 

Informatics, Vol. 28, No. 4, 399-427. 

[5] Brusilovsky, P. 1996. Methods and Techniques of Adaptive 

Hypermedia. User Modeling and User-Adapted Interaction, 

Vol. 6, No. 2-3, Springer Netherlands, 87-129. 

[6] Canter, D., Rivers, R. and Storrs, G. 1985. Characterizing 

User Navigation through Complex Data Structures. Behavior 

and Information Technology, Vol. 4, No. 2, 93-102. 

[7] Cockburn, A. and McKenzie, B. 2001. What do Web Users 

Do? An Empirical Analysis of Web Use. Int. Journal of 

Human-Computer Studies, Vol. 54, No. 6, 903-922. 

[8] Das, A.S., et al. 2007. Google News Personalization: 

Scalable Online Collaborative Filtering. In Proc. of the 16th 

Int. Conf. on World Wide Web (Banff, Canada), ACM Press, 

271-280. 

[9] Gurský, P., et al. 2009. User Preference Web Search – 

Experiments with a System Connecting Web and User. 

Computing and Informatics. Vol. 28, No. 4, 515-553. 

[10] Joachims, T., Freitag, D. and Mitchell, T. 1997. 

WebWatcher: A Tour Guide for the World Wide Web. In 

Proc. of the Int. Conf. on Artificial Intelligence (Nagoya, 

Japan), Morgan Kaufmann, 770-777. 

[11] Krištofič, A. and Bieliková, M. 2005. Improving Adaptation 

in Web-Based Educational Hypermedia by means of 

Knowledge Discovery. In Proc. of 16th ACM Conf. on 

Hypertext and Hypermedia, ACM Press, 184-192. 

[12] Milic-Frayling, N., et al. 2004. Smartback: Supporting Users 

in Back Navigation. In Proc. of the 13th Int. Conf. on World 

Wide Web (NY, USA), ACM Press, 63-71. 

[13] Návrat, P., Taraba, T., Bou Ezzeddine, A. and Chudá, D. 

2008. Context search enhanced by readability index. IFIP 

WCC Series 276, Springer, 373-382. 

[14] Suchal, J. and Návrat, P. 2010. Full Text Search Engine as 

Scalable k-nearest Neighbor Recommendation System. IFIP 

WCC Series 331, Springer, 165-173. 

[15] Sugiyama, K., Hatano, K. and Yoshikawa, M. 2004. 

Adaptive Web Search based on User Profile Constructed 

without any Effort from Users. In Proc. of the 13th Int. Conf. 

on World Wide Web (NY, USA), ACM Press, 675-684. 

[16] Velayathan, G. and Yamada, S. 2006. Behavior-based web 

page evaluation. In Proc. of the 15th Int. Conf. on World 

Wide Web (Edinburgh, Scotland), ACM Press, 841-842. 

50



An Architecture for a General Purpose Multi-Algorithm
Recommender System

Jose C. Cortizo, Francisco M. Carrero and Borja Monsalve
BrainSins

http://www.brainsins.com
Madrid, Spain

{josecarlos.cortizo, francisco.carrero, borja.monsalve}@brainsins.com

ABSTRACT
Although the actual state-of-the-art on Recommender Sys-
tems is good enough to allow recommendations and person-
alization along many application fields, developing a gen-
eral purpose multi-algorithm recommender system is a tough
task. In this paper we present the main challenges involved
on developing such system and a system’s architecture that
allows us to face this challenges.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Algorithms

Keywords
General purpose recommendations, System architecture, API,
Multi-algorithm

1. INTRODUCTION
There is a lot of literature on Recommender Systems for
specific online domains like social software items [4], mu-
sic [1], queries (in search engines) [8], news [6], e-commerce
[7] or even for non online domains such as [5]. Those rec-
ommender systems employ specific techniques for specific
domains in order to produce the most accurate systems for
each single domain.

We wanted to integrate a recommender system in Wipley1,
our social network for videogamers launched by the end of
2009. With this purpose, we worked on a recommender sys-
tem for videogames using a collaborative filtering approach
with multidimensional and contextual features to fit this
particular domain. After that, we wanted to improve the
recommender with a content-based recommender system for

1http://www.wipley.es

PRSAT 2010. Copyright is held by the author/owner(s). Workshop on
the Practical Use of Recommender Systems, Algorithms and Technologies
(PRSAT 2010), held in conjunction with RecSys 2010. September 30, 2010,
Barcelona, Spain.

those games with none or few ratings and a social-based rec-
ommender system [3]. We also needed to adapt the resulting
system to other domains, beginning with image recommen-
dations to be integrated in FlickrBabel2, our multilingual
multimedia search engine. And, finally, we decided to use a
”Software as a Service” (SaaS) model to separete rommen-
dations from the rest of the platform.

Although there exist several commercial approaches to gen-
eral SaaS recommender systems, like Strands3 or Directed-
Edge4 there exist no literature focusing on the system’s as-
pects of general recommender systems. In this paper we de-
scribe our experience developing our general purpose multi-
algorithm recommender system, which is currently being
used to personalize our products and services at BrainSins
and will be used as experimental platform to compare and
evaluate our further research on recommender systems.

In the next section we describe the main challenges we found
in order to develop a general purpose multi-algorithm recom-
mender system. In section 3 we describe the general archi-
tecture of the system focusing on the elements that allowed
us to solve the main issues, and in section 4 we focus on our
recommender system API, which enables all our products
and services to interoperate with the recommender system.
Section 5 describes the next research works we will face, and
section 6 concludes the paper.

2. MAIN CHALLENGES FOR A GENERAL
PURPOSE MULTI-ALGORITHM RECOM-
MENDER SYSTEM

When designing a general purpose multi-algorithm recom-
mender system, we found several challenges that had to be
addressed in order to develop a useful system.

• Interoperability: Recommender systems are usually
created to access a specific database that uses a well-
known data structure. However, since our system had
to offer the possibility of being integrated into several
different existing platforms, we had to deal with the
problem of accessing sources with different data struc-
tures.

2http://www.flickrbabel.com
3http://recommender.strands.com
4http://www.directededge.com

51



• Configurability and easy of use: As one of the main
goals of this recommender system was to be able to
manage several recommender algorithms to provide
a particular recommendation, the system had to be
highly configurable. In these cases usability may be-
come a problem difficult to solve.

• Performance: Recommendations must be served in real
time, but users do not tolerate an increase in page
downloading time. However, when a system is de-
signed with a high degree of configurability, there are
always some issues that slow down performance. In our
particular case, the new system had to be as effective
as the recommender we already had on production.

• Disk usage: A highly configurable system also presents
disk space problems, due to the fact that data repre-
sentation cannot be optimized.

• Scalability: When applied to the web, the number of
items to be recommended and the number of users
to receive those recommendations often grow expo-
nentially. Therefore, a recommender system needs to
be scalable in order to grow at the same rate. How-
ever, being scalable also means that the system should
somehow hide the way it scales, so there should be
no need to code or rewrite configuration parameters in
the products and services that access the recommender
system.

After analyzing possible solutions for those challenges and
start designing and developing the system, we thought that
a key fact to achieve most of them was to conveniently sep-
arate recommendation process from the interface with the
clients, so interoperability became our first focus. Our goal
was to design a way to easily integrate the recommender sys-
tem while keeping recommender complexity hidden from its
clients, so we designed a REST API. REST APIs are easy to
use and to integrate in any product and service on the web,
and many developers are familiar to it. Furthermore, REST
API helps to hide the complexity of the recommender sys-
tem, and allows to transform the REST petitions into more
complex data structures needed to maintain the performance
and scalability of the recommender system.

To face configuration and performance issues we designed a
back-end architecture that enables us to define recommen-
dation algorithms as software modules that can be adapted
to any domain required by clients. The REST API also al-
lowed us to introduce configurability elements as optional
parameters in the petition.

3. GENERAL ARCHITECTURE
The input to our system are API requests, which can be
classified as online or batch:

• Online requests, which must be handled in real time.
Their processing can’t be delayed, because users are
waiting for a response. They are also utilized to update
the profile for new users and begin to provide them
with recommendations.

Figure 1: The request processor evaluates if a cer-
tain API request needs to be run online or it can be
batched.

• Batch requests, which may be stored and processed
only at given time periods. Now requests processing
can be delayed and attended when the system is not
at full capacity. These requests are used to upload the
initial data from a client and also to update informa-
tion concerning users with a wide user profile.

Figure 1 shows how API requests are being processed. Each
API request generates an HTTP request to a certain end-
point where the Request Processor evaluates it and deter-
mines whether it must be processed at that moment or it
can be delayed until more requests reach the system (for a
more optimum processing) or until certain batch process is
programmed to be run.

Requests can also be classified as update or retrieval:

• Retrieval requests just ask the system to return some
kind of information, such as a recommendation.

• Update requests have the objective to update the pro-
file of the source user.

When an update request begins to be processed there are
two steps that must be taken to produce recommendations
for the user. As we wanted to be able to process several
types of recommendations (collaborative filtering, content
based, social recommendations), the system had to be gen-
eral enough to process data in several ways. So we defined
those steps in a way that enabled the use of any possible
recommender algorithm (see Fig. 2):

• Update user profile. This can be done by re-calculating
simmilarity with other users, re-calculating trust or
updating a content-based profile.

• Update user recommendations. This step uses the val-
ues obtained from the previous task as input for the
recommendation algorithm and produces a new rank
of recommendations for the user.

As a first approach we coded 3 different recommender algo-
rithms:

52



Figure 2: Main modules of the recommender sys-
tem.

Figure 3: Entities describes every possible data used
by the recommender algorithms.

• Collaborative filtering. A standard method that pro-
duces collaborative recommendations when using a col-
laborative similarity measure, or social recommenda-
tions when using trust.

• Information retrieval based recommender used for con-
tent based recommendations.

• Machine learning based recommender also used for con-
tent based recommendations.

From the data point of view, the system only stores entities
and relationships among entities. Each possible data point
(user, group, content or product), is represented by an en-
tity (see Fig. 3). Relationships (see Fig. 4) among entities
represent actions (ratings, comments, reviews) or behaviors
(buy a product, pageview, joining a group). This data rep-
resentation allows enough degree of data abstraction for the
interoperability, and it also stands near enough to data rep-
resentation used by the different recommender algorithms.

4. INTEROPERABILITY: A GENERAL API
A Representational State Transfer (REST) API [2] is a style
of software architecture for distributed systems like the Web
where clients initiate requests and the servers process re-
quests and return appropriate responses. Requests and re-
sponses are built around the transfer of resources. REST is
described in the context of HTTP, although it can be used
in other contexts.

Figure 4: Relationships describes actions and be-
haviors.

Figure 5: Integration of the recommendations in
Wipley, our social network for videogamers.

A client request is described by an HTTP request to a cer-
tain resource. For instance, for one of our domains, we may
want videogames recommendations for a certain user (user
id=2). With our REST API, the client must make an HTTP
request to a certain URI5. The first part of the URI de-
scribes the endpoint where our API server is running6. Next
part shows that a recommendation (and the recommenda-
tion’s type) is requested (’/recomm’) for a certain entity type
(’/player’) considering a relation of ownership with another
entity type (’/has/videogame’). The user id is ’2’ and the
response format is ’.xml’. The server must return an XML
file containing the recommendations.

Figure 5 shows our integration on Wipley, our social network
for videogamers, where XML responses are processed with
PHP in order to generate a more visual interface.

In Wipley we have configured our system to serve differ-
ent types of recommendations for a user, such as products,
users and groups. They can be requested just modifying
the URI. In order to update the information that the rec-
ommender system manages internally, we have designed a
XML based specification, which allows to update informa-
tion about any entity (data points, see Fig. 6) or action
(relationships among entities, see Fig. 7).

5http://webservices.brainsins.com/api/recomm/player/has/
videogame/2.xml
6http://webservices.brainsins.com/api

53



Figure 6: Example XML containing a description of
an entity (videogame).

Figure 7: Example XML containing a description of
an action (user rating a videogame).

5. FUTURE WORK
We have developed this general purpose multi-algorithm rec-
ommender system and we have integrated it into Wipley
with great results, given that videogames recommendations
are considered by our users as one of the top features. Our
future work is defined in several lines:

• Test the performance of the general recommender sys-
tem in terms of running time and disk usage. Our first
impressions make us think that generalizing the rec-
ommender system does not introduces computational
overhead, since processing the REST requests repre-
sents only a 3-4% of the total running time of a rec-
ommendation, but we need to run a larger set of ex-
periments to evaluate the final performance.

• Scalability. As the REST API give us a lot of in-
dependence of the clients from the implementation,
we are actually re-coding the recommender algorithms
through a map-reduce perspective using Apache Ma-
hout7, which will allow the platform to be really scal-
able.

• Experimental platform. One of our main goals is to
obtain an experimental platform to test the perfor-
mance of our recommender systems implementations.
We are starting to measure several metrics related to
web analytics such as CTR. We expect to obtain real
feedback about what recommender algorithms and set-
tings works better for different domains. We are also
developing a web based backend which will allow us
to define the experiments and measure several aspects
related to the effectivity of the recommendations.

7http://lucene.apache.org/mahout/

There are no references in the recommender systems litera-
ture describing a general purpose recommender system be-
ing used to test several recommender algorithms within sev-
eral domains with the aim to produce an extensive exper-
imental comparison of recommender algorithms. We have
developed a general recommender system which encapsu-
lates several recommender algorithms (collaborative filter-
ing, content based recommender, and social recommender)
with the main purpose of producing an extensive compari-
son of recommender algorithms in a real environment. We
have also integrated this general recommender system in a
real social network that represents an experimental setup
with real users in real conditions.

6. ACKNOWLEDGMENTS
The research described in this paper has been partially sup-
ported by the Madrid autonomous region, IV PRICIT, S-
0505/TIC/0267.

7. REFERENCES
[1] O. Celma and P. Lamere. If you like the beatles you

might like...: a tutorial on music recommendation. In
MM ’08: Proceeding of the 16th ACM international
conference on Multimedia, pages 1157–1158, New York,
NY, USA, 2008. ACM.

[2] R. T. Fielding. Architectural Styles and Architectural
Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California,
Irvine, 2000.

[3] J. Golbeck. Tutorial on using social trust for
recommender systems. In RecSys ’09: Proceedings of
the third ACM conference on Recommender systems,
pages 425–426, New York, NY, USA, 2009. ACM.

[4] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel,
S. Yogev, and S. Ofek-Koifman. Personalized
recommendation of social software items based on
social relations. In RecSys ’09: Proceedings of the third
ACM conference on Recommender systems, pages
53–60, New York, NY, USA, 2009. ACM.

[5] J. F. McCarthy. The challenges of recommending digital
selves in physical spaces. In RecSys ’07: Proceedings of
the 2007 ACM conference on Recommender systems,
pages 185–186, New York, NY, USA, 2007. ACM.

[6] O. Phelan, K. McCarthy, and B. Smyth. Using twitter
to recommend real-time topical news. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 385–388, New York, NY,
USA, 2009. ACM.

[7] J. B. Schafer, J. Konstan, and J. Riedi. Recommender
systems in e-commerce. In EC ’99: Proceedings of the
1st ACM conference on Electronic commerce, pages
158–166, New York, NY, USA, 1999. ACM.

[8] Z. Zhang and O. Nasraoui. Mining search engine query
logs for query recommendation. In L. Carr, D. D.
Roure, A. Iyengar, C. A. Goble, and M. Dahlin, editors,
WWW, pages 1039–1040. ACM, 2006.

54



Open Source Recommendation Systems for Mobile
Application

Renata Ghisloti De
Souza

LISITE-ISEP
28 rue Notre Dame Des

Champs
75006 Paris

renata.ghisloti@isep.fr

Raja Chiky
LISITE-ISEP

28 rue Notre Dame Des
Champs

75006 Paris
raja.chiky@isep.fr

Zakia Kazi Aoul
LISITE-ISEP

28 rue Notre Dame Des
Champs

75006 Paris
zakia.kazi@isep.fr

ABSTRACT
The aim of Recommender Systems is to suggest useful items
to users. Three major techniques can be highlighted in these
systems: Collaborative Filtering, Content-Based Filtering
and Hybrid Filtering. The collaborative method proposes
recommendations based on what a group of users have en-
joyed and it is widely used in Open Source Recommender
Systems. The work presented in this paper takes place in
the context of SoliMobile Project that aims to design, build
and implement a package of innovative services focused on
the individual in unstable situation (unemployment, home-
less, etc.). In this paper, we present a study of open source
recommender systems and their usefulness for SoliMobile.
The paper also presents how our recommender system is fed
by extracting implicit ratings using the techniques of Web
Usage Mining.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness); H.2.8 [Database applica-
tions]: Data mining—Web usage mining

General Terms
Algorithms, Experimentation, Theory

Keywords
Open source recommender systems, collaborative filtering,
Mahout, Web usage mining

1. INTRODUCTION
The amount of information in the web has greatly in-

creased in the past decade. This phenomenon has pro-
moted the advance of the recommender systems research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain..

area. These systems intend to help users by providing use-
ful suggestions to them. They may suggest items in differ-
ent manners, such as comparing the user taste with other
users tastes or comparing the users preferences with other
items definitions. These two methods are the so called col-
laborative filtering [1] and content-based filtering [10]. The
collaborative method presents advantages over the content-
based one. It is more efficient in practice and simpler to
implement. Due to this fact, the majority of open source
projects choose it. Current open source recommender sys-
tem projects are usually built on the item-based approach,
a type of collaborative filtering. Their features vary on the
programming language, extent of documentation and mag-
nitude of the project.

We give in this paper an overview on known recommen-
dation techniques and we analyze open source projects in
this field of research. Our interest of recommender systems
is justified by the fact that we have to choose one of the
studied systems and to integrate it in a complex platform
that includes a Web platform, a personalization system and
a mobile interface. This platform is developed through the
SoliMobile project, funded by ProximaMobile [12].

The SoliMobile project in which we are involved, aims at
providing a portal services helping and assisting people who
are in different unstable situations. This project provides
end users with information to facilitate the process to access
to charities services from anywhere. The portal has to offer
services adapted to each user profile, taking into account
their preferences and navigation traces. Our work aims to
provide the user with a recommendation of items (services)
based on the profile. The recommendation’s main function
is to aggregate content from different sources and mobile
Web portal and to customize the presentation of services
for each user according to his profile. It allows classification
or restriction of services into a selection that fits the user
profile.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the context of the work presented in this
paper. In Section 3 , we present the global architecture
of the SoliMobile Project. Section 4 details the analysis of
existing Open Source Recommender Systems. The recom-
mender system used in the project is explained in section 5.
Section 6 presents the utility of web usage mining in the rec-
ommendation. Finally, Section 7 concludes this paper and
gives an outlook upon our ongoing and future research in
this area.

55



2. WORK CONTEXT
The work presented in this paper fits in a collaborative

project that aims to design, develop and implement a set of
innovative services focused on persons in situations of insta-
bility or emerging from instability, in order to help them to
find useful information such as jobs, offers of housing, wel-
fare, or medical assistance. The charity association partner
in the project observed that a large majority of people in
unstable situation own a mobile phone that is considered
as a link with family, friends or society. The project aims
to facilitate, for the vulnerable people, processes to access
charities services using their mobile phone from anywhere.
However, different services are not suitable for all persons in
a precarious situation. For example, a single mother needs
child services such as pediatrics or nursery while an unem-
ployed needs services to find a job or professional training.

Our role in this project is to enhance and customize ser-
vices to users. In this context, we deal with the implementa-
tion of algorithms to adapt to user profile the platform ser-
vices, to filter them and to show only items that may be of
interest. Personnalization according to user profile is based
both on data available on the platform (eg. databases), the
features and traces of user navigation, and also the social
environment of the user (collaborative filtering approach).

Typically, adaptation to the user profile will consolidate
the resources (services) to target only the relevant users.
Conversely, user profiles will also be ordered to form homo-
geneous groups in order to assign them to a given resource.

3. GLOBAL ARCHITECTURE
We present in this section the overall architecture of the

application, illustrated in Figure 1, in order to show the role
of the recommendation in the SoliMobile platform. In fact,
end users create an account via the Web platform where
many services are provided. The traces of Web browsing
(also called logs) are collected from servers to feed the rec-
ommender system. These navigation traces will be used to
create the user item ratings matrix. Services play the role
of items. Information regarding the user profile such as age,
address, occupationo or preferences as well as information
concerning the description of services such as the category
of services (health, employment, child care, etc..) and their
addresses will be provided as input of recommender system.
These inputs will be sent in XML format through Web ser-
vices. Once the ratings matrix constructed, the recommen-
dation is made to categorize and customize the layout of
proposed services on the mobile phone. The recommenda-
tion system will provide as output an XML file that contains
a subset of sorted services to be transmitted to the mobile.
Traces of mobile browsing will also be used as input to the
recommender system to improve results, they can also serve
as a feedback to our system.

Our goal is structured along the following lines:

• Construct a generic model for the user profile and also
for structural and semantic information of the appli-
cation in order to integrate new data when needed;

• Select, automatically and dynamically, variables de-
scribing the user, the services and the log navigation
that improve the quality of the recommendation;

• Ensure the proper functioning of the recommender sys-
tem in case of registration of a new user whose profile

Figure 1: Global architecture of SoliMobile Project

is poor (or nonexistent) or in case of creating new ser-
vices (items) that no one (in our data set) has yet rated
or visited. This problem is well known in the field of
information filtering and is referred as ”Cold Start”
problem. Almost solutions for the cold-start problem
[Lam et al. 2008] are not suitable as they involve users
to rate items.

• Develop a generic recommender system, i.e. that adapts
to any application. The challenge is to design a real-
time recommender system that filters resources dy-
namically depending on variation in user interests but
also on variation in the environment. The idea is to
associate with each resource a ranking based on the
user profile and its context. We use for that incremen-
tal learning techniques [3] and mining data streams [4]
that requires a limited number of passes on data and
needs to process data on the fly. Using these methods
improves computation time and memory space so we
can ensure robustness and scalability of the system;

• Define satisfactory indicators in order to assess the
quality of the recommendation;

• Conduct a software platform integrating all the tools
developed during the project.

Given the short duration of the project (18 months),
we decided to study open source recommender sys-
tems. Thus, we present in the following section the
related state of the art.

4. OPEN-SOURCE RECOMMENDER SYS-
TEMS

The growth of Web content and the expansion of e-commerce
has deeply increased the interest on recommender systems.
This fact has led to the development of some open source
projects in the area. Among the recommender systems algo-
rithms available in the Web, we can distinguish the follow-
ing: Duine [5], Apache Mahout [9], OpenSlopeOne [11], Cofi
[2], SUGGEST [13] and Vogoo [14]. All of these projects of-
fer collaborative-filtering implementations, in different pro-
gramming languages.

The Duine Framework supplies also a hybrid implemen-
tation. It is a Java software that presents the content-based
and collaborative filtering in a switching engine: it dynam-
ically switches between each prediction given the current

56



state of the data. For example if there aren’t many ratings
available, it uses the content-based approach, and switches
to the collaborative when the scenario changes. It also
presents an Explanation API, which can be used to cre-
ate user-friendly recommendations and a demo application,
with a Java Client example.

Mahout constitutes a Java framework in the data mining
area. It has incorporated the Taste recommender system, a
collaborative engine for personalized recommendations. Vo-
goo is a PHP framework that implements a collaborative
filtering recommender system. It also presents a Slope-One
code.

A Java version of the Collaborative Filtering method is
implemented in the Cofi library. It was developed by Daniel
Lemire [6], the creator of the Slope-One algorithms. There is
also a PHP version available in Lemire’s webpage. OpenSlope-
One offers a Slope One implementation on PHP that cares
about performance.

SUGGEST is a recommendation library made by George
Karkys and distributed in a binary format.

Analyzing software in the recommendation area is not a
simple task, since it is difficult to define measurement stan-
dards. In this work, we propose some criteria of evaluation:
types of recommendation implemented by the project, pro-
gramming language, level of documentation and magnitude
of the project.

The documentation was evaluated based on its volume
and clarity. It is possible to observe that the volume of doc-
umentation presented by Mahout and Duine is remarkably
larger than the other systems. Both offer installation and
utilization guides and come with a demonstration example.
It must be taken into account that OpenSlopeOne and Cofi
are smaller projects, and thus, their documentation tend to
be smaller. In the Downloads column we have a represen-
tation of the magnitude of the project. It is presented the
number of times the software, in any version, was down-
loaded from its source. Although Mahout does not present
its number, its very populated mailing lists shows that it is
a widely used software.

The two projects that stood out were Apache Mahout and
Duine. We installed and tested them in order to verify which
one was more applicable to our work. Both of them are
based on the Java technology and present a demonstration
example with the Movielens data set. The fact that Mahout
is a greater project and has multiple machine-learning algo-
rithms made it more interesting to our research. Also, its
module structure encouraged us to choose it.

5. APACHE MAHOUT
The Apache Mahout is a solid project in the Data Min-

ing area. It is a framework that features various scalable
machine-learning algorithms. It is programmed using the
Java language and runs with Maven project manager. In
April 2008, it has incorporated the Taste Recommender Sys-
tem, a Java framework for providing personalized recom-
mendations. Besides Taste, it also offers clustering algo-
rithms and a Map Reduce implementation.

Taste is a very consistent and flexible collaborative fil-
tering engine and supports the user-based, item-based and
Slope-one recommender systems. It can be easily modified
due to its well-structured modules abstractions. The pack-
age defines four interfaces: DataModel, UserSimilarity and
ItemSimilarity, UserNeighborhood and Recommender.

With these interfaces, it is possible to adapt the frame-
work to read different types of data, personalize the recom-
mendation or even create new recommendation methods.

The User Similarity and Item Similarity abstractions are
responsible for calculating the similarity between a pair of
users or items. Their function usually returns a value from
0 to 1 indicating the level of resemblance, being 1 the most
similar possible.

Trough the DataModel interface is made the access to the
data set. It is possible to retrieve and store the data from
databases or from filesystems (MySQLJDBCDataModel and
FileDataModel respectively). The functions developed in
this interface are used by the Similarity abstraction to help
computing the similarity.

The main interface in Taste is Recommender. It is respon-
sible for actually making the recommendations to the user
by comparing items or by determining users with similar
taste (item-based and user-based techniques). The Recom-
mender access the similarity interface and uses its functions
to compare a pair of users or items. It then collects the
highest similarity values to offer as recommendations.

The UserNeighborhood is an assistant interface that helps
to define the neighborhood in the user-based recommen-
dation technique. It is know that, for greater data sets,
the item-based technique provides better results. For that,
many companies choose to use this approach, such as Ama-
zon [7]. With the Mahout framework, it is not different, the
item-based method generally runs faster and provides more
accurate recommendation.

In our project, we choose to adapt the Slope One (a type
of item-based algorithm) approach to our problem. Here
follows a simple Java application example of how to initiate
a recommendation with the Slope One technique:

1. DataModel model =

new FileDataModel(new File("data.txt"));

2. Recommender recommender =

new SlopeOneRecommender(model);

3. Recommender cachingRecommender =

new CachingRecommender(recommender);

The challenge in adapting this approach to our project
was the fact that our input data file was available in the
XML format, a type not handled by Mahout. It then had
to incorporate another file in the DataModel interface. We
create a program that deals with the XML input files. To
test this new data handler, we used the Movielens data set.
A pack with one million ratings was converted to the XML
type to be used as example. With this data set and the
XMLfile, the running time of the Slope One algorithm takes
less than one minute.

6. WEB USAGE MINING FOR RECOMMEN-
DATION

One objective of the SoliMobile project is to develop a rec-
ommender system that has to be, as much as possible, the
least intrusive. This implies that the system is based only
on information that the user can be free to provide (explicit
data) and must run properly with alternatives such as im-
plicit data mining. To meet this need, we are studying how
to append Web browsing analysis to the recommender sys-
tem as done in [8]. Web browsing analysis becomes almost
necessary for extracting and understanding user behaviors.

57



Implementation Language Documentation Downloads

Mahout Item-based, User-based, Slope One Java High Not available
Duine User-based, Content Filtering Java High 1,113
Cofi Item-based Java Low Not available
OpenSlopeOne Slope One PHP Low 653
Vogoo Slope One, Item-based PHP Medium 2,128
SUGGEST Item-based, user-based C Medium Not available

Table 1: Utilisation ratio of each method.

In recent years, Web usage mining has become an important
issue in the field of data mining. The term, Web usage min-
ing focuses on predicting and learning the users preferences
on the Internet. Generally, the data for Web usage mining
are the user interactions on the web, usually residing on Web
clients, Web servers, and proxy servers. The aim of Web us-
age mining is to analyze user behavior through analysis of
its interaction with the Web platform. This analysis is par-
ticularly focused on all the users clicks where visiting the
web application (also known as clickstream analysis). The
interest of Web usage mining in our framework is to enrich
the input of recommender system with user data extracted
from the raw clickstream data, in order to refine the user
profiles and behavioral patterns. The analysis of Web logs
can also be used as implicit feedback of the user which will
allow to assess the performance of models involved in the
recommender system.

It is obvious that Web logs change over time for several
reasons: an update of the Web application content or struc-
ture, a change in the user preferences, a change in the execu-
tion context, etc. This is why it is important to take into ac-
count the temporal dimension in the analysis of Web usage.
To consider the temporal data in a dynamic way, we plan
to use the techniques of data streams mining. By definition,
data stream is a real-time, continuous, ordered (implicitly by
arrival time or explicitly by timestamp) sequence of items.
It is impossible to control the order in which items arrive,
nor is it feasible to locally store a stream in its entirety.
Therefore, all the treatment have to be applied in one pass.
Several techniques for mining data streams have emerged as
CluStream for clustering, StreamSamp for sampling, VFDT
for incremental decision trees, etc. The reader may refer to
[4] for more explanations on these different techniques.

7. CONCLUSIONS
In this paper, we presented the problem that we deal with

in the SoliMobile project. Then, we presented the global
architecture that is under development in this project. This
architecture includes a recommender system to customize
the services offered to users based on their profile and their
browsing history. Given the limited duration of the project,
we opted for an open source recommender system that is
modular in order to easily integrate future developments,
in particular the use of Web usage mining to address the
problem of cold start.

In this paper, we also discussed several points concerning
the issue of treatment of the temporal dimension in data
analysis. The raised issues demonstrate the need for defin-
ing new methods or adapting existing methods for extract-
ing knowledge and monitoring changing and evolutive data.
Although there are many efficient methods for extracting

knowledge, few studies have been devoted to the issue of
temporary evolutive data.

8. REFERENCES
[1] John S. Breese, John S. Breese, David Heckerman,

and Carl” Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. pages 43–52,
1998.

[2] Cofi. http://www.nongnu.org/cofi/.

[3] Antoine Cornuéjols. Getting order independence in
incremental learning. In ECML ’93: Proceedings of the
European Conference on Machine Learning, pages
196–212, London, UK, 1993. Springer-Verlag.

[4] Baptiste Csernel, Fabrice Clerot, and Georges Hébrail.
Streamsamp: Datastream clustering over tilted
windows through sampling. ECML PKDD 2006: the
International Workshop on Knowledge Discovery from
Data Streams (IWKDDS-2006), 2006.

[5] Duine. http://www.duineframework.org/.

[6] Daniel Lemire and Anna Maclachlan ”. Slope one
predictors for online rating-based collaborative
filtering. 2005.

[7] Greg Linden, Brent Smith, and Jeremy York.
Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing,
7(1):76–80, 2003.

[8] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen.
Personalized news recommendation based on click
behavior. In IUI ’10: Proceeding of the 14th
international conference on Intelligent user interfaces,
pages 31–40, New York, NY, USA, 2010. ACM.

[9] Mahout. http://mahout.apache.org/.

[10] Raymond J. Mooney and Loriene Roy. Content-based
book recommending using learning for text
categorization. In DL ’00: Proceedings of the fifth
ACM conference on Digital libraries, pages 195–204,
New York, NY, USA, 2000. ACM.

[11] OpenSlopeOne.
http://code.google.com/p/openslopeone/.

[12] ProximaMobile. http://www.proximamobile.fr/.

[13] Suggest.
http://glaros.dtc.umn.edu/gkhome/suggest/overview.

[14] Vogoo. http://www.vogoo-api.com/.

58


	paper1.pdf
	1. INTRODUCTION
	2. RELATED WORKS AND MOTIVATION
	3. MODELING SERENDIPITOUS ITEMS ACCORDING TO ANALYSIS OF ACTUAL DATA
	3.1 User-preference model
	3.2 Questionnaire
	Analysis method
	3.4 Results
	3.5 Model based on analysis results

	4. PROPOSAL AND EVALUATION OF RECOMMENDATION METHODS
	4.1 Proposed methods
	4.1.1 Using distance between items
	4.1.2 Using general unexpectedness

	4.2 Evaluation method
	4.2.1 Dataset
	4.2.2 Procedure
	4.2.3 Evaluation metrics

	4.3 Results

	5. FUTURE WORK
	6. CONCLUSION
	7. REFERENCES

	paper2.pdf
	paper3.pdf
	paper4.pdf
	paper5.pdf
	paper6.pdf
	paper7.pdf
	paper8.pdf
	paper9.pdf



